板坯连铸结晶器钢液流动行为的物理模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着连铸技术的不断发展,对连铸钢水的洁净度和铸坯质量的要求也越来越高。结晶器是连铸机的心脏,是改善铸坯质量,去除钢中夹杂物的最后环节,对铸坯质量有着重要的影响。结晶器内钢液的流动行为包括液面的波动、注流对窄面的冲击、渣层覆盖状况、表面流速等,极大地影响着铸坯质量和浇铸过程的顺行。优化浸入式水口结构参数和结晶器操作参数是改善结晶器内钢液流动方式、优化结晶器流场的有效手段,对提高连铸坯质量具有重要作用。
     本文以重钢环保搬迁在建1#板坯连铸结晶器为研究对象,根据相似原理,建立1:0.55的物理模型。采用水力学模拟方法,对160mm、190mm和230mm厚度结晶器进行物理模拟。通过测量和分析液面波动、渣层分布、卷渣次数、冲击深度、流场显示等实验指标,研究拉速、插入深度、塞棒吹气量、结晶器断面宽度以及中间包液位深度对结晶器内钢液流动行为的影响;在此基础上,对重钢新厂的浸入式水口结构参数和结晶器操作参数进行设计。此外实验还制作了相似比为1:0.8的结晶器模型,研究不同结晶器相似比对结晶器流场的影响。由于重钢新厂尚未投产,水口进行现场应用还需要进一步的研究。
     研究结果表明:160mm厚度结晶器选用B2#(凸底、倾角向下15o、侧孔面积3289mm2)水口。在实验条件下,采用优选的水口时,结晶器液面稳定,保护渣覆盖良好;结晶器表面流速适当,即有利于保护渣的熔化,又不至于产生卷渣。190mm厚度结晶器选用3#水口(凸底、倾角向下15o、侧孔面积3846mm2)和2#水口(凸底、倾角向下20o、侧孔面积4334mm2);其中3#水口适用于转炉单联工艺对应的拉速,2#水口适用于转炉双联工艺对应的拉速。230mm厚度结晶器选用2#和7#(凹底、倾角向下15o、侧孔面积3846mm2)水口,其中2#水口适用于转炉单联工艺对应的拉速,7#水口适用于转炉双联工艺对应的拉速。
     不同相似比物理模型的研究表明:模型与实物的相似比为0.55,较相似比为0.8结晶器液面波动小,液渣分布均匀。物理模拟实验中,在研究钢渣界面行为时,有必要同时满足Fr准数和We准数相等。
With the development of continuous casting technology, it becomes more and more important to improve the cleanliness and quality of casting steel. The mold which serves as a heart during continuous casting is the last process that improves the liquid steel quality and removes inclusions, it has important influence on slab quality. The fluid flow of molten steel include the level fluctuation, the impact depth, the state of slag blanket and the surface velocity, which exactly effect the quality of slab and the security of casting process. Optimize the Submerged Entry Nozzle (SEN) and the production parameter of mold are the available measure to improve fluid flow and promote the reasonable distribution of molten steel, which have significant function to enhance the quality of slab.
     According to the No.1 continuous caster of the steelmaking factory of Chongqing Iron and Steel Company, a 1:0.55 mold model based on conform theory was established in this paper. Using water model, this paper has studied systematically 160mm, 190mm and 230mm thickness mold. Using the physical simulation which consisted of the level fluctuation, the state of slag blanket, the slag entrapment and the impact depth etc , this paper researched how the casting speed, immerged depth, blowing volume, different mold section and tundish depth influence the mold flow field. Based on this, this paper designed the submerged entry nozzle structural parameters mold operation parameters. Besides, a 1:0.8 mold model has established to research the effect of fluid flow on different similitude ratio. Because the new plant hasn’t put into production, the plant application needs more research.
     The results indicate that: 160mm thickness of mold preferred B2# nozzle (concave bottom, downwards 15°, 3289 mm2 side area). As a result, the fluid flow of molten steel was stable, mold slag covered well; mold surface velocity was properly, which is beneficial for the slag melting and liquid level stabilizing. 190mm thickness of mold preferred 3# (convex bottom, downwards 15°, 3846 mm2 side area) and 2# nozzle, (convex bottom, downwards20°, 4334 mm2 side area); the 3# nozzle can be the choice for conventional steelmaking technology of converter, the 2# nozzle can be the choice for duplex steelmaking technology of converter. 230mm thickness of mold preferred 2# and 7# nozzle (concave bottom, downwards 15°, 3846 mm2 side area), the 2# can be the choice for conventional steelmaking technology of converter, the 7# nozzle can be the choice for duplex steelmaking technology of converter.
     Different similitude ratio physical simulation research showed: model and practicality similitude ratio was 0.55, the surface fluctuation was smaller than the 0.8 similitude ratio, liquid slag distributed uniformity. At physical simulation experiments, it is necessary to meet the Fr and We number to study the behavior of steel-slag interface.
