狭叶荨麻中降血糖和抗疲劳活性成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荨麻属植物狭叶荨麻(Urtica angustifolia)资源丰富,主要分布于东北、内蒙古、河北等地,在我国是传统的可药可食野生植物。具有袪风除湿,活血止痛,平肝定惊,消积通便,解毒,抗疲劳等功效。在东北地区民间常用于治疗风湿性关节炎、荨麻疹、糖尿病等症。在欧洲,狭叶荨麻的同属植物异株荨麻有悠久的药用历史,目前,国外已开发出多种用于治疗风湿性关节炎、良性前列腺增生的药物和保健品。而国内关于狭叶荨麻的研究很少,为充分利用东北地区丰富的植物资源,本文研究了狭叶荨麻降血糖和抗疲劳的有效活性成分。首先对狭叶荨麻的各部位的化学成分进行初步鉴定,通过小鼠糖耐量试验寻找狭叶荨麻叶中降血糖活性成分。然后通过水提醇沉得到狭叶荨麻根多糖,通过强迫小鼠游泳实验研究狭叶荨麻根多糖的抗疲劳活性。最后再经过离子交换和凝胶柱层析相组合的方法将狭叶荨麻根多糖全面系统地分级,获得狭叶荨麻的各种多糖级分,并对其进行纯度和均一性鉴定,分析了其单糖组成和结构。研究结果如下:
     狭叶荨麻根、茎、叶化学成分进行系统鉴定结果表明,根中含有黄酮、甾醇、苷类、酚类化合物及糖类、蛋白质等成分;茎中含有多糖类、甾体及萜类、有机酸等成分;叶中含有色素、黄酮、甾醇、苷类、糖类、蛋白质、油脂等成分。
     通过对狭叶荨麻不同部位根、茎、叶的提取物进行小鼠的糖耐量试验,初步筛选出狭叶荨麻叶具有降血糖的作用,对狭叶荨麻叶进一步筛选降血糖活性成分,通过对狭叶荨麻叶进行提取,所得4种提取物进行小鼠糖耐量试验,最终得到提取物3和提取物4具有降血糖作用,对提取物3和提取物4进行化学分析和结构鉴定,结果表明:提取物3为7位含有糖的山奈苷类化合物、提取物4为胡萝卜苷。
     对狭叶荨麻降血糖活性成分的研究中,发现用狭叶荨麻根多糖饲喂小鼠后没有降血糖效果,而显示出具有抗疲劳活性,因此对狭叶荨麻根多糖抗疲劳活性进行了研究。首先通过水提醇沉、Sevag法脱蛋白得到狭叶荨麻根多糖UA(1.6%);然后用UA进行小鼠的抗疲劳实验,其结果表明:狭叶荨麻根多糖3个剂量组均可以延长负重小鼠的游泳时间,提高小鼠的运动能力,以高剂量组(300mg/kg/d)的剂量为佳(P<0.01)。游泳后低、中、高剂量给药组的血清尿素氮含量水平显著低于对照组,狭叶荨麻根多糖能使小鼠的运动负荷能力提高,不易发生疲劳。同时分别测试狭叶荨麻根多糖3个浓度剂量组对小鼠肝糖原的影响,结果表明,狭叶荨麻根多糖对维持肝糖原含量的高水平有积极作用,从而延缓疲劳的出现。同时对UA成分进行了初步分析,UA总糖含量为44.6%,糖醛酸含量为12.7%,淀粉含量为18.3%,蛋白含量为27.1%。经HPLC分析,狭叶荨麻根多糖主要是由葡萄糖(64.3%),半乳糖醛酸(15.9%)以及少量的半乳糖(8.2%)和阿拉伯糖(5.9%)组成。
     将UA用DEAE-纤维素离子交换柱层析进行分级,先用H_2O和0.5M氯化钠水溶液分步洗脱,得到中性级分UAN和酸性级分UAA;将UAA再次用DEAE-纤维素离子交换柱层析分级,以0、0.1、0.3和0.5M的NaCl水溶液分步洗脱,得到相应的四个级分UAA-1、UAA-2、UAA-3和UAA-4。根据分子量分布情况,用凝胶柱层析将UAA-3进一步纯化分级得到酸性组分UAA-3-1和UAA-3-2。根据13C-NMR和高碘酸氧化和Smith降解结果分析,UAA-3-1中富含RG-I结构域,Gal和Ara存在多种复杂的键连方式。UAA-3-2富含HG结构域,以α-(1,4)-GalA连接方式为主。
Urtica angustifolia is one species of Urtica. It is extremely rich in the northeast, Mongolia, Hebei and so on. Urtica is a kind of traditional medicine edible wild plant in China. It was reported that Urtica angustifolia has the function of blocking the wind dehumidification, promoting blood circulation and stopping pain, relaxing convulsions, antiinflammation, detumescence and anti-fatigue. In northeast of China, the people used Urtica angustifolia to care rheumatoid arthritis, urticaria, diabetes and so on. In Europe, the United States and other developed countries have researched on the nettle, especially the Urtica dioica. In particular, the development of medicine (Rheumatoid arthritis and Benign Prostatic Hyperplasia) had made remarkable achievements. In China, Urtica angustifolia has not been developed and utilized yet. In order to take full advantage of the northeastern region rich plant resources, this article studed on the hypoglycemic and anti-fatigue cmponents of the Urtica angustifolia. First,we conducted study of the chemical composition, and through oral glucose tolerance test in mice further selected hypoglycemic activity components from Urtica angustifolia; Secondly the crude polysaccharides were extracted from the Urtica angustifolia roots,and the crude polysaccharides were fractionated into fractions through the ion-exchange chromatography and Gel chromatography methods. Purity and uniformity were identificated, and using modern method to analysis composition and structure of polysaccharides. Meanwhile, the anti-fatigue activity of the polysaccharides was evaluated in mice. The investigation results are as follows:
     Studied on the Urtica angustifolia root, stem and leaf chemical composition, the identification results shown that the roots contained flavonoids, sterols, organic acids, glycosides, phenolic compounds and carbohydrates, protein, amino acids, fats and other ingredients; stem contained sugar and glycosides, steroids and terpenes, organic acids and other ingredients; leaf contained pigments, flavonoids, sterols, glycosides, sugars, proteins, amino acids, fats and other ingredients.
     Through the oral glucose tolerance test in mice, leaf decoration showed significantly hypoglycemic trend among root, stem, and leaf extracts from Urtica angustifolia. For further screening of leaf hypoglycemic active ingredients, four kinds of extractions were obtained from leaves and fed to mice. Through the oral glucose tolerance test in mice, which indicated extractions U3 and U4 had hypoglycemic effect. Also extraction U3 and U4 were flavonoids with 7’-Glc and daucosterol compounds, respectively which was identified by Chemical analysis and structural identification
     Study on hypoglycemic ingredients from Urtica angustifolia, after feding mice with Urtica angustifolia root polysaccharide, it was found without lowering blood sugar effect, but it shown anti-fatigue activity, therefore, the anti-fatigue activity of Urtica angustifolia roots polysaccharide was studied.
     The polysaccharides (UA) were extracted from the roots Urtica angustifolia with hot water, precipitated by 80% ethanol and deproteinated using the Sevag method. The polysaccharide mixture, referred to as UA(for Urtica angustifolia Polysaccharides), was obtained in a yield of 1.6%(w/w).The anti-fatigue experiment was studied in mice. It showed that three dose groups of UA were extend the swimming time of mice, improve the mouse athleticism, the high-dosage groups (300mg/kg/d) was perfect (P<0.01). After swimming, the content of serum urea nitrogen in the experimental groups were significantly lower than the control group, UA can extend exercise load capability of mice, it is not easy to occur fatigue. At the same time, glycogen content in mice were tested, the influence of the results shown that UA can maintain the high leve content of hepatic glycogen, it has positive function, thus to delay fatigue to appear. Meanwhile, the composition of of UA has been analysised, UA contained 44.6% total sugar, 12.7% uronic acid and less than 1% protein. Sugar composition analysised by HPLC indicated that UA consisted of Glucose (64.3%), Galacturonic acid (15.9%), Galactose (8.2%) and Arabinose (5.9%).
