飞秒激光烧蚀金属与合金的机理及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞秒激光与材料相互作用的物理机制是飞秒激光微纳加工的基础。深入分析并理解飞秒激光烧蚀金属与合金材料,对提高加工效率与加工质量,全面优化加工工艺有很好的指导作用。本文采用结合双温模型与分子动力学模拟的方法研究飞秒激光与金属及合金材料相互作用所涉及的温度场演化,内部应力分布和原子位型变化等瞬态物理过程。论文的主要内容总结如下:
     (1)分析总结了飞秒激光与金属材料相互作用的一般物理过程。在超快时间领域内激光能量的沉积过程,材料对能量的吸收以及转移转化等过程。描述材料在不同的特征时间内产生的特定物理现象。具体阐述了结合双温模型的分子动力学模拟方法的执行步骤。
     (2)从一维双温模型出发,分析了材料热物理参量,包括电子热容,电子热传导率模型和电子声子耦合因子等对飞秒激光烧蚀金属材料温度场演化的影响。研究发现电子热容较大的金属需要较高的能量才能发生烧蚀行为,而不同的电子热传导率模型对飞秒激光作用下材料的热影响区域深度至关重要。电子声子耦合因子则对材料内部电子晶格间能量非平衡性持续时间起决定作用。还探讨了不同激光参量对温度场演化的影响,发现激光能量越高,则温度越高,温度梯度越明显,电子声子耦合时间变长。而脉宽越短,作用过程越激烈,激发的电子温度越高。
     (3)采用结合双温模型的分子动力学方法,开展了飞秒激光与过渡金属镍,轻质金属铝和贵金属银等典型金属作用的研究。过渡金属镍有较大的电子热容和较小的电子热传导率,因此热影响区域深度较小,且发生烧蚀行为所需的激光能量较高。飞秒激光与金属材料作用机理可描述为当能量足够大时,材料形成均匀的熔化固液界面向材料内部推进,当继续增加能量密度,可能诱发气相形核甚至达到材料的临界点温度,从而可能发生相爆炸现象。若继续增加能量密度,则可直接导致材料表面稠密等离子的形成。
     (4)首次初步建立了飞秒激光与B2结构镍钛合金相互作用的结合双温模型的分子动力学模型。分析不同能量密度和脉冲宽度的激光对烧蚀结果的影响。测得了材料在吸收能量密度为29.3mJ/cm2下发生烧蚀行为。烧蚀发生在激光诱导产生的拉应力波传播过后的材料次表层区域。材料内部压力波传播的速度与材料的声速相当。低能量密度下,烧蚀产物包含一个较大的液体团簇,而高能量密度下,烧蚀产物还有小液滴和单个粒子的存在。激光诱导的应力波在材料后表层形成一个应力集中区域,可能会造成材料在该区域的机械力破碎现象。
Mechanism of femtosecond laser interaction with materials has been widely investigated in recent years. It is the foundation of femtosecond laser micromachining. In this paper, a hybrid simulation combined two-temperature model and molecular dynamics simulation is applied to investigate femtosecond laser interaction with metals and alloy. The physical process including temperatrure evolution, pressure distribution and atomic configuration is described in detail. The main work is summarized as follows:
     (1) The general physical process is analyzed and summarized in the domain of femtosecond laser interaction with metals, which includes the deposition of optic energy, the absorption and transfer energy in the material. The characteristic time is resolved in the special physical phenomenon. The basic calculation methods have been performed in detail.
     (2) On the foundation of one dimension two-temperature model, the influence of material properties and laser parameters are investigated on femtosecond laser interaction with typical metals. The simulation results show that the metal which has a bigger electron heat capacity needs more fluence to occur to ablation behavior. The different electron thermal conductivity model is the key to the depth of heat affect zone. The nonequilibrium time between electron and lattice under femtosecond laser is strongly dependent on the electron-phonon coupling factor. The stronger laser fluence is, the higher the temperature and the longer the coupling time. It is also observed that by the shorter pulse duration, the electron temperature is higher and the process is stronger.
