铝合金EBW非穿透型匙孔的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
匙孔形态和熔池的流动形态是电子束焊接焊缝质量控制的关键,而表征焊缝成形质量的特征区域的选取以及计算较为繁琐.本文在电子束焊接匙孔壁面受力平衡研究基础上,利用ANSYS软件建立了电子束焊接过程温度场、熔池流场、匙孔形态演变耦合分析的数值计算模型。匙孔形态以及与之密切联系的金属蒸发、熔池流动的研究对于电子束焊接质量控制有着重要意义。
     匙孔壁面力学平衡条件研究表明,在电子束焊接过程中,匙孔壁面法向主要受金属蒸气反冲压力、表面张力附加压力、流体静压力、熔池旋转向心力的作用;匙孔动态平衡时,法向上受力平衡;金属蒸气反冲压力和匙孔壁面表面张力是维持匙孔动态平衡的主要作用力。本文根据流体力学、流体动力学及传热学理论,建立了电子束作用下焊接熔池流场、温度场的二维瞬态数值分析模型。该模型综合考虑了熔池内部液态金属的对流传热和熔池外部的体导热、材料热物理性能参数随温度的变化、焊件表面通过对流和辐射向周围环境的散热以及熔化/凝相变潜热等对熔池流场与温度场的影响。利用ANSYS有限元软件对所建立的模型进行了求解。计算了焊接熔池温度场及其动态变化过程;研究了电子束作用下焊接熔池流体流场、熔池内金属的流动方式以及熔池流体运动速度的变化;分析了焊接工艺参数对匙孔的影响。在该模型中,对匙孔纵向深入过程与横向移动过程进行了模拟,采用匙孔自由界面跟踪算法(引入VOF模型)实现对匙孔形态变化的跟踪。结果表明,电子束焊接过程中驱动液态金属流动有三方面作用机制。一是与金属蒸发相关的金属蒸气反冲压力的驱动;二是与表面张力有关的附加压力以及Marangoni剪切力的驱动;三是熔池与工件的相对运动的驱动。三种驱动机制的共同作用导致了熔池内部复杂的流动特征。在验证试验中对熔池截面尺寸与模拟结果进行对比,能够达到预期效果。
The key of quality control are the flow shape of welding pool and the keyhole shape in electron beam welding.It is difficult to choose and calculate the characteristic area which can indicate the welding quality. In this paper, based on the force balance study of keyhole wall. ANSYS was used to build a coupled mathematical model to investigate the heat transfer, weld pool fluid flow and keyhole formation during electron beam welding. Investigation of keyhole behavior, metal evaporation and fluid flow played important part in the quality control of electron beam welding.
     The driving forces distribution on the keyhole wall was confirmed through investigating of the mechanical equilibrium condition. It was indicated that the keyhole was mainly drove by metal vapor recoil pressure, surface tension pressure, hydrostatic pressure, centripetal force in the normal direction. When the welding process was stable, these forces were balanced. During electron beam welding, metal vapor recoil pressure and surface tension paid important part in the stabilization of keyhole. Based on theories of hydromechanics,hydrokinetics and heat transfer,a two dimensional transient numerical model of flow and temperature field of the electron beam welding molten pool is established. In the model,both convection heat transfer of the melted metal inside the pool and heat conduction of solid metal outside the pool,the variation of the rmophysical parameters of material with temperature,the effect of the loss of heat,including convection and radiation, and latent heat of Phase transformation on the temperature field are cansidered.In use of ANSYS,calculating software of finite element technology,the welding pool’two dimensional flow and temperature fields and their transient variation processes are calculated,the flow style and velocity of molten metal are researched,and the welding variables’infection of temperature field is alsoanalyzed
     Based on the mechanical equilibrium condition, a coupled mathematical model was developed to simulate keyhole shape in longitudinal thorough process and level migration process. In this model, the volume of fluid method was used to trace the process of the keyhole formation. The results showed that there were three driving mechanisms for the weld pool flow. One was related to the metal evaporation and liquid metal was drove by the metal vapor recoil pressure; one was the effects of surface tension such as additional pressure due to surface tension and Marangoni shear stress; another was due to the relative motion between weld pool and work piece. Three kind of actuation mechanism's combined action has caused the molten bath interior complex mobile characteristic. In confirmatory test, carry on the contrast to the molten bath section size and the analogue result. it can achieve the anticipated effect.
