共耐性植物李氏禾(Leersiahexandra)的水分逆境生理生态适应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分过多或过少对植物生长都不利。近年来,由于水分环境条件的剧烈变化,涝害和旱害的现象时有发生。因此,水分逆境下植物的适应程度及其耐性机理研究日益受到重视。李氏禾能忍耐长时期的干旱、淹水,被报道成功应用于江河湖泊的消涨带植被恢复,关于其忍耐水分逆境的机理尚未见系统报道。
     本研究采用模拟淹水和干旱处理,从常规及逆境下的基本生物学特性研究着手,明确了李氏禾忍耐干旱、淹水的强度;研究了李氏禾营养器官的解剖结构和根系生长参数、叶绿素含量及叶绿素荧光特性、过氧化酶系活性与内源激素含量等对水分胁迫的响应,初步建立了水分逆境的生理生态适应机制;探讨并确立了李氏禾高效繁殖的技术,为李氏禾在受损人工生态系统植被恢复实践中推广应用提供理论和技术支撑。研究结果如下:
     1.采用地上部休眠率评价多年生草本植物忍耐逆境的能力,经持续淹水(淹没)120d,地上部休眠率仅10%;间断性干旱和持续干旱(土壤水分含量低至2.74%)45d,其地上部保持活力的植株分别为50.0%和30.0%。结果表明,李氏禾具有较强的抵御水淹和干旱的能力。
     2.李氏禾根、茎、叶的解剖结构受淹没胁迫影响的程度大于淹涝胁迫。淹涝时,李氏禾的茎、叶结构变化幅度很小,只在淹涝后期根内组织细胞部分解体,形成空腔。淹没后李氏禾叶片维管束鞘结构减少,但不失绿;随淹没时间延长,靠近茎中心的薄壁细胞减少,形成特定的通气组织;根内部组织解体形成空腔;淹没60d后,李氏禾的营养器官还能保持总体结构的完整性。干旱胁迫下,气孔开度减小,茎表皮角质化,根皮层增厚,但导管和韧皮纤维等机械输导组织较常见的水生植物发达。根系参数分析表明,李氏禾以增加根长、根表面积、根直径、根体积适应淹涝状态,以显著增加根的直径适应淹没逆境,且淹水胁迫解除后根系生长参数能恢复到胁迫前的水平。深入了解营养结构、根系参数对水分胁迫的响应,有助于更深入理解李氏禾与环境的关系,特别是在逆境下的适应变化。
     3.自然条件下,李氏禾4月蒸腾速率较高,6月和10月日均叶周围空气相对湿度(RH)较大,光利用效率(LUE)10月>4月>6月。淹水处理后,李氏禾叶片Chla的含量均高于Chlb的含量,淹涝后叶绿素总含量高于对照,呈震荡上升;正常条件下,李氏禾Chla/Chlb比值约为3:1,淹没降低了叶绿素含量,且对Chla破坏大于Chlb,淹没胁迫使李氏禾Chla/Chlb比值急剧下降,且一直保持较低水平;随淹涝时间延长,Chla/Chlb基本不变。
     4.淹水和干旱引起李氏禾光合特性发生变化。淹涝状态下,李氏禾的PSⅡ实际光能转化效率(Yield)、光化学淬灭系数(qP)随淹涝时间延长变化幅度不大,光合作用受淹涝影响小,光合系统的稳定主要靠热耗散(qN)维持。淹没后,Yield和qP明显下降,热耗散(qN)值低。淹没状态下李氏禾仍能保持光合作用,且淹没出露后Yield和qP能恢复到淹没前水平。干旱胁迫下,Yield和qP先上升,但随胁迫加剧后下降,降幅不大。qN随干旱程度加剧总体表现为上升趋势,李氏禾启动热耗散减轻干旱胁迫下过量光能对光合机构的损伤。
     5.淹水和干旱引起植物有机体生理变化可以在超氧化物歧化酶SOD、过氧化物酶等指标反映,通常抗性强的植物上述指标变化幅度较小。随干旱、淹没时间延长,超氧化物歧化酶SOD活性增加,只高于对照20%;淹涝条件下,超氧化物歧化酶SOD活性小于对照;水分胁迫导致POD活性增加,叶POD活性>茎POD活性>根POD活性;根POD含量随干旱胁迫加剧而上升,但各淹水处理与对照水平持平;水分胁迫还导致过氧化氢酶CAT活性增加,增幅最高达对照的5倍;干旱胁迫下,李氏禾脯氨酸(Pro)含量增加,根、茎、叶各部位游离脯氨酸含量存在差异;在干旱30d达到最高,随胁迫加剧(干旱40d),游离脯氨酸(Pro)含量增幅减少,但显著高于对照,干湿交替与对照差异不显著。干旱胁迫对李氏禾根、茎、叶器官均有影响,淹水胁迫主要影响茎、叶,对根影响较小。李氏禾清除自由基的系统(酶促系统和非酶促系统)活性高,特别是在淹水环境下变化幅度小,膜脂过氧化程度低,能有效抵抗水分过多的伤害,即其具有一整套的抵抗系统。
     6.植物在感受内外环境变化、调节生长和分化发育、保持适当生存状态以适应和抵御不良环境胁迫的复杂过程中,植物激素起着关键作用。淹水后,李氏禾体内乙烯含量表现为先上升后下降的趋势,乙烯释放量在淹涝状态高于淹没状态。淹没和淹涝后,李氏禾的IAA、GA含量在胁迫初期明显上升,ABA含量也是随胁迫时间延长先上升后下降,高于对照,但变化幅度不大。淹水胁迫解除后,李氏禾IAA、ABA的含量比淹没时的明显下降,但仍高于正常生长的水平,GA含量也较对照变化明显,显示植物生理调节系统参与了对水分逆境的适应过程。激素作用的实现主要是通过浓度的改变。
     7.植物在其生活史过程中,以其特有的繁殖属性去适应环境,提高植物的适合度。李氏禾种子的萌发特性和无性系种群分蘖动态研究结果表明:未经预处理的李氏禾种子具有一定的种子生活力,最高达到69.5%,但发芽率较低,平均只有3.8%;常规水分管理下,李氏禾地下茎的萌芽能力强,萌芽率平均可达82.5%,且不同建植年份的李氏禾种群之间一年内分蘖数和分蘖株高有显著差异。李氏禾种子存在一定程度的生理休眠,可以利用地下茎萌芽作为李氏禾无性繁殖的有效手段。
     物种本身的特性和外部环境因素决定了植物对逆境的适应程度。在淹水、干旱胁迫下,李氏禾的光合系统、酶系统和生理调节系统能产生适应性变化;随胁迫解除,李氏禾有关生理活动与代谢又能恢复到胁迫前水平。李氏禾高的分蘖能力是其适应水分逆境的重要繁殖策略。总的来看,李氏禾具有较强的干旱、淹水能力,是较为理想的河岸带的水土保持植物。今后应加强外源激素诱导等途径研究激素生物合成的途径以及运输、相互作用等,深入分析不同内源激素对植物适应逆境的作用,并在耐水淹、耐干旱等特异性基因等分子生物学机理方面开展研究,建立更全面的关于植物“共耐性”水分逆境适应机理,促进李氏禾在受损人工生态系统植被恢复中的应用。
Overabundant moisture or insufficient moisture are deleterious to the terrestrial plants. Recently a series of waterlogged injury and drought injury resulted from the acute variation of the moisture environment. At present, more and more studies are focused on the plant adaptability to water stress and the adaptation mechanism of stress. Leersia hexandra could adapt to the drought-flood conditions,and L. hexandra was an amphibious plants,living in the water-fluctuation belt such as rivers or lakes. However, the little information was available about its adaptation mechanism.
     Under the conditions of potted plants and water stress,including drought, drought-water, submerged and waterlogged, the study dealt with L.hexandra morphological, anatomical structural and physiological strategies to fit drought-flood environment. Through field investigation and control experiment, we studied the rudimental biological characteristics of L. hexandra which grow in normal and water stress environment. The results showed that L. hexandra held greater ability in the tolerance to drought-flood conditions. The dynamic response change to water stress were studied, which included the anatomical structure of nourish organ, the roots parameter, the peroxidase activity and the endogenous hormones concentration. Moreover, the mechanism of physiological ecological adaptation to adversity of L. hexandra was founded. Furthermore we researched a higher reproductive efficiency technique of L. hexandra and it was proved to have many advantages in the natural vegetation restoration schemes of disturbed habitats such as the water-fluctuation belt.
