膜气提法去除水体中VOCs的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜气提(Membrane Air Stripping,MAS)法是一种近年发展起来的进行水污染治理的膜分离技术,对治理与修复水体挥发性有机物(Volatile Organic Compounds,VOCs)污染具有较大的优势和广阔的前景。本文以VOCs中典型且难处理的甲基叔丁基醚(Methyl Tert-Butyl Ether,MTBE)污水体系为主要处理对象,从MAS去除MTBE方面进行了系统研究。
     为研究各种操作条件对MTBE去除效果的影响,建立了用于MAS实验的装置,进行了一系列的MAS实验。MAS去除MTBE的实验结果表明:料液初始浓度对MTBE的去除率几乎没有影响;系统温度升高、液速和气速增大对去除率具有一定的促进作用;气相压力对去除率的影响很小;溶液中有些共存有机物的存在也会对MAS去除MTBE产生一定的影响。正交实验结果表明气体流速对去除的影响最为显著;用MAS技术去除MTBE,去除率可达到97%左右。因此,将MAS技术用于去除水体中的VOCs是可行且有效的。
     文中还对膜气提过程去除水溶液中的VOCs的传质机理进行了理论分析和实验研究。以双膜理论为出发点,建立了包括膜阻在内的MAS传质模型。由理论推导得到基于液相的总传质系数计算公式,对料液初始浓度、气体流速对传质系数的影响进行了实验研究。结果表明,料液初始浓度对传质系数几乎没有影响,MAS技术可用于浓度范围较大的含VOCs的废水处理;随着气体流速的增大,总的液相传质系数是增大的,当气体流速增大到一定程度时,增幅很小。在应用上,存在一个比较经济的气体流速。
     在前人对中空纤维膜组件内流体流动情况研究的基础上,探讨了MAS去除VOCs的传质机理,通过对比预测与实验得到的总传质系数值,尝试对Lévésque公式进行了修正,修正后的公式与实验数据能较好得吻合;建立了MAS全过程的传质动力学模型。
Membrane air stripping (MAS) is an innovative membrane sepration technology developed in recent years for removing volatile organic compounds (VOCs) from wastewater. This study mainly focused on the removal of methyl tert-butyl ether (MTBE), which is one of the most typical VOCs, from simulated wastewater by MAS.
     The installations for MAS were set up and a series of experiments were carried out. The mainly factors affecting the removal rate such as initial MTBE concentration, temperature, gas velocity, liquid velocity and gas pressure were mostly considered. The results showed that MTBE removal was enhanced by increasing the temperature, gas velocity, liquid velocity and an increase in initial MTBE concentration of the aqueous solution, gas pressure had little effect on the removal efficiency. The MTBE removal efficiency was certainly affected when there is some other organic in the simulated wastewater. The results of the orthogonal experiment indicated that the gas flowrate was the most significant influential factor, and the membrane air stripping was an effective technology to remove MTBE from water as the removal rate can achieve 97%.
     The process of mass transfer for VOCs was also investigated and analyzed during MAS. A mass transfer model describing the mass transfer during the MAS between the liquid, the gas and the membrane in the hollow fiber membranes was then established based on the double-film theory. The equations to calculate the overall mass transfer coefficient were derived. The mass transfer coefficients in different operating conditions were measured. The calculating results show that the overall liquid-phase mass transfer coefficient did not change when the initial VOCs concentration had changed; hence MAS had potential for industrial wastewater application for removal/recovery of organics in a wide range of concentrations. The overall liquid-phase mass transfer coefficient increased with gas velocity increased, however when the gas velocity became a certain extent, the increment became gradual. There existed a certain optimum air velocity for applacation.
     The mechanism of mass transfer for VOCs was also investigated. Comparing the experimental data with the theoretic data, Lévésque correlation was found to overestimate the local mass transfer coefficient in a cylindrical tube at low velocities. A modification of this correlation had been proposed to predict the local air film mass transfer coefficient. The proposed correlation predictions matched well with the experimental data. A complete mathematical model was proposed for the removal of VOCs from aqueous solutions by MAS.
