云纹石斑鱼与褐石斑鱼的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从形态、细胞和分子水平对分类上存在混淆的云纹石斑鱼(Epinephelusmoara)和褐石斑鱼(E.bruneus)进行了比较研究,以澄清它们在分类上的疑问、弄清其遗传背景并筛选可以鉴别两者的特异性分子标记,为云纹石斑鱼和褐石斑鱼的理论研究、生产实践及种质资源的保护提供重要资料。主要结果如下:
     1.2种石斑鱼的体形和体表横带等外部形态特征非常相似,但体表斑纹不同,Fisher逐步判别法表明两者在背鳍鳍条、鳃耙和幽门盲囊等方面差异达到极显著水平(p<0.001)。两者骨骼系统均由脑颅、咽颅、脊柱、肋骨和附肢骨骼组成,主轴和附肢骨骼的形态结构基本相同,但在脑颅的眶前骨和眶后骨、咽颅的前鳃盖骨和尾舌骨、附肢骨骼的髓棘间骨及尾下骨与尾鳍鳍棘连接方式等方面存在差异,骨骼差异可作为属间或种间的分类依据。结果确认云纹石斑鱼和褐石斑鱼为为形态特征可以鉴别的2种石斑鱼。
     2.利用常规核型、Ag-NORs、C-带、重复序列(5S rDNA、18S rDNA和(TTAGGG)n)的荧光原位杂交技术分析了2种石斑鱼的细胞遗传学特性:
     2种石斑鱼二倍体染色体数目均为48,但单臂染色体和双臂染色体个数不同,因此核型不同:云纹石斑鱼为2n=48,4SM+44T(NF=52);褐石斑鱼为2n=48,2M+4SM+42T(NF=54)。银染和FISH均显示,云纹石斑鱼和褐石斑鱼中期分裂相中NORs的数目不同。Ag-NORs主要为4个和5个,分别位于2对(第9和24)和3对(第2、9和24)双臂染色体短臂或亚着丝粒区,种内Ag-NORs数目和分布模式均具多态性;2种石斑鱼18S rDNA的FISH杂交信号分别为4个和6个,位于双臂染色体亚着丝粒区,不同染色体对杂交信号强弱不同。2种石斑鱼均有1对5S rDNA杂交信号位于1对中等大小端部着丝粒染色体亚着丝粒位置。
     2种石斑鱼大多数染色体均具有着丝粒C-带,有些同时还具有端粒C-带;云纹石斑鱼第9对染色体和褐石斑鱼第2对染色体短臂相应的Ag-NORs区均具有恒定异染色质C-带。2种石斑鱼大多数染色体着丝粒位置及部分染色体近端粒区呈DAPI阳性带,与C-带结果一致。2种石斑鱼均仅在染色体的端粒位置而没有在中间部位检测到端粒序列(TTAGGG)n探针杂交信号,云纹石斑鱼信号强度及大小比较均匀,而褐石斑鱼染色体组有10对端部着丝粒染色体末端的端粒序列杂交信号强度和大小均明显强于其它染色体上的杂交信号(约4倍以上)。结果显示2种石斑鱼具有较近的亲缘关系,为石斑鱼属中的特化类群,在进化上云纹石斑鱼比褐石斑鱼更原始。
     3.采用AFLP、RAPD及ISSR分子标记分析了2种石斑鱼遗传多样性。10对AFLP引物、30个RAPD引物和21个ISSR引物分别产生997、226和148条扩增片段,多态位点百分比分别为36.31%、34.51%和27.03%;种间分化明显,平均遗传距离D分别为0.2987、0.3178和0.1792,Shannon’s信息指数Ⅰ分别为0.2247、0.2251和0.1753,遗传分化系数Gst分别为0.7997、0.8298和0.6460;种内遗传多样性水平均不高,遗传相似度S分别为0.9632和0.9630、0.9775和0.9691、0.9414和0.9769。mtDNA的16S rRNA、Cytb和ND2基因及核基因组中核糖体基因簇的ITS1区进化分析均表明:石斑鱼属是石斑鱼亚科中最新演化的类群,云纹石斑鱼和褐石斑鱼为石斑鱼属内的近缘种。
     将物种特异性的ISSR及RAPD标记转化并获得4个能鉴别2种石斑鱼的稳定SCAR标记。选取ND2基因和ITS1区为目的片段,首次成功地通过改良建立的Nest-Tetra-primer specific PCR方法对2种石斑鱼进行鉴别,分别获得3个和5个可以鉴别2种石斑鱼特异性分子标记,为2种石斑鱼的鉴别提供了稳定、可靠、快捷的特异性分子标记技术,也为鱼类近缘种的DNA鉴别提供了新的途径。此外,验证实验进一步说明福建南部水域的这2种石斑鱼是具有不同的生态位,没发现杂交现象。
Whether Epinephelus moara and E.bruneus,with quite similarity in externalcharacters and distribution,belong to one species or not,has being existed theargument and confusion for a long time.To clarify the questions in classification,study and ratify the genetic status and provide specific molecular markers identifyingthe two grouper species,comparative studies were investigated based on themorphological,cytogenetic and molecular analysis.It provided solid foundation forfurther research,practice and protection of germplasm of E.moara and E.bruneus.Main results revealed as followings:
     1.Outer shape,color and bands were very similar in E.moara and E.bruneus,but their bars on the body were different.By means of the Fisher Discriminant FoundAnalysis,statistically significant difference would be found to exist between E.moara and E.bruneus (p<0.001) in meristic and morphometric characters,such as thenumbers of dorsal fin rays,gill rakers and pyloric caeca.Although both species werebasically homologous on the configuration and composition of neurocranium,splanchnocranium,vertebrate,rib and appendicular skeleton,there were manyremarkably differences between them,such as preorbital,post-orbital,rreoperculare,urohyal,predorsal interneural spine and the connection of hypurals and caudal spineand so on.These skeletons could be used as the important characters identifyinggenera or species in fishes.Accordingly,we considered that E.moara and E.bruneuswere different species that could be discriminated by morphological characteristics.
     2.Cytogenetic characteristic analysis of Epinephelus moara and E.bruneus wasperformed by using karyotype,Ag-NORs,C-banding,FISH with 18S rDNA,5SrDNA and telomere sequences.Although both species shared 2n=48 chromosomes,their karyotypes were different in terms of the number of uni- and bi-armedchromosomes and the localization of nucleolar organizer regions (NORs) revealed byAg-staining and FISH.Karyotypic formulaes were 4SM+44T (NF=52) in E.moaraand 2M+4SM+42T (NF=54) in E.bruneus.Different Ag-NORs sites could beobserved on the short arms or sub-centromere regions of those bi-armed chromosomes in E.moara (chromosome pairs No.9 and 24) and E.bruneus(chromosome pairs No.2,9 and 24).Result of 18S rDNA by FISH was consistent.The signal strength of Ag-NORs was varied within species.Meanwhile,two 5S rDNAsignals were localized on the sub-centromere regions of one pair telocentricchromosomes differed from those chromosomes of 18S rDNA.
     Most chromosomes exhibited C-banding hetreochromatins and DAPI positivebandings on the centromere regions,some even on the sub-telemere regions in bothspecies.These NORs on chromosome pair No.9 of E.moara and No.2 of E.bruneuswere C-positive heterochromatic sites.Telomere sequence (TTAGGG)n hybridizingsignals were found on the telomere region but not intermediate position of allchromosomes in these two species.E.moara was characterized by uniform signalstrength and size.E.bruneus was different,of which 10 chromosome pairs weresignificantly stronger and larger (about 4 times) than others.All results indicated thatE.moara and E.bruneus,with close relationships,were different species specializedin genus Epinephelus,and E.moara was more primitive than E.bruneus.
     3.Genetic diversity of E.moara and E.brunues was investigated by AFLP,RAPD and ISSR.997,226 and 148 amplified fragments were recorded,of which thepercentage of polymorphic bands were 36.31%,34.51% and 27.03%,from ten pairsAFLP primers,thirty RAPD primers and twenty-one ISSR primers respectively.Differentiation of inter-species was obvious in both speices.Average genetic distance(D) was 0.2987,0.3178 and 0.1792,Shannon's information index (Ⅰ) was 0.2247,0.2251 and 0.1753,and coefficient of population differentiation (G_(st)) was 0.7997,0.8298 and 0.6460,respectively.Intra-specific genetic diversity was not at a highlevel in the Fujian south coastal population of E.moara and E.bruneus.Geneticsimilarities (S) were 0.9632 and 0.9630,0.9775 and 0.9691,0.9414 and 0.9769separately.Molecular phylogenetic evolution was estimated based on mitochondrial16S rRNA,Cytb and ND2 gene,as well as nuclear ribosomal ITS1 region.All resultsaffirmed that the genus Epinephelus located at the top of the phylogenetic tree andwas the mostly recently diverged group,and E.moara and E.bruneus were closelyrelated species in genus Epinephelus.
     Then,four stable SCAR molecular markers,translated from the species-specificISSR and RAPD amplicons,were obtained to discriminate E.moara and E.bruneus.To identify these two species,an improved Nest-Tetra-primer specific PCR assay wasdeveloped and established based on ND2 gene and ITS1 region sequences firstly.Itamplified three and five species-specific molecular markers,respectively.Thismethod provided a highly reliable,precise,and rapid molecular marker technique todiscriminate the two grouper species,as well as a new method of DNA differentiationof closely related species in fishes.Furthermore,the results of verification testsshowed that,in the south sea of Fujian,China,E.moara and E.bruneus had differentniches and no hybridization occurred between them.