     UA was separated on a preparative DEAE-Cellulose column into two fractions first: an unbound fraction(UAN)by water elution and a bound fraction(UAA)by 0.5 M NaCl elution. Then, UAA was separated on a preparative DEAE-Cellulose column into four fractions UAA-1, UAA-2, UAA-3 and UAA-4 corresponding to 0.0, 0.1, 0.2, 0.3 and 0.5 M NaCl elutions, respectively. Finally, the acidic fractions UAA-3 was separated on a preparative DEAE-Cellulose column into two fractions UAA-3-1 and UAA-3-2.
     Using periodate oxidation, smith degradation, and 13C-NMR to analysis the structure of UAA-3-1 and UAA-3-2. According to the data analysis, UAA-3-1 might constitute type-I Rhamnogalacturonan (RG-I), Gal and Ara have several complex connections. The 13C-NMR result showed that UAA-3-2 might constitute Homogalacturonan (HG) linked toα-(1,4)-GalA.
引文
[1]权宜淑.值得开发的荨麻属药用资源[J].中药材, 1997, 20(1): 8-10.
    [2]董艳杰,张海悦,郭新丽,李东风.一种新的保健食品资源--狭叶荨麻的开发与利用[J].食品工业科技, 2007, 12: 213-215.
    [3]刘慎谔.东北草本植物志(第二卷) [M].北京:科学出版社, 1959, 11-16.
    [4]王梦月,卫莹芳.荨麻属植物在民间的药用情况调查[J].中国民间医药杂志, 2001, 53: 345-346.
    [5]郭新力,张海悦,李东风.具有开发价值的新食品资源——荨麻[J].食品科技, 2006, 3: 58-60.
    [6]覃凌,康书华,袁阿兴.裂叶荨麻的化学成分[J].中药材, 1989, 20(6): 9.
    [7]张嫚丽,李作平,贾湘曼.麻叶荨麻化学成分研究[J].天然产物研究与开发, 2005, 17(2): 175-176.
    [8]马学敏,郭亚健,王力生.麻叶荨麻的化学成分研究[J].中国中药杂志, 2004, 29(5): 472.
    [9]秦元满,孙良鹏,马奎蓉等.荨麻中微量元素测定及其防治心脑血管疾病可能性探讨[J].中国临床康复, 2004, 8(33): 7556.
    [10]Budzianowski, Jaromir, PlanatMed. Studies on antioxidative activity of some C-glycosylflavones[J]. J Pharmacol Pharm, 1991, 43(5): 395-399.
    [11]CalixtoC, Maria, LainesL, Gracicla, SilveraV. Martha.et al. CA.1995, 122: 2610822z.
    [12]Saeed, Ataa, EI-Eraqy, Wafaa: Ahmed, Youssry. CA. 1996, 124: 255819r.
    [13]Chaurasia N, Wichtl M. Flavonol Glycosides from Urtica dioica[J]. Planta Medica, 1987, 53(5): 432-434.
    [14]Kavtaradze NS, Alaniya MD, Aneli J N. Chemical compounds of Urtica dioica growing in Georgia[J]. Chemistry of Natural Components, 2001, 37(3): 287.
    [15]Chaurasia N, Wichtl M.Sterols and steryl glycoside from Urtica Dioca[J]. J. Nat. Prod, 1987, 50: 881-885.
    [16]Gansser D, Spiteller G. Aromatase Inhibitors from Urtica dioica Roots[J]. Planta Medica, 1995, 61(2): 138-140.