引文
[1] 肖锦,城市污水处理及回用技术,北京:化学工业出版社,2002
    [2] 刘兆昌,张兰生,聂永丰等,地下水系统的污染与控制,中国环境科学出版社,1991
    [3] Leson G, Winer A M. Blofiltration. an innov-ative air pollution control technology for VOC e-emissions. Air Waste Manage Assoc, 1991, 8: 1045-1054
    [4] Mays M A. The use of oxygenated hydrocarbons in gasoline and their contribution to reducing urban air pollution. Pure Appl Chem, 1989, 61:1373-1378
    [5] Rudo K M. Methyl tert-butyl ether evaluation of MTBE carcinogenicity studies. Toxicology and Industrial Health, 1995, 11(2): 167-173
    [6] Anonymous. Health advisory set for fuel oxygenate MTBE. Environ Sci Technol, 1998, 32(3): 83-84
    [7] Richard W G,Mark W L. Occurence of MTBE in Drinking Water Sources. Journal AWWA, 2000, 92(1): 100-107
    [8] 吴碧君,刘晓勤,挥发性有机物污染控制技术研究进展,电力环境保护,2005,21(4):39-42
    [9] 李家伟,人体 MTBE 暴露的生物检测,职业卫生及环境医学学术研讨会,2001
    [10] Moolenaar R L, Hefflin B J, Ashley D L, et al. Methyl tertiary butyl ether in human blood after exposure to oxygenated fuel in Fairbanks, Alaska. Archives of Environmental Health, 1994, 49(5): 402-409
    [11] 段小林,真空膜蒸馏脱除水溶液中 VOC 的研究:[硕士学位论文],杭州;浙江工业大学,2004
    [12] Zang Y J, Farnood R. Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide. Applied Catalysis B: Environmental, 2005, 57(4): 275-282
    [13] 刘鹏, 周湘梅,VOC 的回收与处理技术简介,石油化工环境保护,2001,(3):41-44
    [14] 吴晓芙, 胡曰利,有机废水处理中的环境生物技术及其进展,中南林学院学报,2003,23(6):41-48
    [15] 张鹤清,胡洪营,习劲瑛,6 种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能,环境科学,2003,24(6):83-89
    [16] Oh Y, Shareefdeen Z, Baltzis B C, et al. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnology and B ioengineering, 1994, 44(4): 533-538
    [17] Hamed T A, Bayraktar E, Mehmetoglu U, et al. The biodegradation of benzene, toluene and phenol in a two-phase system. Biochemical Engineering Journal, 2004, 19(2): 137-146
    [18] 胡妙生,厌氧生物活性炭流化床处理制药废水,中国给水排水,1996,12(4):39-41
    [19] 杨云霞,方治华,多孔高分子载体固定化微生物厌氧流化床处理低浓度废水的研究,中国沼气,1998,16(2):3-7
    [20] McKelvie J R, Lindstrom J E, Beller H R, et al. Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates. Journal of Contaminant Hydrology, 2005, 81(1-4): 167-186
    [21] Johnson S J, Woolhouse K J, Prommer H, et al. Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Engineering Geology, 2003, 70(3-4): 343-349
    [22] Suflita J M, Mormile M R. Anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface. Environmental Science & Technology, 1993, 27(5): 976-978
    [23] 陈建孟,蒲凤莲,陈效等,MTBE 的生物降解技术,环境污染治理技术与设备,2004,5(1):61-64
    [24] Salanitro J P, Diaz L A, Billiams M P, et al. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether. Applied and Environmental Microbiology, 1994, 60(7): 2593-2596
    [25] Hanson J R, Ackerman C E, Scow K M. Biodegradation of Methyl tert-Butyl Ether by a Bacterial Pure Culture[J]. Applied and Environmental Microbiology, 1999, 65(11): 4788-4792
    [26] Hatzinger P B, McClay K, Vainberg S, et al. Biodegradation of Methyl tert-Butyl Ether by a Pure Bacterial Culture. Applied and Environmental Microbiology, 2001, 67(12): 5601-5607
    [27] Yeh C K, Novak J T. Anaerobic biodegradation of gasoline oxygenates in soils.Water Environment Research, 1994, 66(5): 744-752
    [28] Somsamak P, Cowan R M, Haggblom M M. Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions. FEMS Microbiology Ecology, 2001, 37(3): 259-264
    [29] Finneran K T, Lovley D R. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environmental Science & Technology, 2001, 35(9): 1785-1790
