含Nb,RE及Si的TiAl合金方锭的冷坩埚定向凝
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的TiAl合金做钮扣炉实验,通过压缩实验确定不同成分钮扣锭的强度和塑性,从而计算出各钮扣锭的强塑值,根据强塑值的大小确定成分做定向凝实验。本文从所配的6个类别的18种化学成分中选出Ti47Al5Nb0.3Y0.5Si做定向凝实验,研究定向凝的成形工艺对合金的宏观,微观组织和力学性能的影响。
     26×26mm方形水冷铜坩埚定向凝实验采取6种成形工艺分别制备了6件铸锭。铸锭的宏观组织可以分为三个区域:初生区,生长区和最后凝区。通过实验发现固液界面的宏观形态对柱状晶的生长方向有直接的影响,而固液界面的宏观形态可以由成形工艺控制。固液界面其实质是由一个主动温度梯度和两个被动温度梯度的相互矛盾构成,主动温度梯度是电磁感应加热温度梯度,被动温度梯度是水冷铜坩埚冷却温度梯度和液态镓铟合金冷却温度梯度。主动温度梯度的存在是被动温度梯度存在的前提。通过对纵截面的金相照片和电子扫描发现:合金由α2,γ两相组成,而γ相有三种片层结构(和柱状晶的生长方向分别呈0°,45°,和90°),这说明发生了两种态相变;对γ片层的厚度研究发现提高功率和抽拉速度均可以细化片层。这说明不仅要控制固液界面的形态还要尽可能地细化片层,因为柱状晶生长方向,片层方向和片层厚度对合金力学性能均具有重大的影响。对析出物的研究发现,工艺对Y和Si的析出相的分布和成分几乎没有什么影响,而Y和Si的析出相能细化晶粒。
     室温和850℃的高温拉伸实验表明P=45kW,V=1.2mm/min的力学性能最优,而高温实验的力学性能优于室温实验的力学性能的机理尚待研究。实验断口扫描研究发现断裂方式主要是解理断裂和穿层断裂。
Compound multicomponents TiAl alloys in the button shape casting experiment,by compress experiment fix the intensity and the plasticity,acrrording to which work out the intensity and plasticity,calculate the multiplication of the intensity and the plasticity ,called the multiplication as IPF .according to IPF choose the best component Ti47Al5Nb0.3Y0.5Si of the 6 sorts and 18 kinds component to do directional solidification experiment .investigate the effect ion of the figuration technics of directional solidification to the macroscropic,microscropic structure and mechanics performance.
     26 mm×26mm rectangular water-cooled copper crucible directional solidification experiment use 6 kind figuration technics to produce 6 pieces of casts .Divdid the macroscropic structure to three parts:beginning part ,directional growth part and last solidification part.By experiment find that the macroscropic conformation of the interface between solid and liquid acts important effection to the direction of growth of the pillar shape crystal.but the macroscropic conformation of the interface of between the solid and liquid can be contolled by figuration technics .The essence of the interface between solid and liquid is made up of one initiative temperature grads and two passivity temperature grads,the initiative temperature grads is the electromagnetic induction temperature ,the two passivity temperature grads contents the water–cooled copper crucible temperature grads and the GaIn alloys temperature grads.If there is not the passivity temperature without the initiative temperature.By the photo of metallography and electron scan researching:TiAl alloy microscropic structure made up ofα2 andγ,while theγhas three kinds lamellar structure( the angle of the growth of pillar shape crystaland lamellar is 0°,45°and 90°),show that two kinds solid state;increasing the power and ratio pulling can decrease the thickness of the lamellar .Controlling the conformation of the interface between solid and liquid and lameller thickness are very important to the mechanics performance of TiAl based alloy.figuration technics is invalid to the Y and Si separating out in the TiAl-based alloy but the separating of Y and Si can smallerize the lameller and crystal.
     P=45kW,V=1.2mm/min is the best figuration technics by the room temperature stretch experiment and 850℃high temperature stretch experiment,but the mechanism that high temperature mechanics performance is better than the room terperature is unkown. Breaking along the way lamellar phase.of cleavage and wear layers along faults are the main ways of rupturing mechanism by electron scan.