    [17]Kraus R, Spiteller G. Lignanglucoside aus Wurzeln von Urtica dioica[J]. Liebigs Ann Chem, 1990, (12): 1205-1213.
    [18]Peumans WJ, De Ley M, Broekaert WF. An unusual lectin from stinging nettle (Urtica dioica) rhizomes[J]. FEBS Lett, 1984, 177(1): 99-103.
    [19]Issopoulos PB, Manouri OC. Medicinal plants in the district of Epirus (Greece) VI. Determination of active iron and some heavy metals contained in the superterrestrial biomass of stinging nettle (Urtica dioica) by visable and atomic absorption spectrometry[J]. Epitheor Klin Farmakol Farmakokinet, 1996, 10(2): 75-83.
    [20]Kraus R, Spiteller G. Terpene diols terpene diol glucosides from roots of Urtica dioica[J].Phytochemistry, 1991, 30(4): 1203-1206.
    [21]Neugebauer W, Winterhalter P, Schreier P. 3-Hydroxy-α-ionyl-β-D- glucopyranosides from stinging nettle (Urtica dioica L.) leaves[J]. Nat Prod Lett, 1995, 6(3): 177-180.
    [22]林丹,赵国铃,刘佳佳.重要金银花药用成分的提取及抑菌实验的研究[J].天然产物研究与开发, 2003, 15(5): 436-437.
    [23]马玉翔,赵淑英,王梦媛,等.苦棘的提取及其抑菌活性研究[J].山东科学, 2004, 17(l): 32-35.
    [24]程珍,李冠,齐丽杰.麻叶荨麻籽抑菌成分和抑菌特性的研究[J].生物技术, 2005, 15(5): 30-32.
    [25]王梦月,刘瑛,卫莹芳.川产荨麻药理作用的初步研究[J].中国民族民间医药杂志, 2001, 51: 229-231.
    [26]王梦月,卫莹芳,史焱.荨麻多糖药理作用初步研究[J].中药材, 2001, 24(9): 666-667.
    [27]王亚丽,秦民坚,戴岳等.狭叶荨麻根、茎、叶的抗炎镇痛作用[J].现代中药研究与实践, 2005, 19(3): 42-43.
    [28]庄根林.荨麻叶浸膏治疗风湿的临床效果[M].国外医药(植物药分册),1996, 11(2):66-67.
    [29]谢峥伟.欧洲应用植物药治疗风湿痛的研究[M].国外医药中医中药分册, 2002, 24(5): 281-283.
    [30]Schulze-Tanzil G, De Souza P, Behnke B, et al. Effects of the antirheumatic remedy Hox alpha-a new stinging nettle leaf extract on matrix metalloproteinases in human chondrocytes in vitro[J]. Histology and Histopathology, 2002, 17(2): 477-485.
    [31]Koch E. Extracts from fruits of saw palmetto(Sabal serrulata)and roots of stinging nettle(Urtica dioica):viable alternatives in the medical treatment of benign prostatic hyperplasia and associated lower urinary tracts symptoms[J]. Planta Medica, 2001, 67(6): 489-500.
    [32]De-Clercq E. Current lead natural products for the chemo-therapy of human immunodeficiency virus (HIV) infection[J]. Medicinal Research Reviews, 2000, 20(5): 323-349.
    [33]Hirano T, Homma M, Oka K. Effects of stinging nettle root extracts and their steroidal components on the Na+, K+-ATP ase of the benign prostatic hyperplasia[J]. Planta Med, 1994, 60(1): 30-33.
    [34]Lichius JJ, Lenz C, Lindemann P, et al. Anti-proferative effect of a polysaccharide fraction of 20% methanolic extract of stinging nettle roots upon epithelial cells of the human prostate(LNCaP)[J]. Pharmazie, 1999, 54(10): 768-771.
    [35]Konrad L, Muller HH, Lenz C,et al. Antiproliferative effects on human prostate cancer cells by a stinging nettle root (Urtica dioica) extract[J]. Planta Medica, 2000, 66(1): 44-47.