     (3) We research on femtosecond laser ablation of transition metal (Ni), light metal (Al) and noble metal (Ag) using the hybrid modeling combined two-temperature model and molecular dynamics simulation, respectively. The results show that transition metal has the small and thin heat affect zone because of bigger electron heat capacity and less electron thermal conductivity. The mechanism of femtosecond laser interaction with metals can be described that at certain laser fluence, heterogeneous nucleation increases and surface material begins melting. The phase explosion may occur while increasing laser fluence and temperature reaching to critical point. If the laser fluence is high enough, it directly results in forming plasma.
     (4) The modeling of femtosecond laser ablation of B2 type NiTi alloy is resolved by combined two-temperature model and molecular dynamics simulation. The simulation results show that ablation threshold is near absorbed fluence of 29.3mJ/cm2 and the speed of laser-induced pressure wave is related to velocity of sound in material. Thermal ablation occurs in subsurface while the tensile wave passes through the subsurface of material. At low laser fluence, ablated material is formed by a big liquid cluster, however, at high laser fluence, the ablated component consists of small cluster, liquid droplets and single particles. A focused region of negative pressure is formed in the substrate. The fragmentation may occur by this negative pressure. The novel ablation mechanism results from laser induced thermomechanical wave.
引文
[1] Ursula Kaller. Recent development in compact ultrafast lasers[J]. Nature, 2003, 424: 831-838.
    [2]杨建军.飞秒激光超精细“冷”加工技术及其应用(I)*[J].激光与光电子学进展, 2004, 41(3): 42-57
    [3] Goldman J. R., Prybyla J. A., Ultrafast dynamics of laser-excited electron distribution in silicon[J]. Physical Review Letters, 1994, 72(9): 1364-1367.
    [4] Von der Linde D., Sokolowski-Tinten K., Bialkowski J., Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, 109/110: 1-10.
    [5] Anisimov S. I., Kapeliovich B. L., Perelman T. L., Electron emission from metal surfaces exposed to ultra-short laser pulses[J]. Sov. Phys. JETP, 1974, 39: 375~377.
    [6] Rethfeld B., Kaiser A., Vicanek M., et al., Femtosecond laser-induced heating of electron gas in aluminium[J]. Appl. Phys. A, 1999, 69[Suppl.]: 109-112.
    [7] Rethfeld B., Kaiser A., Vicanek M., et al., Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation[J]. Phys. Rev. B, 2002, 65: 214-303.
    [8] Hertel T., Knoesel E., Wolf M., et al., Ultrafast electron dynamics at Cu(111): response of an electron gas to optical excitation[J]. Phys. Rev. Lett., 1996, 76: 535–538.
    [9] Brorson S. D., Kazeroonian A., Moodera J. S., et al., Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors[J]. Phys. Rev. Lett., 1990, 64: 2172–2175.
    [10] Qiu T. Q., Juhasz T., Suarez C., et al., Femtosecond laser heating of multi-layer metals-II experiments[J]. Int. J. Heat Mass Transfer, 1994, 37: 2799–2808.
    [11] Qiu T. Q., Tien C. L., Femtosecond laser heating of multi-layer metals-I analysis[J]. Int. J. Heat Mass Transfer, 1994, 37: 2789–2797.
    [12] Chickkov B. N., Momma C., Nolte S., et al., Femtosecond, picosecond and nanasecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.
    [13] Liu X., Due D., Mourou G., Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE. J. Quantum.Eleetron.,1997, 33(10): 1706-1716.
    [14] Nolte S., Momma C., Jacobs H., et.al., Ablation of metals by ultrashort laser pulses[J]. J. Opt. Soc. Am. B, 1997, 14(10): 2716-2722.