     The results are as follows:
     (1) According to the dormancy rate on ground, the plant adaptability to water stress was estimated. The dormancy rate was 10.0% after being durative waterlogged (120d). Throughout a 45_day persistent drought or drought-water period (lowest content of soil moisture was 2.74%), the survival rates remained 30.0% and 50.0% respectively. The results indicated that the ability of L. hexandra in the tolerance to drought-flood conditions was greater.
     (2)The anatomy structure responses extent of roots,stems and leaves under waterlogged condition was bigger than that under submerged condition. The variation extent of stems and leaves were less when L. hexandra in submerged stress. Only in the final stage of submerged stress, a vacuum formed in the root with some organ disassembling. Under waterlogged condition the vascular bundle amount reduced, but was green. With the time of waterlogged stress prolonging, the amount of folium cell in stem declined and a vacuum formed in the root. Under drought condition, the dense stomas decreased and the upper epidermis keratinization, while the cortex thickness of root increased. The duct and vascular cylinder of L. hexandra was more sturdier than that of hydrophilic plant. All of the root length, root diameter, root project area and root volume increased under submerged condition, while only the root diameter significantly increased under waterlogged condition. In contrast, although the roots parameter was initially affected, it could recover the level of control with water stress being released. All in all, it was to useful understand the relation between L .hexandra and environment, especially how L. hexandra adapted to water stress.
     (3)In natural environment, the diurnal courses of air relative humidity (RH) surrounding leaves was higher both in June and in October, while the transpiration rate(Tr) was highest in April. The order of light use efficiency(LUE) was in October >in April >in June. The chlorophyll a (Chla) content in flooding condition was higher compared to the chlorophyll b (Chlb) content. The total chlorophyll content was higher compared to the control (0d) and ascended wavelike from the 0d in the period of submerged treatments. The Chla/Chlb ratio was 3:1 in natural environment, so it was under submerged condition. Not only the total chlorophyll content reduced under waterlogged condition, but also Chla/Chlb ratio steadily declined to lower value.
     (4) Both drought and flooding could result in the variation of photosynthetic character. Under submerged condition, the chlorophyll fluoresce parameters varied little, such as the coefficient of photochemical quantum(qP) and the effective photochemical quantum yield of PSⅡ(Yield).The photosynthesis of L. hexandra was not affected almost because its photosynthetic apparatus remained integrality by non-photochemical quantum (qN). But under waterlogged condition, the Yield values and qP values decreased obviously and the qP values was small. At the same time, the Yield values and qP values could recover the level of control with water stress being released, indicated that L. hexandra remained photosynthetic ability. Under drought condition, the Yield values and qP values first increased and then decreased, and the range of change was little. The qP values had a increasing trend. All results show that the physiological functions were not damaged because of qN avoiding the injury from superfluous light energy.