    [30] Cardenosa M, Autenrieth R L, Bonner J S. In situ soil reclamation by air stripping and sludge uptake. Journal of Hazardous Materials, 1989, 22(2): 256-257
    [31] Mertooetomo E, Valsaraj K T, Wetzel D M, et al. Cascade crossflow air stripping of moderately volatile compounds using high air-to-water ratios. Water Research, 1993, 27(7): 1139-1144
    [32] 姜斌,张英,黄国强等,曝气处理甲苯的传质机理,天津大学学报,2005,38(2):163-166
    [33] Wilhelm M J, Adams V D, Curtis J G, et al. Carbon adsorption and air stripping removal of MTBE from river water. Journal of Environmental Engineering, 2002, 128(9): 813-823
    [34] 郑艳梅,王战强,黄国强等,地下水曝气法处理土壤及地下水中甲基叔丁基醚(MTBE),农业环境科学学报,2004,23(6):1200-1202
    [35] Mahmud H, Kumar A, Narbaitz R M, et al. Hollow fiber membrane air stripping: a process for removal of organics from aqueous solutions. Separation Science and Technology, 1998, 33(14): 2241-2255
    [36] Shih T C, Wangpaichitr M, Suffet M. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water. Water Research, 2003, 37(2): 375-385
    [37] Yu J J, Chou S Y. Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption. Chemosphere,2000, 41(3): 371-378
    [38] Anderson M A. Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites. Environmental Science & Technology, 2000, 34(4): 725-727
    [39] Li S G, Tuan V A, Noble R D, et al. MTBE adsorption on all-silica β zeolite. Environmental Science & Technology, 2003, 37(17): 4007-4010
    [40] Centi G, Grande A, Perathoner S. Catalytic conversion of MTBE to biodegradable chemicals in contaminated water. Catalysis Today, 2002, 75(1): 69-76
    [41] 周林,蔡妙颜,郭祀远等,大孔吸附树脂应用的研究进展,昆明理工大学学报(理工版),2003,28(6):104-107
    [42] Annesini M C, Gironi F, Monticelli B. Removal of oxygenated pollutants from wastewater by polymeric resins: data on adsorption equilibrium and kinetics in fixed beds. Water Research, 2000, 34(11): 2989-2996
    [43] Lin S H, Wang C S, Chang C H. Removal of methyl tert-butyl ether from contaminated water by macroreticular resin. Industrial & Engineering Chemistry Research, 2002, 41(16): 4116-4121
    [44] 徐向荣,顾继东,石油添加剂甲基叔丁基醚的污染治理技术研究进展,生态科学,2003,22(2):177-182
    [45] Amiri A S. O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters. Water Research, 2001, 35(15): 3706-3714
    [46] Liang S, Soo Palencia L, Davis M K, et al. Oxidation of MTBE by ozone and peroxone processes. Journal AWWA, 1999, 91(6): 104-144
    [47] Cater S R, Stefan M I, Bolton J R, et al. UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters. Environmental Science & Technology, 2000, 34(4): 659-662
    [48] Xu X R, Zhao Z Y, Li X Y, et al. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent. Chemosphere, 2004, 55(1): 73-79
    [49] Lien H L, Zhang W. Novel bifunctional aluminum for oxidation of MTBE and TAME. Journal of Environmental Engineering, 2002, 128(9): 791-798
    [50] Mason T J. Sonochemistry Atechnology for Tomorrow. Chemistry & Industry, 1993, (1): 47
    [51] 陈学民,周绍春,肖举强,超声波技术降解水中氯仿的研究,兰州铁道学院学报(自然科学版) ,2001,20(4):92-94
    [52] 施阳,陈言明,张光明等,超声波降解水中的氯苯,环境污染治理与设备,2004,5(9):80-81
    [53] Lifka J, Hoffmann J, Ondruschka B. Ethers as pollutants in groundwater: the role of reaction parameters during the aquasonolysis. Water Science and Technology, 2001, 44(5): 139-144
    [54] Kim D K, O’Shea K E, Cooper W J. Degradation of MTBE and related gasoline oxygenates in aqueous media by ultrasound irradiation. Journal of Environmental Engineering, 2002, 128(9): 806-812