引文
[1]Nelson JS.Fishes of the world(3~(rd)ed)[M].New York:John Wiley and Sons Inc,1994,1-20.
    [2]Utter F,Epifanio J.Marine aquaculture:Genetic potentialities and pitfalls[J].Reviews in Fish Biology and Fisheries,2002,12:59-77.
    [3]Lakra WS,Mohindra V,Lal KK.Fish genetics and conservation research in India:status and perspectives[J].Fish physiology and biochemistry,2007,33:475-487.
    [4]林浩然.重要海水养殖鱼类遗传多样性与种质基因组的研究[J].科技导报,2004,9:4-6.
    [5]李国庆,伍育源,秦志峰,等.鱼类遗传多样性研究[J].水产科学,2004,23:42-44.
    [6]尤锋,张培军,相建海,等.海水养殖鱼类遗传多样性的保护[J].海洋科学,2003,27:10-13.
    [7]Berg LS.Classification of Fishes both Resent and Fossil(2~(nd)ed)[M].Trav Inst Zool.Acad Sci U R S S,1955,20:1-286.
    [8]成庆泰,郑葆珊.《中国鱼类系统检索》(上)[M].北京:科学出版社,1987,287-293.
    [9]Heemstra PC,Randall JE.Groupers of the world[M].Rome:FAO species catalogue,1993,1-304.
    [10]Leis JM,Trnski T,Beckley LE.Larval development of Pagellus natalensis and what larval morphology indicates about relationships in the perciform fish family Sparidae(Teleostei)[J].Marine and Freshwater Research,2002,53:367-376.
    [11]Sidlauskas BL,Vari RP.Phylogeneticrelationships within the south American fish family anostomidae(Teleostei,Ostariophysi,Characiformes)[J].Zoological Journal of the Linnean Society,2008,154:70-210.
    [12]夏铭.遗传多样性研究进展[J].生态学杂志,1999,18:59-65.
    [13]Ojima YS,Hitotsumachi S,Makino S.Cytogenetic studies in lower vertebrates[J].Proceedings of the Japanese Academy,1966,42:62-66.
    [14]Devlin RH,Nagahama Y.Sex determination and sex differentiation in fish:An overview of genetic,physiological,and environmental influences[J].Aquaculture,2002,208:191-364.
    [15]Affonso PRA,Guedes W,Pauls E,et al.Cytogenetic analysis of coral reef fishes from Brazil(families Pomacanthidae and chaetodontidae)[J].Cytologia,2001,66:379-384.
    [16]王世锋.六种石斑鱼核型特征比较和染色体进化研究[D].厦门大学,2007,1-94.
    [17]Gornung E,Cordisco CA,Rossi AR,et al.Chromosomal evolution in Mugilidae:Karyotype charaterization of Liza saliens and minor ribosomal genes inthe Mediterranean mullets[J].Marine Biology,2001,139:55-601.
    [18]Caputo V.Nucleolar organizer(NOR)location and cytotaxonomic implications in six species of gobiid fishes(Perciformes,Gobiidae)[J].Italian Journal of Zoology,1998,65:93-99.
    [19]Galetti JPM,Aguilar CT,Molina WF.An overview of marine fish cytogenetics[J].Hydrobiologia,2000,420:55-62.
    [20]Sola L,Innocentiis SD,Gornung E,et al.Cytogenetic analysis of Epinephelus marginatus(Pisces:Serranidae),with the chromosome localization of the 18S and 5S rRNA genes and of the(TTAGGG)n telomeric sequence[J].Marine Biology,2000,137:47-51.
    [21]任修海,崔建勋,余其兴.中国鲤科鱼类染色体核仁组织区研究[J].武汉大学学报(自然科学版),1996,42:475-580.
    [22]Amores A,Martinez G J,Alvarez MC,et al.Karyotype,C-banding and Ag-NORs analysis in Diplodus bellottii(Sparidae,Perciforms).Intra-individual polymaorphism involoving heterochromatic regions[J].Genome,1993,36:672-675.
    [23]Affonso PRAM,Galetti JPM.Chromosomal diversification of reef fishes from genus Centropyge(Periciformes,Pomacanthidae)[J].Genetica,2005,123:227-233.
    [24]Born GG,Bertollo LAC.An XX/XY sex chromosome system in a fish species,Hoplias malabaricus with a polymorphic NORs-bearing X chromosome[J].Chromosome Research,2000,8:11-118.
    [25]Rosa Rda,Bellafronte E,Filho OM,et al.Constitutive heterochromatin,5S and 18S rDNA genes in Apareiodon sp.(Characiformes,Parodontidae)with a ZZ/ZW sex chromosome system[J].Genetica,2006,128:159-166.
    [26]Sola L,Gornung E.Classical and molecular cytogenetics of the zebrafish,Danio rerio(Cyprinidae,Cypriniformes):an overview[J].Genetica,2001,111:397-412.
    [27]Gromicho M,Ozouf-Costaz C,Collares PMJ.Lack of correspondence between CMA3-,Ag-positive signals and 28S rDNA loci in two Iberian minnows(Teleostei,Cyprinidae)evidenced by sequential banding[J].Cytogenet Genome Research,2005,109:507-511.
    [28]Kavalco KF,Pazza R,Bertollo LAC,et al.Molecular cytogenetics of Oligosarcus hepsetus(Teleostei,Characiformes)from two Brazilian locations[J].Genetica,2005,124:85-91.
    [29]Mandrioli M,Manicardi GC.Cytogenetic and molecular analysis of the pufferfish Tetraodon fluviatilis(Osteichthyes)[J].Genetica,2001,111:433-438.
    [30]易梅生,余其兴,黄琳.斑马鱼粗线期二价体高分辨多重带模式图构建[J].中国科学(C辑),2002,32:240-249.
    [31]Molina WF,Galetti JPM.Early replication banding in Leporinus species(Osteichthyes,Characiformes)bearing differentiated sex chromosomes(ZW)[J].Genetica,2007,130:153-160.
    [32]Raybum AL,Pardue AL,Gill BS.Use of biontion-labeled probes to map specific DNA sequences on wheat chromosome[J].Journal of Heredity,1985:78-81.
    [33]Stephens JL,Brown SE,Lapitan NLV,et al.Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique[J].Genome Ottawa,2004,47:179-190.
    [34]Schrock E,Du MS,Veldman T,et al.Multicolor spectral karyotyping of human chromosome[J].Science,1996,273:494-497.
    [35]Heng HH,Shi XM.From free chromatin analysis to high resolution fiber FISH[J].Cell Research,1997,7:119-124.
    [36]Fujiwara A,Abe S,Yamaha E,et al.Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes[J].Chromosome Research,1998,6:463-471.
    [37]Mazzei F,Ghigliotti L,Bonillo C,et al.Chromosomal patterns of major and 5S ribosomal DNA in six icefish species(Perciformes,Notothenioidei,Channichthyidae)[J].Polar Biology,2004,28:47-55.
    [38]Ferro DAM,Neo DM,Moreira-Filho O,et al.Nucleolar organizing regions,18S and 5S rDNA in Astyanax scabripinnis(Pisces,Characidae):populations distribution and functional diversity[J].Genetica,2001,110:55-62.
    [39]Boro(?)A,Ozouf-Costaz C,Coutanceau JP,et al.Gene mapping of 28S and 5S rDNA sites in the spined loach Cobitis taenia(Picses,Cobitidae)from a diploid population and a diploid-tetraploid population[J].Genetica,2006,128:71-79.
    [40]Iturra P,Lam N,Fuente M,et al.Characterization of sex chromosomes in rainbow trout and coho salmon using fluorescence in situ hybridization(FISH)[J].Genetica,2001,111: 125-131.
    [41]Morescalchi MA,Liguori I,Rocco L,et al.Karyotypic characterization and genomic organization of the 5S rDNA in Polypterus senegalus(Osteichthyes,Polypteridae)[J].Genetica,2008,132:179-186.
    [42]Merlo A,Cross I,Palazon JL,et al.Chromosomal mapping of the major and minor ribosomal genes,(GATA)n and(TTAGGG)n by one-color and double-color FISH in the toadfish Halobatrachus didactylus(Teleostei:Batrachoididae)[J].Genetica,2007,131:195-200.