引文
1 W.贝脱立治.尼莫尼克.镍铬耐热合金.北京:中国工业出版社,1964
    2黄乾尧,李汉康等编著.高温合金.北京:冶金工业出版社,2000
    3黄伯云.钛铝基金属间化合物.长沙:中南工业大学出版社,1998
    4 J Doychak. Metal- and intemetallic-matrix composites for aerospace propulsion and power systems. JOM, 1992,7:46-51
    5 D M Dimiduk, D B Miracle and C H Ward. Development of intermetallic materials for aerospace systems. Materials Science and Technology. 1992,8(4):367-375
    6 Fores F H, Suryanarayana C, Eliezer D. Review synthesis properties and applications of titanium aluminides. J Mater Sci, 1992,27:5113-5140
    7 Bartolotta P, Barret J, Kelly T, Smashey R. The use of cast Ti-48A1-2Cr-2Nb in jet engines. JOM, 1997,49(5):48-50
    8 C M Austin, T J Kelley, K G Mcallister and J C Chesnult. Aircraft engine applications for gamma titanium aluminide.Structural Intermetallics, edited by M V Nathal, R Darolia, C T Liu and P L Martin, 1997, 413-426
    9 TOSHIMITSU TETSUI.Development of a TiAl turbocharger for passenger v e hicles. Materials Science and Engieering.2002,A329-331:582-588
    10 CLEMENTS H.APPEL F,BARTELS A,et al.processing and application of engineeringγ?TiAlbased alloy.Proceeding of the 10th world conference on Titanium. Hamburg. IV.2003.2123-2136
    11陈玉勇,孔凡涛.TIAI基合金新材料研究及精密成形.金属学报,2002.38(11): 1141 -1148
    12肖树龙,陈玉勇,朱洪艳,田竟,吴宝昌.大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展.稀有金属材料与工程.2006,(35): 678-681
    13 Austin C M,Kelly T J.Progress in Implementation of Cast Gamma Titanium Aluminide.In:KimY W,Wagner R,Yamaguchi M eds.Gamma Titanium Aluminides,Warren-dale,Pennsylvania:TMS,1995:21~32
    14 Fagaraseanu D,HauboldT.Properties of Forgedγ-TiAl Compressor Blades.In:Kim Y W,Dimiduk D M,Loretto MH eds.Gamma Titanium Aluminides,Warrendale,Pennsylvania:TMS,1999,365~370
    15 Maki K,Ehira A.In:Sayashi M ed.Development of a High-Performance TiAl Exhaust Valve.SAE Paper,Warrendal,Pennsylvania:TMS,1996:117~12
    16 Keller MN,Jones P E,Porter WJ,et al.The Development of Low-Cost TiAl Automotive Valves.JOM,1997,49:42~44
    17 Nishiyama Y,Miyashita T,Isobe S,et al.Development of Ti-tanium Aluminide Turbocharger Rotors.Whang S H,Liu C T,Pope D P eds.High Temperature Aluminides and Inter-metallics,Warrendale,Pennsylvania:TMS,1990:557~584
    18 Kawaura H,Nishino K,Saito T.New Surface Treatment us-ing a Fluidized Bed Furnace for Improving Oxidation Resis-tance of TiAl-Base Alloys.In:Nathal M V,DaroliaR,Liu C T eds.Structural Intermetallics 1997,Warrendale, Pennsylvania:TMS, 1997,377~386
    19 Appel F,Wagner R.Deformation Mechanism in TiAl/Ti3AlStructure.In:Kim YW,WagnerR,YamaguchiMeds.GammaTitaniumAluminides,Warrendale,Pennsylvania: TMS,1995:231
    20 Appel F,Beaven P A,Wagner R.Deformation Processes Related to Interfacial Boundaries in Two-Phaseγ-TitaniumAluminides.Acta Metall Mater,1993,41:1 721~1 724
    21 Chen G L,Wang X T,Ni K Q,et al.Investigation on the 1 000,1150 and 1 400℃IsothermalSection of the Ti-Al-Nb System.Intermetallics,1996,4:13~17
    22 Nakamura H,Takeyama M,Yamabe Y,et al.Phase Equilibria TiAl Alloys Containing10 and 20 at%Nb at 1473 k.Scripta Metall Mater,1993,28:997~999
    23 Nakamura H,Takeyama M,Yamabe Y,et al.Phase Equilibria TiAl Alloys Containing 10 and 20 at%Nb at 1473 k.Scripta Metall Mater,1993,28:997~999