    [15] Nadezhda M., Bulgakova, Igor M. Bourakov., Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt[J]. Applied Surface Science, 2002, 197/198: 41-44.
    [16] Camlage G., Bauer T., Ostendorf A., et al., Deep drilling of metals by femtosecond laser pulses[J]. Appl. Phys. A, 2003, 77: 307-310.
    [17] Chen J. K., Tzou D. Y., Beraun J. E., A semiclassical two-temperature model for ultrafast laser heating[J]. International Journal of Heat and Mass Transfer, 2006, 49: 307–316.
    [18] Lan Jiang, Hai-Lung Tsai, Improved two-temperature model and its application in ultrashort laser heating of metal films[J]. Journal of Heat Transfer, 2005, 127: 1167-1173.
    [19] Christensen B. H., Vestentoft K., Balling P., Short-pulse ablation rates and the two-temperature model[J]. Applied Surface Science, 2007, 253: 6347–6352.
    [20] Inogamov N. A., Zhakhovskiib V. V., Ashitkovb S. I., et al., Two-temperature relaxation and melting after absorption of femtosecond laser pulse[J]. Applied Surface Science, 2009, 255(24):9712-9716.
    [21] Vidal F., Laville S., Johnston T. W., et a1., Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air[J]. Spectrochim Acta B, 2001, 56(6): 973-986.
    [22] Colombier J. P., Combis P., Bonneau F., et al., Hydrodynamic simulations of metal ablation by femtosecond laser irradiation[J]. Phys. Rev. B, 2005, 71(16): 165406.
    [23] Povarnitsyn M. E., Itina1 T. E, Sentis1 M., et al., Material decomposition mechanisms in femtosecond laser interactions with metals[J]. Phys. Rev. B, 2007, 75(23): 235414.
    [24] H?kkinen H., Landman U., Superheating, melting, and annealing of copper surfaces[J]. Phys. Rev. L, 1993, 71(7): 1023-1027.
    [25] Atanasov P. A., Nedialkov N. N., Imamova S. E. et al., Laser ablation of Ni by ultrashort pulse: molecular dynamics simulation[J]. Applied Surface Science, 2002, 186: 369-373.
    [26] Danny Perez, Laurent J. Lewis Ablation of solids under femtosecond laser pulses[J].Physical Review Letter, 2002, 89(25): 25504.
    [27] Nedialkov N. N., Imamova S. E., Atanasov P. A. et al., Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation[J]. Applied Surface Sciece, 2005, 247: 243-248
    [28] Nedialkov N. N., Atanasov P. A., Amoruso S., et al, Laser ablation of metals by femtosecond pulses: theoretical and experimental study[J]. Applied Surface Sciece, 2007, 253: 7761-7766.
    [29] Wang Xinwei, Xu Xianfan. Molecular dynamics simulation of heat transfer and phase change during laser material interaction[J]. Journal of Heat Transfer, 2002, 124: 265-274.
    [30] Wang Xinwei, Xu Xianfan, Thermolelastic wave in metal induced by ultrafast laser pulses[J]. Journal of Thermal Stresses, 2002, 25: 457-473.
    [31] Xu Xianfan, Willis D. A., Nonequilibrium phase change in metal induced by nanosecond pulsed laser irradiation[J]. Journal of Heat Transfer, 2002, 124: 293-298.
    [32] Wang Xinwei, Xu Xianfan, Molecular dynamics simulation of thermal and thermomechanical phenomena in picosecond laser material interaction[J]. International Journal of Heat and Mass Transfer, 2003, 46(1):45-53.
    [33] Chowdhury I. H., Xu Xianfan., Heat transfer in femtosecond laser processing of metal[J]. Numerical heat transfer, Part A, 2003, 44: 219-232.
    [34] Xu X., Cheng C., Chowdhury I. H., Molecular dynamics study of phase change mechanisms during femtosecond laser ablation[J]. Journal of Heat Transfer, 2004, 126: 727-734.