     (5) With the time of drought and waterlogged being prolonged, the activity of super-oxide dismutase (SOD) increased, higher 20% than control, but it was lower than control in the submerged treatments. Under water stress, the activity of peroxidase (POD) increased, and the order was the activity of peroxidase (POD) in leaf>that in stem>that in root. Especially under drought condition, the activity of peroxides (POD) in root was same as control. Furthermore the activity of cataloes (CAT) increased response to water stress, being 5th than control. As such the activity of dissocialitive praline (Pro) raised with drought stress. Comparation of the activity of dissociative proline(Pro) in roots,stems and leaves indicated it was different in the different parts. Pro value descended from on 40th days on the 30th days (highest), but higher than control. There was not significant difference between drought-dehydration and control. Under drought condition, all of the stem, root and leaf were affected by drought stress. Compared with stem and leaf, root was less injured from waterlogged condition. There was a system depressing the extent of peroxide and avoiding the damage resulting from overabundant moisture.
     (6)The endogenous hormones played an important role, which receipted the variation of internal or external environment, adjusted growth and remained normal state to resist water stress. The content of Eth first increased and then decreased under flooding condition, and the value under submerged condition was higher than that under waterlogged condition. In the early period of water stress, both the content of IAA and GA3 increased obviously. By contrast, the content of ABA first increased and then decreased, higher than control. With flooding stress being released, the content of IAA and ABA decreased, yet higher than control. The concentration of endogenous hormones was an important factor, whether promoting or restraining plant growth.
     (7)Usually plant owned the specific reproduce strategy to adopt all kinds of different environment in its life history. Without any pretreatments, the potentional livingness of L. hexandra seeds was near 69.5%, but germination rate was lower, only 3.8%. The average ratio of rhizomes with new bud appearance was 82.5% under the normal condition. Annual increases of tiller number and accumulated height of L. hexandra populations established in different years was significantly different. We supported that there was a physiologic dormancy and it was a perfect ways to reproduce L. hexandra by rhizomes germination.
     In conclusion, the plant adaptability to stress was determined by its traits and its surrounding environment. The systems of L. hexandra about photosynthesis, enzyme and physiological growth adjustment could vary along with water stress. After stress being released, the metabolize intensity could recovery the level of control. Furthermore, L. hexandra exhibited a higher reproductive effort that might be good at surviving and multiplying. In a word, L. hexandra was an ideal plant to conserve soil and water in the water-fluctuation belt such as rivers or lakes. For the development and application of L. hexandra, further studies on the mechanism of stress resistance, especially the transportation, anabolism and reciprocity of endogenous hormones by way of external hormones are needed. And study about the molecular mechanism and genetic basis is also needed.
引文
布东方,胡金明,周德民,等.不同水位梯度小叶章叶绿素含量试验研究.湿地科学. 2006,4(3): 227-232.
    陈少裕.膜脂过氧化与植物逆境胁迫.植物学通报.1989,(4):211- 217.
    陈天福.新丰江水库消涨带岸坡侵蚀研究.热带地理.2002,(3) :53-55.
    陈永华,严钦权,肖国樱.水稻耐淹涝的研究进展.中国农学通报.2005,21(12):151-154.
    陈毓华,汪俊三,梁明易,等.华南在区11种高等水生维管植物净化城镇污水效益评价.农村生态环境(学报).1995,11(1):26-29,33.
    崔心红,熊秉红,蒲云海.5种沉水植物无性繁殖和定居能力的比较研究.植物生态学报. 2000,24(4) :502-505.
    崔兴国.植物蒸腾作用与光合作用的关系.衡水师专学报.2002,4(3) :55-56.
    董高峰,陈贻竹,蒋跃明.植物叶黄素循环与非辐射能量耗散.植物生理学通讯.1999,35(2) :141-144.
    段英华,张亚丽,沈其荣.水稻根际的硝化作用与水稻的硝态氮营养.土壤学报.2004,41(5):803-806.
    方华,陈天富,林建平,等.李氏禾的水土保持特性及其在新丰江水库消涨带的应用.热带地理.2003,(3):63-66.
    费松林,方精云,樊拥军.贵州梵净山亮叶水青冈解剖特征的生态格局及主导因子分析.植物学报.1999,41(9):1002-1009.
    付奇峰,林素彬,黎晨,等.两栖植物在消涨带岸坡生态修复中的应用研究.中国农村水利水电.2006,(2):64-66.
    谷昕,李志强,姜闯道,等.水淹导致皇冠草光合机构发生变化并加剧其出水后光抑制.生态学报.2009,29(12):6468-6474.
    郭晓云,杨允菲,李建东.松嫩平原不同旱地生境芦苇的光合特性研究.草业学报.2003,12(3):16-21.
    何军,许兴,李树华,等.水分胁迫对茶树叶光合天线色素及PSII叶绿素荧光的影响.西北植物学报.2004 ,24 (9) :1594 -1598.
    何池全.湿地植物生态过程理论及应用.上海:上海科学出版社.2003,34-67.
    胡田田,康绍忠.植物淹水胁迫响应的研究进展.福建农林大学学报(自然科学版).2005,34(1):18-23.
    黄振英.新疆30种旱生植物的结构及其对沙漠环境的适应.植物生态学报.1997,21(6) :521-530.
    姜华武,张祖新.淹水对玉米根系几种酶活性的影响.湖北农学院学报.1999,19(3):209-211.