    [43]Cross I,Merlo A,Manchado M,et al.Cytogenetic characterization of the sole Solea senegalensis(Teleostei:Pleuronectiformes:Soleidae):Ag-NORs,(GATA)n,(TTAGGG)n and ribosomal genes by one-color and two-color FISH[J].Genetica,2006,128:253-259.
    [44]Chew JSK,Oliveira C,Wright JM,et al.Molecular and cytogenetic analsis of the telomeric(TTAGGG)n repetitive sequences in the Nile tilapia,Oreochromis niloticus(Teleostei:Cichlidae)[J].Chromosoma,2002,111:45-52.
    [45]王昌留,张士璀,王长法.基因在染色体上的定位[J].生物学通报,2004,39:18-20.
    [46]Pisano E,Coscia RM,Mazzei F,et al.Cytogenetic mapping of immunoglobulin heavy chain genes in Antarctic fish[J].Genetica,2007,130:9-17.
    [47]Walter WL.Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon(Salmon salor)in a NorthernIrish river[J].Aquaculture,1993,113:19-29.
    [48]Ward RO,Elliott NG,Innes BH,et al.Global population structure of yellowfin tuna,Thunnus albacares,inferred from allozyme and mitochondrial DNA variation[J].Fishery Bulletin,1997,95:566-575.
    [49]Papasotiropoulos V,Klossa-Kilia E,Kilias G,et al.Genetic divergence and phylogenetic relationships in grey mullets(Teleostei:Mugilidae)using allozyme data[J].Biochemical Genetics,2001,39:155-168.
    [50]Gysels ES,Leentjes V,Volckaert FA.Small-scale clinal variation,genetic diversity and environmental heterogeneity in the marine gobies Pomatoschistus minutus and P.lozanoi(Gobiidae,Teleostei)[J].Heredity,2004,93:208-214.
    [51]Zawadzki CH,Renesto E,dos RR,et al.Allozyme relationships in hypostomines(Teleostei:Loricariidae)from the Itaipu Reservoir,Upper Rio Parana basin,Brazil[J].Genetica,2005, 123:271-283.
    [52]徐成,王可玲,尤锋,等.鲈鱼群体生化遗传学研究Ⅰ.同工酶的生化遗传分析[J].海洋与湖沼,2001,32:42-49.
    [53]邹桂伟,潘光碧,罗相忠,等.大口鲇和鲇鱼血清蛋白质及同工酶的比较研究[J].遗传,1997.19:34-36.
    [54]Tanabe R,Muroya S,Nakajima I,et al.Skeletal muscle connection primary structures as related to animal species and muscle type[J].Journal of Food Science,1997,62:451-453.
    [55]Williams JG,Kubelik AR,Livak K J,et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Research,1990,18:6531-6535.
    [56]Welsh J,McClelland M.Fingerprinting genomes using PCR with arbitrary primers[J].Nucleic Acids Research,1990,18:6531-6535.
    [57]Govindaraju GS,Jayasankar P.Taxonomic relationship among seven species of groupers(genus Epinephelus;family Serranidae)as revealed by RAPD fingerprinting[J].Marine Biotechnology,2004,6:229-237.
    [58]Pindaro DJ.Allozyme and RAPD variation in the eastern Pacific yellowfin tuna(Thunnus albacares)[J].Fishery Bulletin,2003,101:769-777.
    [59]尹绍武,黄海,廖经球,等.4种石斑鱼的分子遗传多样性和亲缘关系的RAPD分析[J].海洋学报,2006,28:119-126.
    [60]陈金平,梁利群,孙效文,等.绥芬河三块鱼属鱼类和东北雅罗鱼亲缘关系的RAPD分析[J].中国水产科学,2002,9:1-4.
    [61]Shubina EA,Ponomareva EV,Gritsenko OF.Population genetic structure of the char species of the Northern Kuril Islands and the rank of the Dolly Varden Char in the system of the genus Salvelinus(Salmonidae:Teleostei)[J].Zhurnal Obshchei Biologii,2006,67:280-297.
    [62]Zabeau M,Vos P.Selective restriction fragment amplification:a general method for DNA fingerprinting[A].Paris:European Patent Office,publication,1993,0534 858 A1.
    [63]Vos P,Hogers R,Bleeker M,et al.AFLP:a new technique for DNA fingerprinting[J].Nucleic Acids Research,1995,23:4407-4414.
    [64]Coimbra MRM,Kobayashi K,Koretsufu S,et al.A genetic linkage map of the Japanese flounder,Paralichthys olivaceus[J].Aquaculture,2003,220:203-218.
    [65]Felip A,Young WP,Wheeler PA,et al.An AFLP-based approach for the identification of sex-linked markers in rainbow trout(Oncorhynchus mykiss)[J].Aquaculture,2005,247:35-43.
    [66]Chen SL,Li J,Deng SP,et al.Isolation of female-specific AFLP markers and molecular identification of genetic sex in Half-smooth tongue sole(Cynoglossus semilaevis)[J].Marine Biotechnology,2007,9:273-280.
    [67]Han K,Ely B.Use of AFLP analysis to assess genetic variation in Morone and Thunnus species[J].Marine Biotechnology,2002,4:141-145.
    [68]Mickett K,Morton C,Feng J,et al.Assessing genetic diversity of domestic populations of channel catfish(Ictalurus punctatus)in Alabama using AFLP markers[J].Aquaculture,2003,228:91-105.
    [69]王志勇,王艺磊,林利民,等.福建管井洋大黄鱼AFLP指纹多态性的研究[J].中国水产科学,2002,9:198-202.
    [70]Zietkiewicze Z,Rafalske A,Labuda D.Genome finger printing by simple sequence repeat(SSR)-ancIred polymerase chain reaction amplification[J].Genomics,1994,20:176-183.
    [71]Nagaoka T,Ogihara Y.Applificability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers[J].Theoretical and Applied Genetics,1997,49:597-602.
    [72]Tsumura Y,Ohba K,Strauss S H.Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir(Pseudotsugam enziesii)and Sugi(Cryptoeria japonica)[J].Theoretical and Applied Genetics,1996,92:40-45.
    [73]Maltagliati F,Lai T,Casu M,et al.Identification of endangered Mediterranean cyprinodontiform fish by means of DNA inter-simple sequence repeats(ISSRs)[J].Biochemical systematics and ecology,2006,34:626-634.
    [74]许广平,仲霞铭,丁亚平,等.黄海南部小黄鱼群体遗传多样性研究[J].海洋科学,2005,29:34-38.
    [75]Liu YG,Chen SL,Li J,et al.Genetic diversity in three Japanese flounder(Paralichthys olivaceus)populations revealed by ISSR markers[J].Aquaculture,2006,255:565-572.
    [76]王世锋,杜佳莹,苏永全,等.斜带髭鲷野生与养殖群体遗传结构的ISSR分析[J].海洋学报,2007,4:105-110.
    [77] Lewallen EA, Anderson TW, Bohonak AJ. Genetic structure of leopard shark (Triakis semifasciata) populations in California waters[J]. Marine Biology, 2007, 152: 599-609.
    [78] Pazza R, Kavalco KF, Prioli AJ, et al. Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae), Part 3: Analysis of the RAPD and ISSR molecular markers[J].Biochemical systematics and ecology, 2007, 35: 843-851.
    [79] Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J]. Theoretical and Applied Genetics, 1993, 85: 985-993.
    [80] Zhang JB, Cai ZP. Differentiation of the rainbow trout (Oncorhynchus mykiss) from Atlantic salmon (Salmon salar) by the AFLP-derived SCAR[J]. European food research and technology, 2006,223: 413-417.
    [81] Zhou L, Wang Y, Gui JF. Molecular analysis of silver crucian carp (Carassius auratus gibelio, Bloch) clones by SCAR markers[J]. Aquaculture, 2001, 201: 219-228.
    [82] Bardakci F, Skibinski DO. A polymorphic SCAR-RAPD marker between species of tilapia (Pisces: Cichlidae)[J]. Animal Genetics, 1999, 30: 78.
    [83] Innocentiis SD, Miggiano E, Ungaro A, et al. Geographical origin of individual breeders from gilthead sea bream (Sparus auratus) hatchery broodstocks inferred by microsatellite profiles[J]. Aquaculture, 2005, 247: 227-232.
    [84] Sakamoto T, Danzmann RG, Okamoto N, et al. Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture,1999, 173: 33-43.
    