引文
[1]干勇,仇圣桃,萧泽强.连铸铸钢过程数学物理模拟[M].北京:冶金工业出版社,2001.
    [2]张海军,薛庆国.连铸技术的最新发展趋势[J].宽厚板, 2005(6):42-45.
    [3]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [4]干勇,唐红伟,仇圣桃.连续铸钢在钢铁生产流程中的作用及现代连铸技术简介[J].中国科学, 2008, 9(38):1384-1390.
    [5]蔡开科.连铸结晶器[M].北京:冶金工业出版社,1994.
    [6]陈家祥.连续铸钢手册[M].北京:冶金工业出版社, 1991, 203.
    [7] Takatani.K, Y.Tanizawa, H.Mizukami. Mathematical Model for Transient Fluid Flow in a Continuous Casting Mold[J]. ISIJ Int.2001,41(10):1252-1261.
    [8] Szekely J, Yadoya R T. The Physical and Mathematical Modeling of the Flow Field in the Mold Region in Continuous Casting System[J]. Met Trans B,1973(4):1379-1388.
    [9]冯捷,史学红.连续铸钢生产[M].北京:冶金工业出版社, 2005.
    [10] B. G. Thomas and Lifeng ZHANG. Mathematical Modeling of Fluid Flow in Continuous Casting [J]. ISIJ International, 2001,41(10): 1181–1193.
    [11] Gupta D,Lahiri A.k Cold Model Study of the Surface Profile in a Continuous Slab Casting Model:Effect of Second Phase[J]. Metallurgical and Material Transactions. 1996, 27B(8): 695-697.
    [12] Teshima T, Kuboto J, Suzuki M, etal. Influence of casting conditions on molten steel flow in continuous casting mold at high speed casting of slabs[J]. Iron Steel,1993,79(5):576.
    [13] J.Anagnostopoulos, G.Bergeles. Three-Dimensional Modeling of the Flow and the Interface Surface in a Continuous Casting Mold Model[J]. Metallurgical and Materials Transactions B,1999,30B(12):1095-1I05.
    [14] P.Andrzejewski, K.Kohleer, and W .PIuschkell[J]. Steel Res.,1992,vo l.63(6):242-246.
    [15] Kubota Jun,Okimoto Kazutaka, Shirayama Akira,etal. Meniscus flow control in the mold by traveling magnetic field for high speed slab caster[J]. Steelmaking Conference Proceedings, 1991,74(2):197-205.
    [16]段崇雯,朱英雄,程士富等.鞍钢二炼钢厂小方坯连铸机浸入式水口结构优化研究[J].山西冶金, 2002, 3:36-39.
    [17]雷洪,干勇.高速连铸结晶器内卷渣机理及其控制研究[J].炼钢, 1999, 34(8):20-23.
    [18] Q.L.He. Observations of Vortex Formation in the Mould of a Continuous Slab Caster[J]. ISIJInt,1993,33(2):343-345.
    [19]朱苗勇,王军,雷洪等.连铸结晶器内钢水卷渣的机理与控制[J].鞍钢技术, 2005(2):1-4.
    [20]张胜军,朱苗勇,张永亮等.高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J].金属学报, 2006, 46(10):1087-1090.
    [21]包燕平,朱建强,蒋伟等.薄板坯结晶器内卷渣现象的研究[J].北京科技大学学报, 1999, 21(6):530-534.
    [22] Manabu I. Model Study on the Entrapment of Mold Powder Into Molten Steel[J]. ISIJ International, 2000, 40(7): 685-691.
    [23]陆巧彤,杨荣光,王新华等.板坯连铸结晶器保护渣卷渣及影响因素的研究[J].钢铁, 2006, 7(7):29-32.
    [24]孙彦辉,韦耀环,蔡开科等.宽板坯连铸结晶器内卷渣现象试验研究[J].钢铁, 2007, 11(11):31-33.
    [25] WH.Emling,T.A.Waugaman. Sub surface Mold Entrainment in Ultra Low Carbon Steels[J].Steelmaking Conference Proceedings,1994:371-379.
    [26] P.Andrzejewski, D.Gotthelf etal. Mould Flow Monitoring at N0 3 Slab Caster, Krupp Hoesch Stahl AG[J]. Steelmaking Proceedings,1997:153-157.
    [27] Jun Kubota, Kazutaka, Okimoto etal. Meniscus Flow Control in the Mold by Travelling Magnetic Field for High Speed Slab Caster[J]. Steelmaking Conference Proceedings, 1991:233-241.
    [28] P.Andrzejewski, D.Gotthelf etal.Mould Flow Monitoring at No 3 Slab Caster,Krupp Hoesch Stahl AG[J]. Steelmaking Conference Proceedings, 1997, 153-157.