    姜中珠.外源物质对苗木抗旱性的调节作用.硕士学位论文.东北林业大学(哈尔滨).22-32.2004.
    敬岩,官海军,赵志光,等.不同生境两种生态型芦苇叶片质膜H-+_ATPase的比较.植物学报.2004,46(9):1040-1048.
    靖元孝,陈兆平,程惠青,等.淹水时水翁幼苗光合特性与不定根的关系.热带亚热带植物学报.2000,8(4) :361-364.
    靖元孝,陈兆平,杨丹菁.香根草对淹水的反应和适应初报.华南师范大学学报(自然科学版).2001,(11):40-42.
    靖元孝,程惠青,彭建宗,等.水翁幼苗对淹水的反应初报.生态学报.2001,(5):810-813.
    靖元孝,杨丹菁,陈章和,等.两栖榕在人工湿地的生长特性及其对污水的净化效果.生态学报.2003,(3) :614-619.
    李昌晓,钟章成,刘芸.模拟三峡库区水分对落羽杉的光合特性的影响.生态学报.2005,25(8):1952-1959.
    李合生,孙群,赵世杰,等.植物生理生化实验原理和技术.北京:高等教育出版社.2000.164-165.
    李连朝,王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系.植物生理学通讯.1998,34(3) :61-67.
    李萍萍,陈歆,付为国,吴沿友,吴春笃.北固山湿地芦苇光合作用及其与环境的关系.江苏大学学报(自然科学版). 2005,26(4):336-339.
    李天煜,李洪敬,谢素霞.水生维管植物克隆繁殖方式的多样性.广西植物.2000,20(3):233-238.
    李天煜.水生维管植物研究:II、水生维管植物对干涸的适应.广西植物.2001,21(4):326-329.
    李文朝,连光华.几种沉水植物营养繁殖体的光需求研究.湖泊科学.1996,8(增刊):25-29.
    李亚莉,杨晓曦,赵丰萍,等.云南元江普通野生稻(Oryza rufipogon)群体籼粳分化的SSR分析.中国水稻科学.2006,20(2) :137-140.
    李玉梅,李建英,王根林,等.水分胁迫对大豆幼苗叶片内源激素的影响.大豆科学.2007,26(4) :627-629,636.
    李宗霆,周燮.植物激素及其免疫检测技术.南京:江苏科学技术出版社.1996 ,250-284.
    林荣呈,许长成,李良璧,等.叶黄素循环及其在光保护中的分子机理研究.植物学报.2002,44(4) :379-383.
    林永英.水分胁迫对青冈叶片活性氧的伤害.福建林学院学报.2002,22(1) :1-3.
    刘根红,谢应忠,兰剑,等.水分复合胁迫下宁夏苜蓿幼苗对叶绿素含量的影响.北方园艺.2008,(10) :98-102
    刘贵华,周进,李伟,等.普通野生稻种群恢复的生态学研究--种群动态.植物生态学报.2002,26(3):372-376.
    刘建宁,赵美清,王运琦,等.水分胁迫对2种牧草幼苗游离脯氨酸含量及过氧化氢酶活性的影响.山西农业科学.2009,37(6):27-29.
    刘金祥,谭杏婵,刘家琼.高温胁迫对香根草含水量、细胞膜透性、游离脯氨酸含量和叶绿素含量的影响.草原与草坪.2005,(6):58-61.
    刘金祥,王铭铭.淹水胁迫对香根草生长及光合生理的影响.草业科学.2005,22(7):71-75.
    刘瑞香,杨拮,高丽,等.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下游离脯氨酸含量、可溶性糖及内源激素含量的变化.水土保持学报.2005,19(3) :148-151, 169.
    刘晓鹰.土地利用总体规划中土地资源配置方案的优选.国土经济.2002, (11) :14-15.
    刘晓忠,汪宗立.缺氧条件诱导玉米根系乙醇脱氢酶活性的调节作用.植物学通报.1996,13(1):48-49.
    卢雪琴.水土保持植物耐淹强度和耐淹机理研究.硕士论文.中国科学院研究生院(广东). 1-82. 2006.
    米海莉,许兴,李树华.水分胁迫对牛心朴子、甘草叶片色素、可溶性糖、淀粉含量及碳氮比的影响.西北植物学报.2004,24(10) :1816-1821.
    慕自新,梁宗锁,张岁岐.土壤干湿交替下作物补偿生长的生理基础及其在农业中的应用.植物生理学通讯. 2002,38(5):511-516.
    聂晶苏,伟曹颖.盐胁迫对5种绿化植物叶绿素含量的影响.山东林业科技.2004,(3) :17.
    潘存娥,田丽萍,李贞贞,等.5种杨树无性系叶片解剖结构的抗旱性研究.中国农学通报.2011,27(2) :21-25.
    潘瑞炽.植物生理学(第四版).北京:高等教育出版社.2001,57-66.
    蒲光兰,周兰英,胡学华,等.土壤干旱胁迫对景太阳变种的PSII叶绿素荧光影响.干旱地区农业研究.2005,23 (3):44– 48.
    裘丽珍,黄有军.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究.浙江大学学报(农业与生命科学版).2006,32(4) :420-427.
    盛海平,汪为民,刘华开,等.水稻种子生活力四唑法测定值与发芽率间的相关性.种子.2000,(2):30-31.
    史纲荣.七种阔叶常绿植物叶片的生态解剖学研究.广西植物.2004,(4) :334-338.
    史正军,樊小林.干旱胁迫对不同基因型水稻的PSII叶绿素荧光动力学的影响.干旱地区农业研究.2003,21 (3):123– 126.