    [85] Dong QF, Liu CW, Guo YS, et al. Microsatellite analysis of genetic diversity and phylogenetic relationship of nine species of grouper in genus Epinephelus[J]. Yi Chuan,2007,29:837-843.
    [86] Muller J. Uber den Bau und die Grenzen der Ganoiden und uber das naturliche System der Fische[M].BerAkad Wiss,Berlin, 1844, 1846: 117-216.
    [87] Rass TS, Lindberg GU. Modern Concepts of the Natural System of Present-Day Fish [M].Vopr Ikhtiol, 1971, 11: 380-407.
    [88] Chikuni S. The fish resources of the northwest Pacific[M]. Rome : FAO of the United Nations, 1985, 1-190.
    
    [89] John, Lythgoe G. Fishes of the sea: the coastal waters of the British Isles, northern Europe and the Mediterranean[M]. London: Blandford Press, 1.971, 1-320.
    [90] Leim AH, Scott WB. Fishes of the Atlantic Coast of Canada[M]. Ottawa: Fisheries Research Board of Canada, 1966, 1-485.
    
    [91] Francis D. The fishes of India: being a natural history of the fishes known to inhabit the seas and fresh waters of India, Burma, and Ceylon.v.1[M]. New Delhi: Today &Tomorrow's Book Agency, 1978, 1-778.
    [92] Nakabo T. Fishes of Japan: with pictorial keys to the species[M]. Tokyo: Tokai University Press, 2002, 1-748.
    