    24 Chen G L,Lin Junpin,Song Xiping,et al.Development of High Nb Containing High Temperature TiAl Alloys.In:Kim Y W,Taden Carneiro eds.Niobium for High Tem-perature Applications,Warrendale,Pennsylvania:TMS,2004:153~158
    25 Chen G L,Zhang W J,Liu Z C,et al.Microstructure and Properties of High-Nb Contained TiAl-Based Alloys.In:Kim Y W,Dimiduk D M,Loretto M H eds.GammaTitani-umAluminides1999,Warrendale,Pennsylvania:TMS,1999:371~374
    26 Rossouw C J,Forwood C T,Gibson M A,et al.Genera-tion and Absorption of Characteristic X-RaysunderDy-namical Electron Diffraction Conditions.Micron,1997,28:125~130
    27 Appel F,Oehring M,Wagner R.Novel Design Concepts for Gamma-Base Titanium Aluminide Alloys.Intermetallics,2000,8:1 283~1 285
    28 Paul J D H,Appel F,Wagner R.The Compression Be-haviour of Niobium Alloyedγ-Titanium Alumindies.ActaMater,1998,46:1 075~1 079
    29 Appel F.An Electron Microscopy Study of Twin Propogation in Two-Phase Titanium Aluminldes.In:AnkemS,PandeCSeds.Advances in Twinning,Warrendale,Pennsylvania:TMS,1999:171~175
    30 Chen Guolian.金属间化合物结构材料研究现状与发展.MaterialsReview,2000,14(9):1~5
    31 Zhang W J,Deevi S C,Chen G L.On the Origin of Supe-rior Strength of Ti-45Al-10Nb Alloys.Intermetallics,2002,10:403~406
    32 Liu Zicheng.Research on The Micro-Alloying and The Creep Properties ofHigh NiobiumContainingTiAl Alloys.Beijing:U-niversity of Science and Technology Beijing,2000
    33 Li Shujiang.Research on The Micro-Alloying and The Creep Properties of High Niobium Containing TiAlAlloys.Beijing:Universityof Science and Technology Beijing,2001
    34王艳丽,丁宏升,郭景杰,傅恒志.感应熔炼冷坩埚内磁场的分布规律.哈尔滨工程大学学报.2006,27(5):667~770
    35梅向阳,马文会,戴永年,魏奎先,汪镜福.定向凝技术的发展及其制备太阳能级硅材料中的应用.轻金属.2008.9:64~70
    36王艳丽.钛基合金近距形冷坩埚连续熔铸与定向凝工艺基础研究.哈尔滨工业大学博士学位论文. 2007
    37黄伯云.钛铝基金属间化合物.长沙:中南工业大学出版社, 1998:3-15
    38 M. Yamaguchi, D. R. Johnson, H. N. Lee, et al. Directional Solidification of TiAl-base Alloys. Intermetallics. 2000, (8): 511-517
    39陈佳.定向凝TiAl合金板状坯微合金化及组织细化.硕士学位论文.2008
    40刘自成,林均品,陈国良.添加W对高铌TiAl合金组织和力学性能的影响.材料热处理学报.2001,22(1):7~13
    41彭超群,黄伯云,贺跃辉. TiAl基合金的工艺-显微组织-力学性能关系.中国有色金属学报. 2001, 11(4):527-540
    42 S. Chan, Y. W. Kim. Influence of microstruture on cracktip micromechanics and fracture behaviors of a two-phase TiAl alloy. Metall.Trans.A. 1992, 23A(6): 1663-1677
    43 Nakamura H,Takeyama M,Yamabe Y,et al.Phase Equilibria TiAl Alloys Containing 10 and 20 at%Nb at 1473 k.Scripta Metall Mater,1993,28:997~999
    44聂革.定向凝方锭的制备和应用.硕士学位论文.2008
    45国外工艺技术集锦.添加高铌对TiAl合金组织和力学性能的影响.2007,26(5):44~45
    46孔凡涛.稀土对TiAl合金凝组织及性能影响的研究.哈尔滨工业大学博士论文. 2003
    47刘昌明,李华基,何乃军.钆对Ti-44Al合金组织和晶粒尺寸的影响.重庆大学学报(自然科学版),1999,22(6);19-23
    48汤慧萍,黄伯云,刘海彦等.稀土钕对粉末钛合金室温拉伸性能的影响.稀有金属材料与工程.2004,1(33):43-46
    49 D. R. Johnson, Y. Masuda, et al. Alignment of the TiAl/Ti Al lamellar microstructure in TiAl alloys by growth from a seed material. 3Acta.Mater. 1997, 45(6):2523-2533
    50李书江,刘自成,林均品,陈国良,张卫军.一种高铌TiAl合金的蠕变性能.稀有金属材料与工程.2002,31(1):31~36
    51陈玉勇,李宝辉,孔凡涛.Y(0.3at%)对TiAl-45Nb合金铸态显微组织的影响.稀有金属材料与工程.2006,35(1):1~4
    52陈瑞润.钛基合金电磁冷坩埚连续熔铸与定向凝.哈尔滨工业大学博士学位论文.2005