    宋松泉,程红义,龙春林等著《.种子生物学研究指南》.北京:科学出版社.2005,58-61.
    宋志平.栽培稻转基因逃逸的风险预测.博士学位论文.复旦大学(上海).1-87.2005.
    苏文华,张光飞,张云孙,等.5种沉水植物的光合特征.水生生物学报.2004,28(4):391-395.
    孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展.中国农业科学. 2007,40(1) :48-53.
    孙骏威.水稻根系、光合和抗氧化酶对干旱胁迫的反应.硕士论文.浙江大学(浙江).1-47. 2004.
    孙梅霞,祖朝龙,徐经年.干旱对植物影响的研究进展.安徽农业科学.2004,32(2):365-367,384.
    陶勇,江明喜.空心莲子草茎的解剖结构对不同水湿生境的适应研究.武汉植物学研究.2004,22(1):65-71.
    汪贵斌,曹福亮.落羽杉抗性研究综述.南京林业大学学报(自然科学版).2002,(11):78-82.
    王蔚,崔素霞,杨国仁,等.两种生态型芦苇胚性悬浮培养物对渗透胁迫的响应.西北植物学报.2003,23(1):1-5.
    王保义,李苏,刘鹏,等.荞麦叶内抗氧化系统对铝胁迫的响应.生态环境.2006,15 (4) : 818-821.
    王红梅,张敏,陶诗顺.水稻叶绿素含量与发根率的关系研究.安徽农业科学,2008,36(8):3169-3265.
    王建波.植物逆境细胞及生理学.湖北:武汉大学出版社.2002.56-77.
    王俊刚,张承烈.水分胁迫引起的两种不同生态型芦苇的DNA损伤与修复.植物学报.2001,43(5):490-494.
    王磊,仪慧兰. SO2胁迫对拟南芥抗氧化酶活性的影响.生态环境,2007,16 (6): 1612-1614.
    王里奥,黄川,詹艳慧,袁辉.三峡库区消落带淹水-落干过程土壤磷吸附、解吸及释放研究.长江流域资源与环境.2006,15(5):592-597.
    王丽燕.NaCl胁迫对植物光合作用的影响.德州学院学报.2005,4(21):12-16.
    王为东,王大力,尹澄清,等.芦苇型湿地生态系统的潜水水质状态研究.生态学报.2001,(6):919-925.
    王卫红,季民.沉水植物川蔓藻的生态学特征及其对环境变化的响应.海洋通报.2006,25(3):13-21.
    王文泉,郑永战,梅鸿献,等.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化.植物遗传资源学报.2003,4(3):214-219.
    王勇,刘义飞,刘松柏,等.三峡库区消涨带植被重建.植物学通报.2005,22(5):513-522.
    韦红波,李锐,杨勤科.我国植被水土保持功能研究进展.植物生态学报.2002,26(4):489-496.
    魏和平,利容千.淹水对玉米不定根形态结构和ATP酶活性的影响.植物生态学报.2000,24(3):293-297.
    文雁成,王汉中,沈金雄,等.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学.2006,39(2):246-256.
    巫永睿.水稻乙醛酸循环和乙酰辅酶A合成酶在水淹胁迫下的功能研究.博士论文.中国科学院研究生院(上海生命科学研究院). 1-90. 2005.
    吴颂如.酶联免疫法(ELISA)测定内源植物激素.植物生理学通讯.1998 ,(5): 53-57.
    吴永美,吕炯章,王书建,等.植物抗旱生理生态特性研究进展.杂粮作物.2008,28(2):90-93.
    肖德兴,赖小荣,曲雪艳,等.百喜草和几种水保植物的营养器官的解剖研究.江西农业大学学报.1999,21(4):488-494.
    肖兴富,李文奇,常佩丽,等.棕榈纤维垫法恢复水库岸边植被施工技术.南水北调与水利科技.2005,3(4):27-29.
    徐玲玲,陈善娜,程在全,等.云南野生稻对土壤环境中营养元素的吸收能力初探.江西农业学报.2005,18(6):744-746.
    徐是英,唐锡华,傅家瑞等著.《种子生理研究进展》.广州:中山大学出版社.1986.89-95.
    徐锡增,唐罗忠,程淑婉.涝渍胁迫下杨树内源激素及其他生理反应.南京林业大学学报.1999,23(1):1-5.
    颜启传.种子检验的原理和技术.北京:农业出版社.1992,29-71.
    杨空松,贺浩华,陈小荣.野生稻有利基因的挖掘利用及研究进展.种子. 2005, 24(12):123-127.
    杨培周,郭海滨,赵杏娟,等.广东高州普通野生稻生殖特性的研究-.结实率、花粉育性及其发育特点.植物遗传资源学报.2006,7(1):7-12.
    杨益善,邓启云,陈立云,等.野生稻高产QTL的分子标记辅助育种进展.杂交水稻.2005,20(5):1-5.
    杨允菲,郑慧莹,李建东.根茎禾草无性系种群年龄结构的研究方法.东北师大学报(自然科学版),1998,(1):48-53.
    应叶青,申亚梅,李浪. 3种阔叶树种子生活力四唑法测定研究.种子.2005,24(1):32-35.
    张华,子会.干旱胁迫下玉米木质部汁液ABA含量变化及其与气孔的关系.河北农业科学.2004,8(2):35-39.
    张爱勤,高美玲,赵宏.扎龙湿地芦苇生长与水因子关系的研究.黑龙江环境通报.2005,29(4):29-30.
    张金洋,王定勇,石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究.水土保持学报.2004,18(6):120-124.