    [36]Schottner M, Ganber D, Spiteller G. Ligans from the roots of Urtica dioica and their metabolites bind to human sex hormone binding globulia (SHBG)[J]. Planta Medica, 1997, 63(6): 529-532.
    [37]秦元满,全洪吉,孙良鹏等,荨麻对小鼠凝血时间和出血时间的影响[N].中医药学报, 2001, 29(3): 65-66.
    [38]Bnouham M, Merhfour FZ, ZiyyatA, et al. Antihyperglycemic activity of the aqueous extract of Urtica dioica[J]. Fitoterapia, 2003, 74: 677-681.
    [39]Farzami B , Ahmadvand D , Vardasbi S , et al. Induction of insulin secretion by a component of Urtica dioica leaf extract in perifused islets of Langerhans and its in vivo effects in normal andstreptozotocin diabetic rats[J]. J Ethnopharmacol, 2003, 89(1): 47-53.
    [40]Legssyer A, Ziyyat A, Mekhfi H, et al. PhytotherRes. 2002, 16(6): 503-507.
    [41]Suh N, Luyengi L, Fong HHS. Discovery of natural product chemopreventive agents utilizing HL-60 cell differentiation as a modle[J]. Anticancer Res. 1995, 15: 233.
    [42]Musette P, Galelli A, Chabre H, et al, Urtica dioica agglutinin, a Vβ8.3-specific superantigen, prevents the development of the systemic lupus erythematosus-like pathology of MRL lprllpr mice[J]. Eur. J. Immunol, 1996, 26(8): 1707-1711.
    [43]Koch E. Extracts from fruits of saw palmetto (Sabal serrulata) and roots of stinging nettle (Urtica dioica): viable alternatives in the medical treatment of benign prostatic hyperplasia and associated lower urinary tracts symptoms[J]. Planta Medica, 2001, 67(6): 489-500.
    [44]刘悦秋,孙向阳.异株荨麻的活性成分及开发利用[M].国外医学中医中药分册, 2005, 27(3): 144-148.
    [45]Broekaert WF, Van Parijs J, Leyns F, et al. A chitin binding lectin from stinging nettle rhizomes with antifungal properties[J]. Science, 1989, 245(4922): 1100-1102.
    [46] Does MP, Houterman PM, Dekker HL, et al. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco[J]. Plant Physiol, 1999, 120(2): 421-432.
    [47]张拥军,姚惠源.南瓜活性多糖的降糖作用及其组成分析[J].无锡轻工大学学报, 2002, 21(2): 173-175.
    [48]Ribes G Y, Sauvaire Y,Baccou J C, et al. A ntidiabetic effect of subfractions from fenugreek seeds in diabetic dogs[J]. P roc Soc Exp Biol Med, 1986, 182: 159-166.
    [49]金宗廉.功能食品教程[M].北京:中国轻工业出版社, 2005.
    [50]Hurtley S, Service R, Szuromi P. Cinderella's coach is ready[J]. Science, 2001, 291(5512):2337.
    [51]张延伸,张东祥.生物活性多糖的保健功能及其应用[J].食品工业, 2005, 3: 13-14.
    [52]张钟,吴茂东.大枣多糖对小鼠化学性肝损伤的保护作用和抗疲劳作用[J].南京农业大学学报, 2006, 29(1): 94-97.
    [53]史亚丽,辛晓林,杨立红,等.香菇多糖对力竭小鼠抗疲劳及保肝作用研究[J].吉林农业大学学报, 2004, 26(3): 301-304.
    [54]郑哲君,李德远.枸杞子、枸杞多糖抗疲劳作用的研究进展[J].中国食物与营养, 2008, 12: 53-54.
    [2]钱荣立.糖尿病的代价-1999世界糖尿病日口号[J].中国慢性病预防与控制, 1999, 7(6): 241.