    [55] Neppolian B, Jung H, Choi H, et al. Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion. Water Research, 2002, 36(19): 4699-4708
    [56] Barreto R D, Gray K A, Anders K. Photocatalytic degrada tion of methyl-tert-butyl ether in TiO2 slurries: a proposed reaction scheme. Water Research, 1995, 29(5): 1243-1248
    [57] Wu T X, Cruz V, Mezyk S, et al. Gamma radiolysis of methyl t-butyl ether: a study of hydroxyl radical mediated reaction pathways. Radiation Physics and Chemistry, 2002, 65(4): 335-341
    [58] Deeb R A, Scow K M, Alvarez-Cohen L. Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions. Biodegradation, 2000, 11(2-3): 171-185
    [59] 陈建孟,蒲凤莲,陈效等, MTBE 的生物降解技术,环境污染治理技术与设备,2004,5(1):61-64
    [60] 路佳,徐芳,蔡伟民,甲基叔丁基醚的污染治理技术研究进展,环境污染与防治,2006,28(5):365-368
    [61] Salanitro J P, Diaz L A, Billiams M P, et al. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether. Applied and Environmental Microbiology, 1994, 60(7): 2593-2596
    [62] Mo K, Lora C O, Wanken A E, et al. Biodegradation of methyl t-butyl ether by pure bacterial cultures. Applied Microbiology and Biotechnology, 1997, 47(1): 69-72
    [63] 王学松,膜分离技术及其应用,北京:科学出版社,1992
    [64] Kesting R E 著,王学松,赵宝泉,张永泰译,合成聚合物膜,北京:化学工业出版社,1992
    [65] Mulder M 著,李琳译,膜技术基本原理,北京:清华大学出版社,第二版,1999
    [66] Qi Z, Cussler E L. Hollow fiber gas membranes. AIChE Journal, 1985, 31(9): 1548-1533
    [67] Mahmud H. Removal of organics from water/wastewater by membrane air stripping. Ph.D. 2001
    [68] Boswell S T, Vaccari D A. Plate and frame membrane air stripping. In proceedings of the 21st Annual Conference on Water Policy and Proceedings of the 21st Annual Conference on Water Policy Management Solving Problems. ASCE, New York, NY, 1994: 726-729
    [69] Park H C, Ramaker N E, Mulder M H V, et al. Separation of MTBE-methanol mixtures by pervaporation. Separation Science and Technology, 1995, 30(3): 419-433
    [70] Das A, Abou-Nemeh I, Chandra S, et al. Membrane-moderated stripping process for removing VOCs from water in a composite hollow fiber module[J]. Journal of Membrane Science, 1998, 148(2): 257-271
    [71] Dutta B K, Sikdar S K. Separation of Volatile Organic Compounds from Aqueous Solutions by Pervaporation Using S-B-S Block Copolymer Membranes. Environmental Science & Technology, 1999, 33(10): 1709-1716
    [72] 刘茉娥,膜分离技术,北京:化学工业出版社,1998
    [73] Semmens M J, Qin R, Zander A. Using a microporous hollow-fiber membrane to separate VOCs from water. Journal AWWA, 1989, 81(4): 162-167
    [74] Yang M C, Cussler E L. Designing hollow-fiber contactors. AIChE Journal, 1986, 32(11): 1910-1916
    [75] Bhowmick M, Semmens M J. Batch studies on a closed loop air stripping process. Water Research, 1994, 28(9): 2011-2019
    [76] Bhowmick M. A novel closed loop air stripping process: Ph.D. Dissertation. Thesis: University of Minnesota, 1992
    [77] Zander A K, Semmens M J, Narbaitz R M. Removing VOCs by membrane stripping. Journal AWWA,1989, 81(11): 76-81
    [78] Qi Z, Cussler F L. Microporous hollow fibers for gas absorption:Ⅰ. mass transfer in the liquid. Journal of Membrane Science, 1985, 23(3): 321-332
    [79] O`Haver J H, Walk R, Kitiyanan B, et al. Packed column and hollow fiber air stripping of a contaminant-surfactant stream. Journal of Environmental Engineering, 2004, 130(1): 4-11