    张彤,齐麟.植物抗旱机理研究进展.湖北农业科学.2005,(4):117-120.
    张伟梅,马绍利,倪日群.不同浸种预处理对杂交稻芽谷种子活力的影响.种子科技.2005,(3):157-158.
    张骁,荆家海,卜芸华,等.2,4-和乙烯利对玉米幼苗抗旱性效应的研究.西北植物学报.1998,18(1):97-102.
    张新英,曹宛虹.豆科7种沙生植物木质部的生态解剖.植物学报.1993,35(2):929-935.
    张学洪,陈俊,王敦球,等.李氏禾对镍的富集特征.桂林工学院学报.2008,28(1):98-101.
    张学洪,罗学平,黄海涛,等.一种新发现的湿生铬超积累植物—李氏禾(Leersia hexandra).生态学报.2006,26(3):950-953.
    张学洪,孙家君,刘杰,等.李氏禾对土壤中铜积累特征及抗性研究.安徽农业科学2008,36(13):5586-5587,5590.
    张友民,刘兴土,孙长占,等.三江平原芦苇营养器官的生态解剖学研究.吉林农业大学学报.2003,25(2):161-163.
    张玉屏,李金才,黄义德,黄文江.水分胁迫对水稻根系生长和部分生理特性的影响.安徽农业科学.2001,29(1):58-59.
    张志良.植物生理学实验指导(2版) .北京:高等教育出版社.1990.154-155.
    章慧慧,励建荣.超氧化物歧化酶的研究和应用现状.农产品加工学刊.2007,8(2):51-53.
    赵福庚,何龙飞,罗庆云.植物逆境生理生态学.北京:化学工业出版社.2004.
    赵广琦,张利权,梁霞.芦苇与入侵植物互花米草的光合特性比较.生态学报.2005,25(7):1604-1011.
    赵桦,王东.汉中地区汉水流域水生维管植物种类及地理分布.西北植物学报.2002,22(6):1445-1450.
    中国科学院植物所主编.中国高等植物图鉴(第五册).北京:科学出版社.1976.
    钟雪花,杨万年,吕应堂.淹水胁迫下对烟草、油菜某些生理指标的比较研究.武汉植物学研究.2002,20(5):395-398.
    周智斌,李培军.我国旱生植物的形态解剖学研究.干旱区研究.2002,19(1):35-40.
    朱桂才,罗春梅.水分胁迫下禾本科植物营养器官解剖结构研究进展.安徽农学通报.2008,(9):123-126.
    朱桂才,杨中艺.水分胁迫下李氏禾叶绿素含量变化研究.山东农业科学.2009,(11):48-50.
    朱桂才,杨中艺.水分胁迫下李氏禾营养器官解剖结构研究.长江大学学报(自科版)农学卷.2008,3(2):17-20.
    朱桂才,姚振,罗春梅,等.李氏禾种子生活力的四唑法测定研究.长江大学学报(自科版)农学卷.2007,4(4):40-42.
    朱桂才,张想银,杨中艺.共耐性植物李氏禾繁殖特性的研究.山东农业科学. 2009,(9):26-30.
    朱桂才.李氏禾根系生长状况对淹水胁迫及解除的响应.长江大学学报(自科版)农学卷.2010,7(4):52-55.
    朱学艺,张承烈.两种生态型芦苇叶绿体的光合电子传递和抗氧保护体系.植物生理学报. 2000,26(6):476-480.
    庄南生,郑成木,黄东益,等.甘蔗种质遗传基础的AFLP分析.作物学报. 2005,31(4): 444-450.
    宗学凤,刘大军,王三根,等.细胞分裂素对冷害水稻幼苗膜保护酶热稳定蛋白和能量代谢的影响研究.西南农业大学学报.1998,20(6):573-576.
    邹琪.植物生理学实验指导.北京:中国农业出版社.2000,168-170.
    Alberte R S, Thornher J P, Fiaeus E L. Water stress effects on the content and organization of chlorophyll in mesophyll and bundle sheath chloroplasts of maize. Plant Physiology. 1977, 59:35l-353.
    Anten, Niels P R, Werger, et al. Nitrogen distribution and leaf area indices in relation to photosynthetic nitrogen use efficiency in savanna grasses. Plant Ecology. 1998, 138(1):63-75.
    Azuma T, Hirano T ,Deki Y, et al. Involvement of the decrease in levels of abscisic acid in the internodal elongation of submerged floating rice. Plant Physiology. 1995, 146:323-328.
    Azuma T, Mihara F, Uchida N, et al. Plant hormonal regulation of internodal elongation of floating rice stem sections. Japan Trop Agriculture. 1990, 34: 271-275.
    Azuma T, Mihara F, Uchida N, et al. Internodal elongation and ethylene concentration of floating rice stem sections submerged at different water depths. Japan Journalof Trop Agriculture. 1990, 34:265-270.
    Azuma T, Ueno S, Uchida N, et al. Gibberellin_induced elongation and osmo- regulation in internodes of floating rice. Plant Physiology. 1997, 99:517-522.
    Bawa A K, Sen D N. Ecophysiological studies of some arid zone grasses: water relations. Current Agriculture.1992,16(2):51-57.
    Bhaslaran S, Smith R H, Newton R J, et al. Physiological changes in cultured orghum cell in response to induced water stress. I. Free praline. Plant Physiology. 1985, 79: 266- 269.
    Blokhina O, Virolainen E, Fagerstedtk V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany. 2003, 91:179-194.
    Boedeltje G, Heerdt G N J, Bakker J P. Applying the seedling emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments. Aquatic Botany. 2002, 72:121-128.