    [29] Manabu Iguchi, Jin Yoshida, Tomoyuki Shimizu. Model Study on the Entrapment of Mold Powder into Molten Steel[J]. ISIJ International, 2000, 40 (7):685.691.
    [30]包燕平,朱建强,蒋伟等.薄板坯结晶器内卷渣现象的研究[J].北京科技大学学报, 1999,2 1(6):530-534.
    [31]艾国强译.连铸保护渣的设计、开发与应用[J].甘肃冶金, 1994, (1):38.
    [32] T .Honeyands, J.Lucas, J.Cambers and J.Herbertson, Preliminary Modelling of Steel Delivery to Thin Slab Caster Molds[C], Steelmaking Conference Proceeding,1992 ,451-459.
    [33] J. Herbertson, Q.L.He, P.J. and Flint, R. B. Mahapatra. Modelling of Metal Delivery to Continuous Casting Molds[C].Steelmaking Conference Proceeding,Vol.74, ISS, Warrendale, PA,(Washington, D.C.),1 991,171-185.
    [34]李宝宽,李东辉.连铸结晶器内钢液涡流现象的水模型观察和数值模拟[J].金属学报, 2002,38(3):315-320.
    [35] Yeon Hsin Wang. A Study of the Effect of Casting Conditions on Fluid Flow in the Mold UsingWater Molding[J]. Steelmaking Conference Proceeding,1990:473-480.
    [36] Shinichiro YoKOYA, Sigeo TAKAGI, Manabu IGucHI. Swirling effect in immersion nozzle on flow and heat transport in Billet Continuous Casting mold[J]. ISIJ international, 1998, 38(8):827~833.
    [37] D. GUPTA, A.K. LAHIRI. A Water Model Study of the Flow Asymmetry inside a Continuous Slab Casting Mold[J]. Metallurgical and Materials Transactions B, 1996, (27B): 757-763.
    [38]冯巍.板坯连铸浸入式水口结构参数与工艺参数的模拟与优化[D].东北大学硕士学位论文, 2005.
    [39]张乔英,王书桓,陆殿华等.板坯连铸结晶器浸入式水口工艺参数的模拟正交试验[J].特殊钢, 2004, 25(4):9-12.
    [40]雷洪,朱苗勇,邱同榜等.板坯连铸结晶器流场优化[J].炼钢, 2000, 16(3):29-31.
    [41]陆巧彤,杨荣光,王新华等.板坯连铸结晶器内液面波动的水模型研究[J].包头钢铁学院学报, 2006, 25(1):13-17.
    [42]王永胜,顾武安,王新华等.高拉速厚板坯连铸结晶器流场影响因素的模拟研究[J].钢铁钒钛,2008,29(1):27-33.
    [43]马军,胡道峰,马骏等.南钢板坯连铸机浸入式水口结构优化的研究[J].材料与冶金学报, 2008,7(2):94-98.
    [44]高玉兴.浸入式水口的连铸水模实验[J].鞍钢技术, 1986,(4):6-10.
    [45] T.honeyands,J.Lucas. Preliminary Modeling of Steel Delivery to Thin Slab Caster Mould[J]. Steelmaking Conference Proceeding,1992:451-459.
    [46]陈敏,王楠,韩文习等.板坯连铸机浸入式水口结构优化的水模研究[J].钢铁, 2007, 23(3):36~40.
    [47]邓伟,张晓光.浸入式水口不同侧孔面积比及形状参数水模实验研究[C].中国钢铁年会论文集, 2005:430-435.
    [48]韩文殿.连铸浸入式水口水模型研究[J].宽厚板,2003,9(4):4~7.
    [49]雷洪,朱苗勇.板坯连铸结晶器流场优化[J].炼钢, 2000,16 (3):29 -31.
    [50] Ferretti A, Podfini M, Schino G D. Submerged Nozzle Optimization to Improve Stainless Steel Surface Quality at Temi Steelworks[A]. Steelmaking Conference Proceedings[C]. 1985, 68:49-57.
    [51]于会香,张炯明,王力军等.板坯连铸浸入式水口出口速度对结晶器流场影响的数值模拟[J].北京科技大学学报, 2002, 24(5):492-496.
    [52]胡皓,赵和明,张炯明等.结晶器液面波动的水模型研究[J].钢铁钒钛, 2005, 26(1): 10-15.
    [53]马范军,文光华,李刚等.板坯连铸结晶器内钢液流动数值模拟[J].金属学报, 2000,36(4): 399-402.
    [54]齐新霞.板坯结晶器流场物理模拟及冶金效果研究[J].钢铁研究, 2004, (1):12-16.
    [55] Fady M.Najjar, B.G.Thomas, Donald E.Hershey. Numerical Study of Steady Turbulent Flow through Bifurcated Nozzles in Continuous Casting [J]. Metallurgical and Materials Transactions B,1995(26B):749-765.