    [3]王梦月,卫莹芳.荨麻属植物在民间的药用情况调查[J].中国民间医药杂志, 2001, 53: 345-346.
    [4]姚思宇,赵鹏,李彬等.三七袋泡茶对正常及糖尿病模型小鼠血糖的影响[J].中国临床康复, 2006,10(11): 84-86.
    [5]Thomas MS Wolever, David JA Jenkins, Alexandra L jenkins, et al. The glycemic index: methodology and clinical implications[J]. The American Journal of Clinical Nutrition, 1991, 54(1): 846-854.
    [6]秦元满,全洪吉,孙良鹏等.荨麻对小鼠凝血时间和出血时间的影响[J].中医药学报, 2001, 29(3): 65-66.
    [7]Bnouham M, Merhfour FZ, ZiyyatA, et al. Antihyperglycemic activity of the aqueous extract of Urtica dioica[J]. Fitoterapia, 2003, 74: 677-681.
    [8]Bijan Farzami D, Ahmadvand S, Vardasbi, F.J, et al. Induction of insulin secretion by a component of Urtica dioica leave extract in perifused Islets of Langerhans and its in vivo effects in normal and streptozotocin diabetic rats[J]. Journal of Ethnopharmacolo-Gy, 2003, 89: 47-5.
    [9]王蓉,卢笑丛,王有为.桑枝提取物及抗炎作用研究[J].武汉植物学研究, 2002, 20(6): 467-469
    [10]肖崇厚.中药化学[M].上海科学技术出版社,1996.
    [11]张海悦,郭新力,韩永双,董娜.狭叶荨麻中荨麻皂苷的提取与鉴定研究[J].食品科学, 2008, 11(29): 282-283.
    [12]GAO YF, GAO YS, XIN XM. Hypoglycemic and hypocholesterolaemia effect of Total flavonoids from persimmon leaf in alloxan-induced diabetic mice and its mechanism[J]. Journal of Taishan Medical College, 2009, 4(30): 245-247.
    [13]FANG X K, GAO J, ZHU D N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1cells without adipogenesis activity[J]. Life Sci, 2008, 82(11/12):615-622.
    [14]LV XW, LI J, QIU YH. Study on the Hypoglycemic Effect of Flavonoids from Moso Bamboo Leaves (FMBL)[J]. Chinese Journal of Traditional Medical Science and Technology, 2008, 2: 119-121.
    [15]DA SILVA W S, HARNEY J W, KIM B W, et a1. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation[J]. Diabetes, 2007, 56(3):767-776.
    [16]Gan MM, Xu SB. Research on hypoglycemic of monomer composition and pharmacologica of medicinal natural products[J]. Chinese herbal medicine, 1999, 22(10): 542-545.
    [1]凌诚德.国内外辅助降血糖保健食品初探[A].浙江省“营养、食品与健康”研讨会资料汇编, 2007.
    [1]金宗廉.功能食品教程[M].北京:中国轻工业出版社, 2005.
    [2]吴谋成.功能食品研究与应用[M].北京:化学工业出版社, 2004.
    [3]Farzami B, Ahmadvand D, Vardasbi S, et al. Induction of insulin secretion by a component of Urtica dioica leave extract in perifused islets of langerhans and its in vivo effects in normal and steptozotocin diabetic rats[J]. J Ethnopharmacol, 2003, 89(1): 47-53.
    [4]李八方,王长云,毛文君,等.功能食品与保健食品[M].青岛:青岛海洋大学出版社, 1997.
    [5]卢艳花,魏东芝,蒋晓萌.中药有效成分提起分离[M].北京:生物﹒医药出版社, 1997.
    [1]张智芳,林文庭.植物多糖提取工艺的研究进展[A].中国营养学会第十次全国营养学术会议暨第七届会员代表大会论文摘要汇编[C], 2008年.
    [2]宫艳艳,徐学明.不同提取方法对酵母葡聚糖性质的影响[J].食品工业科技, 2008, 9: 162-165.