    Borel C, Frey A, Marion-poll A, et al. Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomata response to drought. Plant Cell and Environment. 2001, 24:477-489.
    Boudell J A, Link S O, Johansen J R. Effect of soil micro-topography on seed bank distribution in the shrub-steppe. Western North American Naturlalist. 2002, 62:14-24.
    Buijse A D, Coops H, Staras M,et al. Restoration strategies for river flood-plains along large lowland rivers in Europe. Fresh-water Biology. 2002, 47:889-907.
    Camp W V, Capiau K C, Montagu M V, et al. Enhancement or oxidatives stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiology. 1996,112:1703-1714.
    Cho H T, Kende H. Expression of expanse genes is correlated with growth in deep water rice. Plant Cell. 1997, 9:1661-1671.
    Cohen E, Kende H. Invivo1_aminocyclopropane_1_carboxylate syntheses activity in internodes of deep water rice. Enhancement by submergence and low oxygen levels. Plant Physiology. 1987, 84:282-286.
    Conn J S. Weed seed bank by tillage intensity for barley in Alaska. Soil & Tillage Research. 2006, 90:156-161.
    Crawford R MM. Oxygen availability as an ecological limit to plant distribution. Advances Ecology Research. 1992, 23:93-185.
    Davies W J, Zhang J H. Root signals and the regulation of growth and development of plants in drying soil. Annual Review Plant Physiology Plant Molecular Biology. 1991, 42:55-76.
    Deng H Ye, ZH Wong, M H . Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China Environmental Pollution. 2004,132(1):29-40.
    Dewir Y H, Chakrabarty D, Ali M B, et al. Lipid per oxidation and antioxidant enzyme activities of Euphorbia mille hyperhydric shoots. Environmental and Experimental Botany. 2006, 58(12):93-99.
    Drew M C. Oxygen deficiency and root metablism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physio Plant Mol Biol. 1997,48:223-250.
    Genty B, Briantais JM, Baker N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta.. 1989, 9:87-92.
    Gray GRChauvin LPSarhan FHuner NPACold acclimation and freezing tolerance: a complex interaction of light and temperature. Plant Physiology. 1997, 114: 464–474.
    Hanson A D. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Science. 1977, 17:720-726.
    Harper J L, Ogden J. The reproductive strategy of higher plants: I. The concept of strategy with special reference to Seneio vulgaris L. Journal Ecology. 1970,58: 681-698.
    Harper J L, et al. The growth and form of modular organisms. Philosophical Transactions of the Royal Society. London Series B.1986.
    Harper J L. A darwinian approach to plant ecology. Journal Ecology. 1967,55:147-270.
    Hirano T, Uchida N, Azuma T, Yasuda T. Effect of submergence on distribution of photo assimilates and activities of sucrose metabolizing enzymes in sink organs of floating rice. Japan Journal of Crop Science. 1996, 65(3):540-548.
    Hoffmann_Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiology. 1992, 99:1156-1161.
    Hook D D. Waterlogging tolerance of low land tree species of the south. South.Journal of Applied Forestry. 1984, 8:136-149.
    Ibrahim Mohamedzeid. Response of bean (phaseolusvulgaris) to Exogenous putrescine treatment under salinity stress. Parkistan Journal of Biological Sciences. 2004, 2: 219-225.
    Inouye J, Haginara T. Effects of some environment factors on the position of the lowest elongated internode of three floating rice varieties. Japan Journal of Trop Agriculture.1981,25:125-131.
    Ishikawa-Goto M, Tsuyuzaki S. Methods of estimating seed banks with reference to long-term seed burial. Journal of Plant Research. 2004,117:245-248.
    Jackson J B C, et al. Population biology and evolution of clonal organisms. New Have connection. USA: Yale university.1985.
    Johansson M E, Nilsson C . Responses of riparian plants to flooding in free—flowing and regulated boreal rivers: an experimental study. Journal of Applied Ecology. 2002,39:971-986.
    Jonathan P. Comstock hydraulic and chemical signaling in the control of stomatal conductance and transpiration. Journal of Experimental Botany. 2002, 53(367):195-200.
    Jones M M, Tuner C. Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiology.1978, 61:122-128.
    Kende H. Studying internodal elongation in deep water rice. In:16th International Conference on Plant Growth Substances Chiba Japan August. 1998,13-17,67.
    Kercher, Suzanne M.,Zedler, et al. Flood tolerance in wetland angiosperms:a comparison of invasive and noninvasive species Aquatic Botany. 2004,80(2): 89-102.
    Kozlowski T T. Plant responses to flooding of soil. Biology Science.1984,4:162-167.
    Lenoble M E, Spollen W G. , Sharp R E. Maintenance of shoot growth by endogenous ABA:Genetic assessment of the involvement of ethylene suppression. Journal of Experimental Botany. 2004,55(395):237-245.
    Leonardo Maltchik, Ana Silvia Rolon, Patrícia Schott. Effects of hydrological variation on the aquatic plant community in a flood plain palustrine wetland of southern Brazil. The Japanese Society of Limnology. 2007,8:23–28.
    Loucks W L. Flood-tolerant trees. Journal Forestry. 1987,85:36-40.
    Maureal C. Aquaporins and water permeability of plant Membrances. Annual Review Plant Physiology Plant Molecular Biology.1997, 48:399-429.
    Mekhedov S L, Kende H. Submergence enhances expression of agene encoding1_aminocyclopropane_1_carboxy late oxidase in deep water rice. Plant Cell Physiology. 1996,37(4):531-537
    Miller S P, Sharitz Z R R. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semi-aquatic grass species. Functional Ecology. 2000,14(6):738-748.