    [80] Mahmud H, Kumar A, Narbaitz R M, et al. A study of mass transfer in the membrane air-stripping process using microporous polyproplylene hollow fibers. Journal of Membrane Science, 2000, 179(1-2): 29-41
    [81] He J, Arnold R G, Saez A E, et al. Removal of aqueous phase trichloroethylene using membrane air stripping contactors. Journal of Environmental Engineering,2004, 130(11): 1232-1241
    [82] Mahmud H, Kumar A, Narbaitz R M, et al. Mass transport in the membrane air-stripping process using microporous polypropylene hollow fibers: effect of toluene in aqueous feed. Journal of Membrane Science, 2002, 209(1): 207-219
    [83] Juang R S, Lin S H, Yang M C. Mass transfer analysis on air stripping of VOCs from water in microporous hollow fibers. Journal of Membrane Science, 2005, 255(1-2): 79-87
    [84] Castro K, Zander A K. Membrane air-stripping: effects of pretreatment. Journal AWWA, 1995, 87(3): 50-61
    [85] Keller A A, Bierwagen B G. Hydrophobic hollow fiber membranes for treating MTBE-contaminated water. Environmental Science & Technology, 2001, 35(9): 1875-1879
    [86] Vane L M, Alvarez F R, Mullins B. Removal of methyl tert-butyl ether from water by pervaporation: bench- and pilot-scale evaluations. Environmental Science & Technology, 2001, 35(2): 391-397
    [87] 沈志松,钱国芬,朱晓慧等,无泡式中空纤维膜发酵供氧的初步研究,膜科学与技术,1998,18(6):42-48
    [88] Fischer A, Muller M, Klasmeier J. Determination of Henry’s law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures. Chemosphere, 2004, 54(6): 689-694
    [89] 李云雁,胡传荣,试验设计与数据处理,化学工业出版社,2005 年:79-87
    [90] Wickramasinghe S R, Semmens M J, Cussler E L. Mass-transfer in various hollow fiber geometries. J. Membr. Sci., 1992, 69: 235-250
    [91] GawronskiR, WrzesinskaB. Kinetics of solvent extraction in hollow-fiber contactors. J. Membr. Sci., 2000, 168: 213-222
    [92] Costello M J, Fane A G, Hogan P A. The effect of shell-side hydrodynamics on the performance of axial flow hollow fibre modules. J. Membr. Sci.,1993, 80: 1-11
    [93] Wu J, Chen V. Shell-side mass transfer performance of randomly packed hollow fiber modules. J. Membr. Sci., 2000, 172: 59-74
    [94] Rogers J D, Long R. Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions. J. Membr. Sci., 1997, 134: 1-17
    [95] Prasad R, Sirkar K K. Solvent extraction with micropourous hydrophlic andComposite Membranes. AIchE J, 1987, 33(7): 1057-1066
    [96] R S Juang, S H Lin, Mass transfer analysis on air stripping of VOCs from water in microporous hollow fibers. journal of Membrane science, 2005, 255:79-87
    [97] Kreulen H, Smolders C A, Versteeg G. F. Determination of Mass Transfer Rates in Wetted and Non-wetted Microporous Membranes. Chem. Eng. Sci., 1993, 48(1): 2093-2102
    [98] Othmer D F, Thakar M S. Correlating diffusion coefficients in liquids. Industrial & Engineering Chemistry, 1953, 45(3): 589-593
    [99] Schwarzenbach R, Gschwend P, Imboden D. Environmental organic chemistry. New York: John Wiley & Sons, 1993
    [100] Tchobanouglous G, Schroeder E. Water quality. Reading, MA: Addison- Wesley, 1987
    [101] Fuller E N, Schettler P D, Giddings J C. A new method for prediction of binary gas-phase diffusion coefficients. Industrial & Engineering Chemistry, 1966, 58(5): 19-27
    [102] Robbins G A, Wang S Y, Stuart J D. Using the static headspace method to determine Henry’s law constants. Analytical Chemistry, 1993, 65(21): 3113- 3118