    [93] Chu YT. Index piscium Sinensium[M]. Shanghai: Biol. Bull. St. John's Univ, 1931, 1-290.
    [94]沈世杰.台湾鱼类志[M].台湾:台湾大学动物学系印行.1993,1-683.
    [95] Kimura S, Kimura R, Ikejima K. Revision of the genus Nuchequula with descriptions of three new species (Perciformes: Leiognathidae)[J]. Ichthological Research, 2008, 55: 22-42.
    [96] Ishii N, Imamura H. Phylogeny of the family Congiopodidae (Perciformes: Scorpaenoidea), with a proposal of new classification[J]. Ichthological Research, 2008, 55: 148-161.
    [97] Alves AL, Oliveira C, Foresti F. Comparative cytogenetic analysis of eleven species of subfamilies Neoplecostominae and Hypostominae (Siluriformes : Loricariidae)[J]. Genetica,2005, 124:127-136.
    
    [98] Knudsen SW, Moller PR, Gravlund P. Phylogeny of the snailfishes (Teleostei: Liparidae) based on molecular and morphological data[J]. Molecular Phylogenetics and Evolution,2007, 44: 649-666.
    
    [99] Kumazawa Y. Mitochondrial molecular clocks and the origin of euteleostean biodiversity:Familial radiation of Perciforms may have predated the Cretaceous/ Tertiary boundary. In:The Biology of Biodiversity (Kato M, Eds)[M]. Tokyo: Springer-Verlag, 1999, 35-52.
    [100] Helfman GS, Collette BB, Facey DE. The Diversity of Fishes[J]. Massachusetts: Blackwell Science, 1997, 224-225.
    
    [101] Woese CR, Kandler O, Wheelis M. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87: 4576-4579.
    
    [102] Meyer A. DNA technology and phylogeny of fish. In: Beaumont A R. Genetics and Evolution of Aquatic Organisms[M]. Chapman and Hall, 1994, 219-249.
    [103] Chang YS, Huang FL, Lo T. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome[J]. Journal of Molecular Evolution, 1994,138-155.
    
    [104]黄原.分子系统学——原理、方法及应用[M].北京:中国农业出版社,1998,65-156.
    