    Miller S P. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytologist. 2000,145(1): 145-155.
    Missouri. The effect of flooding on tree. Missouri forest management notes.1993,5:1-2.
    Mommer L, Pedersen O, Visser E J W. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant Cell Environment. 2004,27:128l—1287.
    Morgan J M. Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol. 1984,35:299-319.
    Muench Ch., Kuschk P., Roeske,I. Root stimulated nitrogen removal: only a local effect or important for water treatment?. Water Science and Technology. 2004,51 (9):185-192.
    Nandan K B,Singh C B. Useful macrophytes in Kawar lake, North Bihar, Indian. Indian Journal of Forestry. 2004,27(3):241-244.
    Pagew Morgan Malcolmc. Ethylene and plant respones to stress. Physiologia Plantarum. 1997,100:620-630.
    Parelle J, Zapater M, Scotti-Saintagne C,et al. Quantitative trait loci of tolerance to waterlogging in a European oak(Quercus robur L.):physiological relevance and temporal effect patterns. Plant Cell and Environment. 2007,30: 422-434.
    Pavelic D, Arpagaus S, Rawyler A, et al. Impactofpost-anoxia stress on membrane lipids of anoxia-pretreated potato cells. A Reappraisal Plant Physiology. 2000,124:1285-1292.
    Peter J, Ralph Role, Gademann. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany. 2005, 82:222–237.
    Pustovoitova T N, Drozdova I S, Zhdanova N E, et al. Leaf growth photosynthetic rate and phytohormone contents in Cucumis sativus plants under progressive soil drought. Annals of Applied Biology. 2003 ,51(4):441-443.
    Pustovoitova T N. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought. Russian Journal of Plant Physiology. 2004, 51(4):513-517.
    Sauter M, Mekhedov S L, Kende H. Gibberrllin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deep water rice internodes. Plant Journal. 1995,7(4):623-632.
    Schmid B. Clonal integration and population structure in perennials, effects of severing rhizome connection. Ecology. 1987,68(6): 2016-2022.
    Schreiber U, Schliwa U, Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research. 1996, 10: 51–62.
    Selection criterion: its relationship to membrane integrity and chloroplast trastructure in Nicotina tabacumL. Plant Physiology. 1993,141: 188- 194.
    Senagomes A R, Kozlowski T T. Growth responses and adaptations of rarxinu spennsyl vanica seedlings to flooding. Plant Physiology. 1980,66:267-271.
    Setter T, Laureles E. The beneficial effect reduced elongation growth on submergence tolerance of rice. Journal of Experimental Botany.1996,47:1551-1559.
    Silverman F P, Assiamah A A, Douglas S B. Membrane transport and cytokine action in root hairs of Medica gosativa. Planta.1998,205:23-31.
    Slocum R D, Kaur-sawhney R, Galston A W. The physiology and biochemistry of polyamines in plants. Archives of Biochemistry and Biophysics. 1984,235(2):283-303.
    Sripongpangkul K, Posa G B T, Senadhira D W, et al. Genes/QTLs affecting flood tolerance in rice. Theoretical and Applied Genetics. 2000,101:1074-1081.
    Stromberg J C. Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments. 2001,49:17-34.
    Sweeneya B W, Czapka S J. Riparian forest restoration: why each site needs an ecological prescription. Forest Ecology and Management. 2004,192:361-373.
    Talbot R J, Etherington J R, Bryant J A. Comparative studies of plant growth and distribution in relation to water loggingⅫ. Growth, photosynthetic capacity and metalion uptake in Salix caprea and S. cinerea ssp. oleifolia. New phytologist. 1987,105: 563-574.
    Turner F T, Chen C C, McCauley G N. Morphological development of rice seedlings in water of controlled oxygen levels. Agronomy Journal.1981,75:566-570.
    Vander Knaap E, Jagoueix S, Kende H. Expression of anortholog of replication protein A1 (RPA1) is induced by gibberellin in deep water rice. Proceedings of the National Academy of Sciences. 1997,94:9979-9983.
    Vergara B S, Jaskon B De, Datta S K. Deep water rice and its response to deep water stress. In: Climate and Rice IRRI Los Banos Philippines.1976,301-319.
    Wallin G, Karlsson P E, Selldén G, et al. Impact of four years exposure to different levels of ozone, phosphorus and drought on chlorophy, mineral nutrients, and stem volume of Noway spruce, Picea abies. Plant Physiology. 2002,114 (2): 192-206.
    Webb A A, Erskine W D. A practical scientific approach to riparian vegetation rehabilitation in Australia.Journal of Environmental Management. 2002,68:329-341.
    Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. Journal of European Molecular Bology . 1997, 16: 4806-4816.
    XiaoY A. The physiology responses and adjective adaptability of water stress on Cleme spinosa L.seedlings.Journal of Wuhan Botanical Research. 2001,19 (6):524-528.
    Yamaguchi T. Studies on the floating rice. VIII. Effects of raising water levels on the amounts of endogenous gibberellin_like substance. Japan Journal of Trop Agriculture. 1974,17:147-152.
    Yang S F, Hoffman N E, Mckeon T, et al. Mechanism and regulation of ethylene biosynthesis. In: Wareing P F(ed)Plant Growth Substances. Acaolmic, London. 1982,239-248.
    Yordanor I ,Tsonev T ,Goltsev V, et al. Gas exchange and chlorophyll fluorescence during water and high temperature stresses and recovery. Photosynthetica. 1997, 33(3):423-431.