    [35] Cheng C., Xu. X. Mechanisms of decomposition of metal during femtosecond laser ablation[J]. Phys. Rev. B, 2005, 72: 165415.
    [36] Cheng C., Wu A. Q., Xu X., Molecular dynamics simulation of ultrafast laser ablation of fused silica[C]. Journal of Physics: Conference Series, 2007, 59: 100-104.
    [37] Zhigilei L. V., Dongare A. M., Multiscale modeling of laser ablation: applications to nanotechnology[J]. CMES, 2002, 3(5):539-555.
    [38] Ivanov D. S., Zhigilei L. V., Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Phys.Rev.B, 2003, 68: 064114.
    [39] Lin Z., Zhigilei L. V., Time-resolved diffraction profiles and structural dynamics ofNi film under short laser pulse irradiation[J]. J. Phys.: Conference Series, 2007, 59: 11-15.
    [40] Lin Z. and Zhigilei L. V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium[J]. Phy. Rev. B, 2008, 77: 075133.
    [41] Thomas Derek A., Lin Zhibin, Zhigilei Leonid V., et al., Atomistic modeling of femtosecond laser-induced melting and atomic mixing in Au film-Cu substrate system[J]. Applied Surface Science, 2009, 255: 9605-9612.
    [42]刘璇,王杨,赵丽杰,飞秒激光蚀除金属的分子动力学模拟[J].微细加工技术,2004, 4: 56-63.
    [43]辛建婷,祝文军,刘仓理,飞秒激光辐照铝材料的分子动力学数值模拟[J].爆炸与冲击, 2004, 24(3): 207-211.
    [44]梁建国,倪晓昌,杨丽,王清月,超短激光脉冲烧蚀铜材料的数值模拟[J].中国激光,2005,32(9): 1291-1294.
    [45]王志军,贾威,倪晓昌,等.飞秒激光烧蚀金属镍热影响区的数值模拟[J].激光技术,2007,31(6): 578-580.
    [46]林青楠,分子动力学研究铜薄膜之准分子镭射烧蚀[D].国立成功大学(台湾)机械工程学系.
    [47]李偲豪,纳米尺度下脉冲镭射与物质作用之热效应腄庋芯縖D].国立成功大学(台湾)物理研究所.
    [48]蔡昆霖,应用飞秒镭射对高分子及不锈钢金属材料做微细加工之研究[D].国立台湾科技大学机械工程系.
    [49] Von der Linde D., Sokolowski-Tinten K., Bialkowski J., Laser–solid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, 109/110:1-10.
    [50] Becker P. C., Fragnito H. L., Cruz C. H. B., et al., Femtosecond photon echoes from band-to-band transitions in GaAs[J]. Phys. Rev. Lett., 1988, 61(14): 1647-1649.
    [51] C. P. Slichter, Principles of Magnetic Resonance [M]. Springer, Berlin, 1978.
    [52] Von der Linde D., Kuhl J., Klingenberg H., Raman scattering from nonequilibrium LO phonons with picosecond resolution[J]. Phys. Rev. Lett., 1980, 44(23): 1505-1508.
    [53] Guedde J., Hohlfeld J., Mueller J. G., et al., Damage threshold dependence onelectron-phonon coupling in Au and Ni films[J]. Applied Surface Science, 1998, 127/129: 40-45.
    [54] Wang Xinlin, Lu Peixiang Dai Nengli, et al., Morphology and oxidation of Zr-based amorphous alloy ablated by femtosecond laser pulses[J]. Appl. Phys. A., 2007, 89: 547-552.
    [55] Nitin Uppal, Panos S. Shiakolas, Micromachining characteristics of NiTi based shape memory alloy using femtosecond laser[J]. J. Manufacturing Science and Engineering, 2008, 130: 031117
    [56] Falkovsky L. A., Mishchenko E. G., Electron–lattice kinetics of metals heated by ultrashort laser pulses[J]. J. Experimental and Theoretical Physics, 1999, 88(1):84-88.