    [105] Bentzen P, Leggett WC, Brown GG. Length and restriction site heteroplasmy in the mitochondrial DNA of American shad (Alosa sapidissima)[J]. Genetics, 1998, 118: 509-518.
    [106] Brown JR, Beckenbach AT, Smith MJ. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser)[J]. Genetics,1996, 142:525-535.
    [107] Brown WM. Evolution of animal mitochondrial DNA.In: Nei M and Koehnl P K (Eds).Ecolution of Genes and Proteins[M]. Sinarer Associates, Sunderland, Mass, 1983, 62-68.
    [108] Schuster W. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome or Oenothera: is genetic information transferred between organelles, via RNA?[J].EMBO Journal, 1987, 6: 2857-2863.
    [109] Saitoh K, Sado T, Mayden RL. Mitogenomic evolution and interrelationships of the cypriniformes (Actinopterygii: Ostariophysi): The first evidence toward resolution of higher-level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences[J]. Journal of Molecular Evolution, 2006, 63: 826-841.
    [110] Near TJ, Pesavento JJ, Cheng CH. Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae)[J]. Molecular Phylogenetics and Evolution, 2003, 28: 87-98.
    [111] Miya M, Takeshima H, Endo H, et al. .Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution, 2003, 26: 121-138.
    [112] Sullivan JP, Lundberg JG, Hardman M. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using ragl and rag2 nuclear gene sequences[J]. Molecular Phylogenetics and Evolution, 2006, 41: 636-662.
    [113] Sides J, Lydeard C. Phylogenetic utility of the tyrosine kinase gene X-src for assessing relationships among representative cichlid fishes[J]. Molecular Phylogenetics and Evolution,2000, 14: 51-74.
    [114]Oakley TH,Phillips RB.Phylogeny of salmo nine fishes based on growth hormone introns:Atlantic(Salmo)and Pacific(Oncorhynchus)salmon are not sister taxa[J].Molecular Phylogenetics and Evolution,1999,11:381-393.
    [115]Garrido-Ramos MA,Herr(?)NR,Jamilena R,et al.Evolution of centromeric satellite DNA and its use in phylogenetic studies of the sparidae family(Pisces,Perciformes)[J].Molecular Phylogeneticsand Evolution,1999,12:200-204.
    [116]Kuriiwa K,Hanzawa N,Yoshino T,et al.Phylogenetic relationships and natural hybridization in rabbitfishes(Teleostei:Siganidae)inferred from mitochondrial and nuclear DNA analyses[J].Molecular Phylogenetics and Evolution,2007,45:69-80.
    [117]Sun YH,Xie CX,Wang WM,et al.The genetic variation and biogeography of catostomid fishes based on mitochondrial and nucleic DNA sequences[J].Journal of Fish Biology,2007,70:291-309.
    [118]Ruber L,Britz R,Kullander SO,et al.Evolutionary and biogeographic patterns of the Badidae(Teleostei:Perciformes)inferred from mitochondrial and nuclear DNA sequence data[J].Molecular Phylogenetics and Evolution,2004,32:1010-1022.
    [119]王绪桢,何舜平,陈宜瑜.S7核糖体蛋白基因序列变异及其在低等鲤科鱼类中的系统发育意义[J].科学通报,2002,47:1089-1094.
    [120]Phillips RB,Pleyte KA,Brown MR.Salmonid phylogeny inferred from ribosomal DNA restriction maps[J].Canadian Journal of Fisheries and Aquatic Sciences,1992,49:2345-2353.
    [121]Nelson J S.Fishes of the world(4~(th)ed)[M].New York:John Wiley & Sons,2006,339-347.
    [122]《福建鱼类志》编写组.《福建鱼类志》(下)[M].福州:福建科学技术出版社,1987,19-20.
    [123]王以康.鱼类分类学[M].上海:科技卫生出版社,1958,230-232.
    [124]de Sadovy M,Cornish A,Domeier M,et al.A global baseline for spawning aggregations of reef fishes[J].Conservation Biology,2008,22:1233-1244.
    [125]Morris AV,Roberts CM,Hawkins J P.The threatened status of groupers(Epinephelinae)[J].Biodiversity and Conservation,2000,9:919-942.
    [126]Wang SF,Du JY,Wang J,et al.Identification ofEpinephelus malabaticus and E.coioides using DNA markers[J].Acta oceanologica sinica,2007,26:122-129.
    [127]De IS,Sola L,Cataudella S,et al.Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper(Epinephelus marginatus)within the Mediterranean Sea[J].Molecular Ecology,2001,10:2163-2175.
    [128]邹记兴,余其兴,周菲.点带石斑鱼的核型、C带、Ag-NORs[J].水产学报,2005,29:33-37.
    [129]Upadhyay SK,Jun W,Yong-Ouan S,et al.Genetic diversity of yellow grouper(Epinephelus awoara)determined by random amplified polymorphic DNA(RAPD)analysis[J].Fishery Bulletin,2006,104:638-642.
    [130]Maggio T,Andaloro F,Arculeo M.Genetic population structure ofEpinephelus marginatus(Pisces,Serranidae)revealed by two molecular markers[J].Italian Journal of Zoology,2006,73:275-283.
    [131]Zhu ZY,Yue GH.The complete mitochondrial genome of red grouper Plectropomus leopardus and its applications in identification of grouper species[J].Aquaculture,2008,276:44-49.
    [132]Koedprang W,Na-Nakorn U,Nakajima M,et al.Evaluation of genetic diversity of eight grouper species Epinephelus spp.based on microsatellite variations[J].Fisheries Science,2007,73:227-236.
    [133]Antoro S,Na-Nakorn U,Koedprang W.Study of genetic diversity of orange-spotted grouper,Epinephelus coioides,from Thailand and Indonesia using microsatellite markers[J].Marine Biotechnology,2006,8:17-26.
    [134]Smith CL.A revision of the American groupers:Epinephelus and allied genera[J].Bulletin of the American Museum of Natural History,1971,146:67-241.
    [135]孟庆闻,苏锦祥,缪学祖.鱼类分类学[M].北京:中国农业出版社,1995,606-622.
    [136]Smith CL.FAO species identification sheets for fisheries purposes,Eastern Central Atlantic;fishing area 34,47(in Part)PPFischer W,et al,Eds.Family Serranidae[M].Rome:Food and Agriculture Organization of the United Nations,1981.Vol.1-7,pag.var.
    [137]Leis JM.Larval development in four species of Indo-Pacific coral trout Plectropomus(Pisces,Serranidae:Epinephilinae)with an analysis of the relationship s of the genus[J].Bulletin of Marine Science,1986,38:525-552.
    [138]Baldwin CC,Johnson GD.Phylogeny of the Epinephelinae(Teleostei:Serranidae)[J].Bulletin of Marine Science,1993,52:240-283.
    [139]Craig MT,Pondella DJ,Franck JP,et al.On the status of the Serranid fish genus Epinephelus:evidence for paraphyly based upon 16S rDNA sequence[J].Molecualr Phylogenetics and Evolution,2001,19:121-130.
    [140]Craig MT,Hastings PA,Pondella DJ.Speciation in the central American seaway:the importance of taxon samp ling in the identification of transisthmian geminate pairs[J].Journal of B iogeography,2004,31:1085-1091.
    [141]Hwerden LV,Davies CR,Choat JH.Phylogenetic and evolutionary perspectives of the Indo-Pacific grouper Plectropomus species on the Great Barrier Reef,Australia[J].Journal of Fish Biology,2002,60:1591-1596.
    [142]Maggio T,Andaloro F,Hemida F,et al.A molecular analysis of some Eastern Atlantic grouper from the Epinephelus and Mycteroperca genus[J].Journal of Experimental Marine Biology and Ecology,2005,321:83-92.