引文
1何景山,张秉刚,张亚斌,等.电子束深熔焊匙孔的研究现状.焊接. 2007, (6): 28~30
    2周琦,刘方军.电子束深透焊接过程匙孔动力学研究进展.焊接学报,2001,22(3) :88~92
    3 H Tong,W H Giedt.A dynamic interpretation of electron beam welding. welding Joumal.1970.49(6) :259~266
    4 W H Giedt. Heat transfer and fluid flow in electron beam welding . Trends in welding Research in the united states.American society for Metals, USA,1982:109~131
    5 P. S Wei,T H. Wu,Y T Chow. Investigation of high-intensity beam characteristics on welding cavity shape and temperature distribution. Joumal of Heat Transfer,1990,112(1) :163~169
    6 P. S Wei,L R Chiou.Mechanism of keyhole formation and stability in stationary laser welding. Journal of Physics D: Applied Physics. 2002, 35: 1570~1576
    7 J. Zhou, H. L. Tsai, P. C. Wang. Transport phenomena and keyhole dynamics during pulsed laser welding. ASME Journal of Heat Transfer. 2006, 128(7): 680~690
    8 J. Zhou, H. L. Tsai. Porosity formation and prevention in pulsed laser welding. ASME Journal of Heat Transfer. 2007, 129(8): 1014~1024
    9 J. Zhou, H. L. Tsai. Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding. International Journal of Heat and Mass Transfer. 2007, 50: 2217~2235
    10 A. Kaplan, M. Mizutani, S. Katayama, et al. Analysis of different methods for the prevention of pore formation in keyhole laser sport welding. Welding in the World. 2002, 46(7): 39~50
    11 D. A. Schauer. Thermal and dynamic effects in electron beam welding cavities. PhD Dissertation, University of California, USA. 1977: 1~3
    12 D. A. Schauer, W. H. Giedt. Prediction of electron beam welding spiking tendency. Welding Journal. 1978, 57(7): 189~195
    13 Y. Arata, N. Abe, E. N. Nabegata. Dynamic welding phenomena duringEB-welding. 4th International colloquium on welding and melting by electron and laser beam. France: CEN SACLAY, 1988: 21~40
    14 Y. Arata, N. Abe, E. N. Nabegata. Dynamic welding phenomena during EB-Welding. 2nd International Colloquium on Welding and Melting by Electron and Laser Beam. France, 1978: 13~28
    15郭绍庆.电子束焊接温度场的有限元分析.航空材料学报.2000,(6):86~99
    16 U.Dilthey,A.Goumeniouk,O.K.Nazarenko,etal.Mathematical Simulation of the Influence of Ion-Compensation,Self-Magnetic Field and Scattering on an Electron Beam during Welding.Vacuum.2001,(62):87~96
    17史清宇.厚板焊接过程温度场应力场的三维有限元数值模拟. Msc中国用户大会议论文,1999
    18 WangJ.etal.ImProvement in Numerieal Aeeuraeyand Stability of DFEM Analysis in Welding.WeldingJournal,1996.75(4):129~134
    19陈楚等.数值分析在焊接中的应用.上海:上海交通大学出版社,1985,1:80~82
    20武传松.焊接热过程数值分析.哈尔滨:哈尔滨工业大学出版社,1990
    21 Reed R C,Stone G J,Roberts S M,Robinson J M,The development and validation of a model for the electron beam welding of aero-engine components. Proc.instn. mech.engrs,1997,211:421~428
    22凌泽民,周上祺,徐楚韶等.电子束焊接工艺参数与温度场的关系.焊接,2000(8):10~13
    23郭绍庆. GH909合金电子束焊接的有限元分析.香港材料学报,2000,20(3):98~101
    24张源.电子束焊接温度场的有限元分析与数值模拟.北京航空航天大学硕士论文,1998
    25刘敏,康继东,李瑜. Ti合金电子束焊接三维温度场计算.金属学报,2001,37(3) :301~30
    26董平,陈裕泽,邹觉生.铍环电子束焊接温度场和应力场的有限元分析.原子能科学技术,2002,36(3) :209~213
    27 W. Giedt . Prediction of Electron Beam Depth of Penetration. Welding Journal. 1988, 67 (5) : 299~305