    [56]于会香,王新华,陆巧彤.结晶器内钢液流动特性的优化[J].北京科技大学学报, 2009,31(4):477-480.
    [57]万晓光,杨素波.连铸板坯结晶器浸入式水口试验研究[J].钢铁, 2000,35(9):20-23.
    [58]高文芳,石文光.连铸中间包瓶式水口的研究与应用[J].炼钢, 1992,8(6):6-10.
    [59] Tsukamoto N.A water model study of the flow asymmetry in side a continuousslab casting mold[J]. Steelmaking Conference Proceedings,1991,74(7):803-811.
    [60]沈巧珍,朱必炼.宽板坯结晶器浸入式水口结构优化的数值模拟[J].钢铁钒钛, 2007, 28(1):13-17.
    [61]张乔英,王书桓,王立涛等.SEN壁厚对结晶器内钢液流场和温度场的影响[J].炼钢, 2005(3):51-53.
    [62] M.Alavanja, R.T.Gass, R.W.Kittridge. Continuous Improvement of Practices to Reduce Tundish Nozzle Clogging[J]. Steelmaking Conference Proceedings. 1995:415-426.
    [63] Perez R S,Morales R D, Cruz M D. A Physical Model for the Two-phase Flow in a Continuous Casting Mold[J]. ISIJ International,2003,43(5):637-646.
    [64] B.G.Thomas etal. Simulation of Fluid Flow inside a Continuous Slab-Casting Machine[J]. Metallurgical & Materials Transactions B, 1990, 21(2):387-400.
    [65]陈永范,陈德杰,李权等.大板坯连铸结晶器内流场实验研究[J].炼钢, 1998, 14(2): 25-29.
    [66]张胤,贺有多,白学军等.水口插入深度对连铸机结晶器内钢液流动的影响[J].炼钢, 2001(2):52-54.
    [67] Peter Aurzejewski, Karl-uirich etal. Model investigation on the fluid flow in continuous casting models of wide dimensions[J]. Steel Research,1992,(63):242-246.
    [68]王妍,郑炜,朱苗勇.宝钢一炼钢厂连铸机结晶器浸入式水口吹氢的水模研究[J].宝钢技术, 2000,(6):26-32.
    [69]马范军,文光华,李刚.板坯连铸结晶器内吹入气体对钢液行为的影响[J].炼钢, 2000,16 (3):42-45.
    [70] H.Bai, B.G.Thomas. Effect of Operation Conditions and Nozzle Design[J]. Metallurgical and Materials TransB,2001,32B:1143-1152.
    [71]高文芳.防止浸入式水口堵塞的研究与应用[J].钢铁研究, 1997.(1):3-8.
    [72]米源.板坯连铸结晶器流场的水模型研究[J].河南冶金, 2006, 9:1-3.
    [73]雷洪,朱苗勇,王文忠等.水口吹氩对结晶器弯月面波动的影响[J].中国有色金属学报,1998, 8(2):468-471.
    [74]陈永范,陈德杰,李权等.大板坯连铸结晶器内流场实验研究[J].炼钢, 1998, 14(2):25-29.
    [75]陈阳,张炯明.宽板坯连铸结晶器内液面波动的数值模拟[J].钢铁钒钛, 2008, 29(3):45-50.
    [76]陆巧彤,杨荣光,王新华等.板坯连铸结晶器内钢液表面流速水模研究[J].炼钢, 2007, 23(1):30-34.
    [77] Yang Hongliang, Zhao Lianggang, Zhang Xing zhong, etal. Mathematical simulation on Coupled Flow, Heat, and Solute Transport in Slab Continuous Casting Process[J].Met. Trans B, 1998, 29: 1345-1356.
    [78]杨秉俭,黄尊贤.板坯结晶器内凝壳的测定和分析[J].特种铸造及有色合金, 1998,(3):7-9.
    [79]伍成波,李志国,王谦.连铸结晶器内钢液凝行为的计算机仿真[M].炼钢,2004, 20(3):44-47.
    [80] KIM Deok-Soo,KIM Woo-Seung, CHO Kee-Hyeon. Numerical Simulation of the Coupled Turbulent Flow and Macroscopic Solidification in Continuous Casting with Electromagnetic Brake[J]. ISIJ International, 2000,40(7):670-676.
    [81] Ya Meng, BG Thomas. Heat-Transfer and Solidification Model of Continuous Slab Casting [J]. Metallurgy and Materials Transactions B, 2003, 10:685-705.
    [82] Wu Difeng, Cheng Shusen, and Cheng Zijian. Characteristics of shell thickness in a slab continuous casting mold[J]. International Journal of Minerals, Metallurgy and Materials,2009, 16(1):25-31.