    [57] Chen J. K., Beraun J. E., Grimes L. E., et al., Modeling of femtosecond laser-induced nonequilibrium deformation in metal films[J]. International Journal of Solids and Structures, 2002, 39: 3199-3216.
    [58] Xu Xianfan, Phase explosion and its time lag in nanosecond laser ablation[J]. Applied Surface Science, 2002, 197/198: 61-66.
    [59] Martynyuk M. M., Role of the phase explosion of metals in the explosive electron emission process[J]. Radio Engineering and Electronic Physics. 1980, 25(1): 100-108.
    [60] Girifalco L. A., Weizer V. G.. Application of the Morse potential function to cubic metals[J]. Physical Review, 1959, 114: 687-690.
    [61] Lai W. S., Liu B. X., Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering[J]. J. Phys.: Condens. Matter, 2000, 12(5): L53-L60.
    [62] Li J. H., Dai X. D., Liang S. H.,et al., Interatomic potentials of the binary transition metal systems and some applications in materials physics[J]. Physics Reports, 2008, 455: 1-134.
    [63] Lin Zhibin, Zhigilei Leonid V., Temperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation[J]. Applied Surface Science, 2007, 253: 6295-63002.
    [64] Lin Zhibin, Zhigilei Leonid V.. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium[J]. Physical Review B, 2008, 77: 075133
    [65] Anisimov S.I., Rethfeld B., On the theory of ultrashort laser pulse interaction with ametal[J]. Proc. SPIE. 1997, 3093: 192-203.
    [66] McGraw-Hill, American Institute of Physics Handbook[M], 3rd ed. New York, 1972.
    [67] Hohlfeld J., Wellershoff S.-S., Güdde J., et al., Electron and lattice dynamics following optical excitation of metals. Chem. Phys, 2000, 251(1-3): 237-258.
    [68] Groeneveld R. H. M., Sprik R., and Lagendijk A., Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au[J]. Phys. Rev. B, 1995, 51: 11433-11455.
    [69] Hostetler J. L., Smith A. N.,. Czajkowsky D. M, Norris P. M., Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al[J]. Appl. Opt., 1999, 38(16): 3614-20.
    [70] Hopkins Patrick E., Klopf J. M., Norris P. M., Influence of interband transitions on electron-phonon coupling measurements in Ni films[J]. Applied Optics, 2007, 46(11): 2076-2083.
    [71] Sch?fer C., Urbassek H. M., Zhigilei L. V., Metal ablation by picosecond laser pulses: A hybrid simulation[J]. Physical Review B, 2002, 66:115404.
    [72] Wellershoff S.-S., Hohlfeld J., Güdde J., et al., The role of electron–phonon coupling in femtosecond laser damage of metals[J]. Applied Physics A, 1999, 69[Suppl.]: S99-S107.
    [73] Vestentof K., Balling P., Formation of an extended nanostructured metal surface by ultra-short laser pulses: single-pulse ablation in the high-?uence limit[J]. Appl. Phys. A, 2006, 84: 207-213.
    [74] Faulkner M. G., Amalraj J. J., Bhattacharyya A., Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires[J]. Smart Mater. Struct. 2000, 9: 632-639.
    [75] Zhao Ying, Taya Minoru, Kang Yansheng, Compression behavior of porous NiTi shape memory alloy[J]. Acta Materialia, 2005, 53 :337-343.
    [76] Yang Z.Q., Schryvers D., Electron energy-loss spectroscopy study of NiTi shape memory alloys[J]. Materials Science and Engineering: A, 2008, 481/482: 214-217.
    [77] Kang Dae-Bok The bonding of interstitial hydrogen in the NiTi intermetallic compound[J]. Bull. Korean Chem. Soc. 2006, 27(12) :2045-2050.