    [143]丁少雄,王颖汇,王军,等.基于16S rDNA部分序列探讨中国近海30种石斑鱼类的分子系统进化关系[J].动物学报,2006,52:504-513.
    [144]庄轩,丁少雄,郭峰,等.基于细胞色素b基因片段序列研究中国近海石斑鱼类系统进化关系[J].中国科学(C辑),2006,36:27-34.
    [145]朱世华,杨迎春,郑文娟,等.从细胞色素b部分序列探讨石斑鱼属的分子系统发育关系[J].水生生物学报,2006,30:432-438.
    [146]Burgess W,Axelroad HR.Pacific Marine Fishes[M].New Jersey:T.F.H.Publications,1971,280.
    [147]Kato K,Sawada Y.Seedling production and development of larvae and juveniles of kelp grouper Epinephelus moara[J].Nippon Suisan Gakkaishi,1997,63:265-266.
    [148]王民生.日本七带石斑鱼和云纹石斑鱼苗种批量生产成功[J].中国渔业经济,2001,6:54.
    [149]Miyaki K,Nakano S,Ohta H,et al.Cryopreservation of kelp grouper Eninephelus moara sperm using only a trehalose solution[J].Fishery Science.2005,71:457-458.
    [150]张永嘉,郭青,吴泽阳.云纹石斑鱼淋巴囊肿病病变过程的超微研究[J].海洋与湖沼,1997.28:406-410.
    [151]郭丰,王军,苏永全,等.云纹石斑鱼染色体核型研究[J].海洋科学,2006,30:1-3.
    [152]Kato K,Ishimaru K,Sawada Y,et al.Ontogeny of digestive and immune system organs of larval and juvenile kelp grouper Epinephelus bruneus reared in the laboratory[J].Fisheries Science,2004,70:1061-1069.
    [153]Sawada Y,Kato K,Okada T,et al.Growth and morphological development of larval and juvenile Epinephelus bruneus(Perciformes:Serranidae)[J].ichthyological Research,1999,46:245-257.
    [154]Song YB,Oh SR,Seo JP,et al.Larval development and rearing of longtooth grouper Epinephelus bruneus in Jeju Island,Korea[J].Journal of the world aquaculture society,2005,36:209-216.
    [155]Park MO,Hur WJ,Im SY,et al.Anaesthetic efficacy and physiological responses to clove oil-anaesthetized kelp grouper Epinephelus bruneus[J].Aquaculture Research,2008,39:877-884.
    [156]照屋和久.降低褐石斑鱼Epinephelus brunneus(Bloch)种苗生产的初期死亡对策[J].石钢德(摘译).现代渔业信息,2002,17:27-28.
    [157]王波,孙丕喜,张朝晖,等.褐石斑鱼的生物学特性及室内养殖初步试验[J].渔业现代化,2006,1:28-29.
    [158]Mike S,R(?)tsch G,Weston J,et al.Fisher discriminant analysis with kernels.In:Hu YH,Larsen J,Wilson E,et al(Eds):Neural Networks for Signal Processing,Ⅸ[M].New York:IEEE Press,1999,41-48.
    [159]冯昭信.鲈鱼Lateolabrax japonicus(Cuvier & Valenciennes)骨骼系统的形态观察[J].大连水产学院学报,1982,1:29-52.
    [160]张其永,洪万树,邵广昭.网箱养殖卵形鲳鯵和布氏鲳鯵分类性状的研究[J].台湾海峡,2000,19:499-506.
    [161]李仲辉.游鳍叶鲹和镰鳍裸胸鲹骨骼系统的比较研究[J].海洋湖沼通报,2002,1:38-48.
    [162]Levan A,Fredga K,Sandberg AA.Nomenclatrue for centrometic position on chromosomes[J].Hereditas,1964,52:201-220.
    [163]Gorman GC.The chromosomes of the Reptilia,a cytotaxonomic interpretation.Cytotaxonomy and Vertebrate Evolution[M].New York:Academic Press Inc,1973,5-30.
    [164]Howell MW,Black DA.Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer:a 1-step method[J].Expenertia,1980,36:1012-1015.
    [165]Sumner AT.A simple technique for demonstrating centromeric heterochromatin[J].Experimental Cell Research,1972,75:304-306.
    [166]Sambrook J,Fritsch E F,Maniatis T.Molecular Cloning:A Laboratory Manual[M].New York:Cold Spring Harbor Laboratory Press,1989,672-955.
    [167]Martins C,Galetti JPM.Chromosomal localization of 5S rDNA genes in Leporinus fish(Anostomidae,Characiformes)[J].Chromosome Research,1999,7:363-367.
    [168]Ijdo JW,Wells RA,Baldini A,et al.Improved telomere detection using a telomere repeat probe(TTAGGG)n generated by PCR[J].Nucleic Acids Research,1991,19:4780.
    [169]Galetti JPM,Molina WF,Affonso PRAM,et al.Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers[J].Genetica,2006,126:161-177.
    [170]Brum MJI,Galetti JPM.Teleostei ground plan karyotype[J].Journal of Computational Biology,1997,2:91-102.
    [171]余先觉,周暾,李康,等.中国淡水鱼类染色体[M].北京:科学出版社,1989,10-27.
    [172]Molina WF,Maia-Lima FA,Affonso PRAM.Divergence between karyotypical pattern and speciation events in Serranidae fish(Perciformes)[J].Caryologia,2002,55:299-305.
    [173]王云新,王宏东,张海发,等.斜带石斑鱼与赤点石斑鱼的核型研究[J].湛江海洋大学学报,2004,24:4-8.
    [174]Martinez G,Thode G,Alvarez MC,et al.C-banding and Ag-NORs reveal a certain heterogeneity among karyotypes of serranids(Perciformes)[J].Cytobios,1989,58:53-60.
    [175]Alvarez MC,Thode G,Cano J.Somatic karyotypes of two Mediterranean teleost species:Phycis phycis(Gadidae)and Epinephelus alexandrinus(Serranidae)[J].Cytobios,1983,38:91-95.
    [176]洪满贤,杨俊慧.青石斑鱼染色体组型的研究[J].厦门大学学报(自然科学版),1988,27:714-715.
    [177]Rodriguez-daga R,Amores A,Thode G.Karyotype and nucleolus organizer regions in Epinephelus caninus(Pisces,Serranidae)[J].Caryologia,36:139-144.
    [178]丁少雄,王世锋,王德祥,等.斜带石斑鱼染色体核型分析[J].厦门大学学报(自然科学版),2004,43:426-428.
    [179]Natarajan R,Subrahmanyan K.A karyotype study of some teleosts from Portonovo waters[J].Proceedings of the Indian Academy of Sciences,1974,79:173-196.
    [180]郑莲,刘楚吾,李长玲.4种石斑鱼染色体核型研究[J].海洋科学,2005,29:51-55.
    [181]李锡强,彭跃东.斑带石斑鱼与黑边石斑鱼核型的研究[J].湛江海洋大学学报,1994,14:22-26.
    [182]廖经球,尹绍武,陈国华,等.褐点石斑鱼的核型研究[J].水产科学,2006,25:567-569.
    [183]Aguilar CT,Galetti JPM.Chromosomal studies in South Atlantic serranids(Pisces,Perciformes)[J].Cytobios,1997,89:105-114.
    [184]Medrano L,Bernardi G,Couturier J,et al.Chromosome banding and genome compartimentalization in fishes[J].Chromosoma,1988,96:178-183.
    [185]陈毅恒,容寿柏,刘绍琼.鲑点石斑鱼的核型[J].福建水产,1990,1:23-25.
    [186]Raghunath P,Prasad R.Chromosomes of six marine percoids from the Indian Sea[J].Indana Biology,1980,11:9-12.
    [187]王德祥,苏永全,王世锋,等.宽额鲈染色体核型研究及制作方法的比较[J].台湾海峡,2003,22:465-469.
    [188]小岛吉雄.鱼类细胞遗传学[M].林义浩编译.广州:广东科技出版社,1990,8-33.
    [189]李树深.鱼类细胞分类学[J].生物科学动态,1981,2:8-15.
    [190]Hsu TC,Pardue ML.Distribution of 18S+28S ribosomal genes in mammalian genomes[J].Chromosoma,1975,53:25-36.
    [191]Amemiya CT & Gold JR.Cytogenetic studies in north American minnows(Cyprinidae).XV Ⅱ.Chromosomal NORs phenotypes of 12 species,with comments on cytosystematic relationships among50 species[J].Hereditas,1990,112:231-247.
    [192]Gold JR.Silver-staining and heteromorphism of chromosomal nucleolus organizer regions in North American cyprinid fishes[J].Copeia,1984,1:133-139.
    [193]Schmid M.Chromosome banding in amphbia[J].Chromosome,1980,77:83-103.
    [194]Foresti F,Almeida TLF,Toledo F~oSA.Polymorphic nature of nucleolus organizer regions in fishes[J].Cytogenetics and Cell Genetics,1981,31:137-144.
    [195]昝瑞光.滇池两种类型鲫鱼的性染色体和C-带核型研究[J].遗传学报,1982,9:32-39.
    [196]Hsu TC,Arrigh F.Distribution of constitutive retrochromatatinin mammalian chromosome[J].Chromosoma,1971,34:243-253.
    [197]Shi LM.Comparative cytogenetic studies on the muntjac,Chinese muntjac and their F1 hybrids[J]. Cytogenet Cell Genet, 1980, 26: 22-27.
    [198] Rocco L, Morescanlchi MA, Costagliola D, et al. Karyotype and genome characterization in four cartilaginous fishes[J]. Gene, 2002, 195: 289-298.
    