    [3]胡晓忠,明杰,甄宝贵,等.用酸碱法从面包酵母中提取β-(1-3)-D葡聚糖[J].工业微生物, 2000, 30(1) : 28-31.
    [4]郭雷,吕明生,王淑军等.苯酚-硫酸法测定樱桃酒中总糖[J].食品研究与开发, 2010, 31(6): 130-132.
    [5]王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工, 2009, 3: 40-42.
    [6]Cui Ping LIU, Xing Feng BAO, Ji Nian FANG. Retention Behaviors of Uronic Acid-containing Polysaccharides and Neutral Polysaccharides in HPGPC[J]. Chinese Chemical Letters, 2001, 12(10): 909-919.
    [7]王广鹏,刘庆香,孔德军,等.两种板栗淀粉含量测定方法的比较研究[J].安徽农学通报, 2007, 13(18): 27.
    [8]许杜娟,夏泉,刘钢等.高效液相法测定黄芪中性多糖的单糖组成[J].中国实验方剂学杂志, 2008, 14(9): 4-6.
    [9]王仲孚,张英,林雪.黄琳娟.1-苯基-3-甲基-5-吡唑啉酮(PMP)柱前衍生化寡糖链的HPLC分离及其激光解吸电离质谱分析[J].化学学报, 2007, 65(23): 2761-2764.
    [10]Cheng-Ping Li, Mao Mao, Lan-Jun Zheng, et al. Analysis of ganciclovir and its related substances using high performance liquid chromatography and liquid chromatography-mass spectrometry methods[J]. 2010, 22(4): 218-222.
    [1]Wack M, Blaschek W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots[J]. Carbohydrate Research, 2006, 341(9): 1147-1153.
    [2]Huang X, Wang D, Hu Y. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus[J]. International Journal of Biological Macromolecules, 2008, 42(2): 166-171.
    [3]Cardoso S M, Silva A M S, Coimbra M A. Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains[J]. Carbohydrate Research, 2002, 337(10): 917-924.
    [4]Zhang S, Xu C,S antschi P H. Chemical composition and 234Th(IV)binding of extracellular polymeric substances(EPS)produced by the marine diatom Amphora sp[J]. Marine Chemistry, 2008, 112(1-2): 81-92.
    [5]Gomez C G, Lambrecht M V P, Lozano J E, et al. Influence of the extraction–purification conditions on final properties of alginates obtained from brown algae(Macrocystis pyrifera)[J]. International Journal of Biological Macromolecules, 2009, 44(4): 365-371.
    [6]Lei Q P, Lamb D H, Heller R, et al. Quantitation of low level unconjugated polysaccharide in tetanus toxoid-conjugate vaccine by HPAEC/PAD following rapid separation by deoxycholate/HCl[J]. Journal of Pharmaceutical and Biomedical Analysis, 2000, 21(6): 1087-1091.
    [7]Cipriani T R, Mellinger C G, De Souza L M, et al. Polygalacturonic Acid: Another Anti-ulcer polysaccharide from the Medicinal Plant Maytenus ilicifolia[J]. Carbohydrate Polymers, 2009, In Press.
    [8]Takegawa K, Satoh K, Ramli N, et al. Production and characterization of extracellular uronic acid-containing glycoproteins from Fusarium oxysporum[J]. Journal of Fermentation and Bioengineering, 1997, 83(2): 197-200.
    [9]Hasui M, Matsuda M, Okutani K, et al. In vitro antiviral activities of sulfated polysaccharides from a marine microalga(Cochlodinium polykrikoides)against human immunodeficiency virus and other enveloped viruses[J]. International Journal of Biological Macromolecules, 1995, 17(5): 293-297.
    [10] Yang B, Jiang Y, Zhao M, et al. Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp[J]. Food Chemistry, 2009, 115(2): 609-614.
    [11]黄海水,胡友川,林静.琼脂糖的制备[J].厦门大学学报(自然科学版), 1990, 29(5): 557-560.