    28 W. S. Chang, Study on the Prediction of The Laser Weld Shape With Varying Heat Source Equations and the Thermal Distortion of a Small Structure in
    Micro-joining . Journal of Materials Processing Technology. 2002, 120 (1-3) : 208~214
    29 C. Carmignani, R. Mares, G. Toselli. Transient Finite Element Analysis of Deep Penetration Laser Welding Process in a Singlepass Butt-welded Thick Steel Plate. 1999, 179 (3) : 197~214
    30吴甦,赵海燕,王煜,等.高能束焊接数值模拟中的新型热源模型.焊接学报. 2004. 25 (1) : 91~94
    31 Ha E-J, Kim W-S. A Study of Low-power Density Laser Welding Process with Evolution of Free surface. International Journal of Heat and Fluid Flow 2005, 26(4): 613~621
    32 H. G. Fan, H. L. Tsai, S. J. Na. Heat Transfer and Fluid Flow in a Partially or Fully Penetrated Weld Pool in Gas Tungsten Arc Welding. International Journal of Heat and Mass Transfer. 2001, 44(2): 417~428
    33 M. C. Tsai, S. Kou. Electromagnetic-force-induced Convection in Weld Pools with a Free Surface. Welding journal. 1990, 69: 241~246
    34 S. D. Kim, S. J. Na. Effect of Weld Pool Deformation on Weld Penetration in Stationary Gas Tungsten Arc Welding. Welding journal. 1992, 71: 179s~193s
    35 V. Pavlyk; U. Dilthey. A Numerical and Experimental Study of Fluid Flow and Heat Transfer Instationary GTA Weld Pools. 5th International Seminar on the Numerical Analysis of Weldability. Graz, Austria. 1999: 135~163
    36雷玉成,郑惠锦,程晓农.铝合金等离子弧立焊穿孔熔池的计算机模拟.焊接学报,2003,24(l):44~47
    37郑惠锦.铝合金穿孔型等离子弧焊接过程模拟.江苏大学,[硕士学位论文], 2002.06
    38倪栋.通用有限元分析ANSY7s.0实例精解.电子工业出版社,2003. 19(2): 6~13
    39张健,方杰,范波芹. VOF方法理论与应用综述.水利水电科技进展. 2005, 25(2): 67~70
    40 C. W. Hirt, B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundary. Computer Physics. 1981, 39: 201~22
    41 N. Ashgriz, T. Barbat, G. Wang. A computational Lagrangian-Eulerian advection remap for free surface flows. International Journal for Numerical Methods in Fluid. 2004, 44: 1~32
    42 G. Wang. Finite element simulations of free surface flows with surface tension in complex geometries. Journal of Fluids Engineering. 2002, 124: 584~594
    43 X. K. Li, Q. L. Duan, X. H. Han, etal. Adaptive coupled arbitrary Lagrangian-Eulerian finite element and meshfree method for injection molding process. International Journal for Numerical Methods in Engineering. 2008, 73: 1153~1180
    44 C. Devals, M. Heniche, F. Bertrand, et al.. A two-phase flow interface capturing finite element method. International Journal for Numerical Methods in Fluid. 2007, 53: 735~751
    45 A. H. Coppola-Owen, R. Codina. A finite element model for free surface flows on fixed meshes. International Journal for Numerical Methods in Fluids. 2007, 54: 1151~1171
    46 V. Semark, A. Matsunawa. The role of recoil pressure in energy balance during laser materials processing. Journal of Physics D: Applied Physics. 1997, 30: 2541~2552
    47 R. Sudnik, D. Rada, S. Breitschwerdt, et al. Numerical simulation of weld pool geomertry in laser beam welding. Journal of Physics D: Applied Physics. 2000, 33: 662~671
    48刘春飞.运载贮箱用2219类铝合金的电子束焊.航天制造技术. 2002, (4): 3~9