    [199] Caputo V, Marchegiani F, Sorice M, et al. Heterochromatin heterogeneity and chromosome variability in four species of gobiid fishes (Perciformes: Gobiidae)[J].Cytogenetics and cell genetics, 1997, 79: 266-271.
    
    [200] Swarca AC, Fenocchio AS, Cestari MM, et al. Analysis of heterochromatin by combination of C-banding and CMA3 and DAPI staining in two fish species (Pimelodidae,Siluriformes)[J]. Genetica, 2003, 119: 87-92.
    
    [201] Treco FR, Malabarba LR, Giuliano-Caetano L, et al. Cytogenetic study of two species of the family Pimelodidae (Siluriformes) collected in lago Guaiba, Rio Grande do Sul,Brazil[J]. Neotropical Ichthyology, 2008, 6: 87-92.
    [202] Kapuscinski J. DAPI: a DNA specific fluorescent probe[J]. Biotechnic Histochemistry,1995, 70: 220-233.
    
    [203] Parolin C, Zanotti G, Palu G. A model for the sequence-dependent DNA binding of 4',6'-diamidino-2-phenylindole (DAPI)[J]. Biochemical and Biophysical Research Communications, 1995, 208: 332-338.
    
    [204] Kato M. Structural bistability of repetitive DNA elements featuring CA/TG dinuvleotide steps and mode of evolution of satellite DNA[J]. European Journal of Biochemistry, 1999,265:204-209.
    
    [205]] Hatanaka T, Galetti JPM. Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1892 (Characiformes, Prochilodontidae)[J]. Genetica, 2004,122:239-244.
    [206] Indik ZK, Tartof KD. Long spacers among ribosomal genes of Drosophila melanogaster[J].Nature, 1980, 284: 477-479.
    
    [207] Fujiwara A, Abe S, Yamaha E, et al. Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes[J]. Chromosome Research, 1998, 6: 463-471.
    
    [208] Meyne J, Ratliff RL, Moyzis RK. Conservation of the Human Telomere sequence (TTAGGG)n among vertebrates[J]. Proceedings of the National Academy of Sciences, USA, 1989,86:7049-7053.
    [209]Rossi AR,Gornung E,Sola L,et al.Comparative molecular cytogenetic analysis of two congeneric species,Mugil curema and M.liza(Pisces,Mugiligormes),characterized by significant karyotype diversity[J].Genetica,2005,125:27-32.
    [210]Ratnaparkhe MB,Tekeoglu M,Muehlbauer FJ.Intersimple-sequence-repeat(ISSR)polymorphisms are useful for finding markers associated with disease resistance gene clusters[J].Theoretical and Applied Genetics,1998,97:515-519.
    [211]Palumbi S.Nucleic acids Ⅱ:the polymerase chain reaction.In:Molecular Systematics(Hillis DM,Moritz C,Mable BK eds)[M].MA:Sinauer,Sunderland,1996,205-247.
    [212]Meyer A,Kocher TD,Basasibwaki P,et al.Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequence[J].Nature,1990,347:550-553
    [213]Cantatore P,Roberti M,Pesole G,et al.Evolutionary analysis of cytochrome b sequence in some Perciformes:Evidence for a slower rate of evolution than in mammals[J].Journal of Molecular Evolution,1994,39:589-597.
    [214]Yagishita N,Kobayashi T,Nakabo T.Review of monophyly of the Kyphosidae(sensu Nelson,1994),inferred from the mitochondrial ND2 gene[J].Ichthyological Research,2002,49:103-108.
    [215]Chow S,Nakagawa T,Suzuki N,et al.Phylogenetic relationships among Thunnus species inferred from rDNA ITS1 sequence[J].Journal of Fish Biology,2006,68:S24-35
    [216]蒙子宁,杨丽萍,吴丰,等.斜带石斑鱼、赤点石斑鱼RAPD和线粒体Cytb基因序列变异分析[J].中山大学学报(自然科学版),2007,46:75-80.
    [217]郑莲,刘楚吾.4种石斑鱼亲缘关系的RAPD分析[J].水产科学,2004,25:36-40.
    [218]符书源,尹绍武,陈国华,等.海南近海野生鞍带石斑鱼群体遗传多样性的RAPD分析[J].海洋通报,2008,27:25-31.
    [219]张媛,胡则辉,周志刚,等.利用RAPD-PCR与ISSR-PCR标记技术分析长江口刀鲚的群体遗传结构[J].上海水产大学学报,2006,15:390-397.
    [220]Lievens S,Goormachtig S,Holsters M.A critical evaluation of differential display as a tool to identify genes involved in legume nodulation:looking back and looking forward[J].Nucleic Acids Research,2001,29:3459-3468.
    [221] Thome J, Gonzalez DO, Beebe S, et al. AFLP analysis of gene pools of a wild bean core collection[J]. Crop Science, 1996, 36: 1375-1384.
    
    [222] Grant V. Plant speciation[M]. New York: Columbia University Press, 1981,149-172.
    [223] Slatkin M. Gene flow in natural populations[J]. Annual Review of Ecology and Systematics, 1985, 16:393-430.
    
    [224] Wright S. Evolution in Mendelian population[J]. Genetics, 1931, 16: 91-159.
    [225] Hartl DL, Clark AG Principles of Population Genetics (2~(nd) ed)[M]. Sunderland MA:Sinauer Associates, 1989, 542.
    [226] Banford HM, Bermingham E, Collette BB, et al. Phylogenetic systematics of the Scomberomorus regalis (Teleostei: Scombridae) species group: molecules, morphology and biogeography of Spanish Mackerels[J]. Copeia, 1999, 2999: 596-613.
    [227] Machordom A, Doadrio I. Evidence of a Cenozoic Betic-Kabilian connection based on fresh water fish phylogeography (Luciobarbus, Cyprinidae)[J]. Molecular Phylogenetics and Evolution, 2001, 18: 252-263.
    [228] Liu HT, Zeng CS, Teng HY. Sequence variations in the mitochondrial DNA control region and their implications for the phylogeny of the Cypriniformes[J].Canadian Journal of Zoology-Revue Canadienne de Zoologie, 2002, 80: 569-581.
    [229] Dover GA. Molecular driver: a cohesive mode of species evolution[J]. Nature, 1982, 299:111-117.
    [230] Westrich KM, Konkol NR, Matsuoka MP, et al. Interspecific relationships among charrs based on phylogenetic analysis of nuclear growth hormone intron sequences[J].Environmental biology of fishes. 2002, 64: 217-222.
    [231] Ye S, Dhillon S, Ke X, et al. An efficient procedure for genotyping single nucleotide polymorphisms[J]. Nucleic Acids Research, 2001, 29: E88-8.
    [232] Ruiz-Sanz JI, Aurrekoetxea I, del Agua A, et al. Detection of catechol-O-methyltransferase Val158 Met polymorphism by a simple one-step tetra-primer amplification refractory mutation system-PCR[J]. Molecular and Cellular Probes, 2007, 21: 202-207.