    [12]李敏晶,毛婕昕,付荣香. DEAE-纤维素分离提纯海带硫酸多糖的研究[J].广东化工, 37(9): 30-31.
    [13]Donghai Wang, Zheng Liu Wang. Ion exchange electrochromatography in a multicompaptment elctrolyzer[A]. Proceedings of Third Joint China/USA Chemical Engineering Conference(VolumeⅠ) [C], 2000.
    [1]Fijan R, Basile M, Ostar-Turk S, et al. A study of rheological and molecular weight properties of recycled polysaccharides used as thickeners in textile printing[J]. Carbohydrate Polymers, 2009, 76(1): 8-16.
    [2]Rodrigues J O A, Taylor A M, Sumpton D P, et al. Mass spectrometry of carbohydrates:newer aspects[J]. Advances in carbohydrate chemistry and biochemistry, 2007, 61: 59-141.
    [3]Zaia J. Mass spectrometry of oligosaccharides[J]. Mass Spectrometry Reviews, 2004, 23: 161-227.
    [4]Harvey D J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates[J]. Mass Spectrometry Reviews, 1999, 18: 349-451.
    [5]Duus J, Gotfredsen C H, Bock K. Carbohydrate Structural Determination by NMR Spectroscopy: Modern Methods and Limitations[J]. Chemical Reviews, 2000, 100(12): 4589-4614.
    [6]Synytsya A, OpíkováJ, Jka P M, et al. Fourier transform Raman and infrared spectroscopy of pectins[J]. Carbohydrate Polymers, 2003, 54(1): 97-106.
    [7]Boulet J C, Williams P, Doco T. A Fourier transform infrared spectroscopy study of wine polysaccharides[J]. Carbohydrate Polymers, 2007, 69: 79-85.
    [8]UrákováM K, Capek P, SasinkováV, et al. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers, 2000, 43(2): 195-203.
    [9]Li S, Holtje J,Y oung K D. Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli[J]. Analytical Biochemistry, 2004, 326: 1-12.
    [10]Paulus A, Klockow A. Detection of carbohydrates in capillary electrophoresis[J]. Journal of Chromatography A, 1996, 720: 353-376.
    [11] Shuqun Sheng, Robert Cherniak. Structure of the capsular polysaccharide of Clostridium Perfringens Hobbs 10 determined by NMR spectroscopy[J]. Carbohydrate Research, 1997, 305: 65-72.
    [12]Morrison M, Kuyper A C, Orten J M. A Study of the Periodate Method for Determining End-group Values[J]. Journal of the American Chemistry Society, 1952, 75: 1502-1504.
    [13]Bruneel D, Schacht E. Chemical modification of pullulan: 1.Periodate oxidation[J]. Polymer, 1992 34(12): 2628-2632.
    [14]Nicholas C C, Elaine M S. Linkage structure of carbohydrates by gas chromatography-mass spectrometry (GC-MS) of partially methylated alditol acetates[M]. In Biemann C J and Meginnis G D The analysis of carbohydrates by GLC and MS.CRC press. Boca Raton, 1988: 157-216.
    [15]Jeongrim Lee, Rawle I. Hollinsworth. Oligosaccharide-glucans with unusual linkages from Sarcina ventriculi[L]. Carbohydrate Research, 1997, 304: 133-141.
    [16]Kazumi Funane, Tadashi Ishii, Mayumi Matsushita, et al. Water-soluble and water-insolubleglucans produced by Escherichia coli recombinant dextransucrases from Leucomostoc mesetteroides NRRL B-512F[J]. Carbohydrate Research, 2001, 304: 19-25.
    [17]Jeanloz R W, Forchielli E. Studies on hyaluronic acid and related substances II periodate oxidation of glucosamine and derivatives[J]. JBC, 1951, 188(1): 361-369.
    [18]Abdel-Akher M, Smith F. The repeating unit of glycogen[J]. Journal of the American Chemical Society, 1951, 73(3): 994-996.