基质VEGF-C和C-C趋化因子受体7介导前列腺癌淋巴结转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肿瘤转移是恶性肿瘤致死的主要原因。近年来研究显示,淋巴系统对肿瘤向局部淋巴结和远端器官转移具有直接作用。本课题组前期研究结果提示,前列腺癌首先通过淋巴管向局部淋巴结扩散,而这一过程又为后续向远端器官转移提供了细胞富集库。淋巴内皮细胞生长因子-C (VEGF-C)是淋巴道新生及由此引起肿瘤细胞向淋巴结迁移的主要因素。趋化因子受体-配体间相互作用有助于肿瘤细胞实现向特定器官转移。
     研究目的
     本研究首要目标是构建一个由基质细胞来源VEGF-C诱导肿瘤淋巴道新生,引起前列腺癌淋巴结转移的动物模型。第二个目标是论证CCR7/CCL21趋化因子受体-配体作用轴是引导前列腺癌淋巴结转移的关键分子信号之一。
     实验方法
     1.为探索基质细胞来源VEGF-C在前列腺癌扩散中的作用,我们构建了一个由人类前列腺癌细胞LAPC-9与小鼠基质细胞株NIH 3T3以等比混合组成的皮下移植瘤动物模型。利用慢病毒载体在LAPC-9细胞标记编码Renilla luciferase (RL)的基因;在NIH 3T3细胞中标记编码人类VEGF-C (hVEGF-C)的基因,用含有标记GFP基因的慢病毒载体作为对照。LAPC-9/3T3混合移植瘤被植入重度联合免疫缺陷(SCID)小鼠皮下。用检测RL信号的CCD光学影像技术,在体和离体追踪移植瘤生长与扩散情况。原位移植瘤和肿瘤转移灶中趋化因子与受体的表达水平,分别由实时定量RT-PCR法、免疫组织化学法及western blot法进行分析。
     2.为了进一步分析由上述动物模型所得结果,我们采用两株人类前列腺癌细胞株CWR22Rv1 (CWR)和LNCaP作为体外替代模型。并用慢病毒载体CMV-CCR7-IRES-GFP标记上述细胞株。用含有编码CCL21基因的腺病毒载体(Ad-CCL21)感染A549细胞株以生产含有CCL21的条件培养基,用Ad-firefly腺病毒载体作为对照。用趋化跨膜迁移实验(chemotaxis assay)检测上述表达CCR7的细胞株与条件培养基之间的相互作用。用实时定量RT-PCR和western blot法检测相关基因和蛋白产物的表达情况。
     实验结果
     1. LAPC-9/3T3-hVEGF-C移植瘤的边缘呈现大量新生淋巴管,并因此促进被标记的肿瘤细胞向局部淋巴结和肺进行转移(该组出现淋巴转移概率为66.67%)。与之相异,GFP对照组移植瘤均未见明显转移。通过检测两组样本中一系列与转移相关基因表达水平,我们发现hVEGFR-3、hMMP9、CCR7和CCL21淋巴结转移灶表达增加,CXCR4在肺转移灶中表达上调。另外,将淋巴结中分理出的部分转移灶重新移植入SCID小鼠皮下进行扩增,并检测相关基因表达水平。与对应原位移植瘤相比,扩增后肿瘤的CCR7基因表达增加11.62倍(P=0.0007),而CCL21基因表达增加11.37倍(P=0.001)。免疫组织化学实验检测进一步证实了上述结果。此外,分别从淋巴转移病灶和原位移植瘤分离制备单细胞悬液,前者在体外响应CCL21条件培养基发生趋化迁移的能力较后者明显增强(P0.000009)。
     2.经基因修饰表达CCR7的CWR和LNCaP细胞株响应CCL21条件培养基进行趋化迁移的能力增强,并且这一现象可被抗-CCL21单克隆抗体拮抗。CCL21条件培养基刺激CWR/CCR7+细胞早期,其作用机制可能与激活促进存活的PI3K/Akt信号通路及NF-κB转录原件相关。
     结论
     上述结果提示,基质细胞来源的VEGF-C能引起肿瘤边缘功能性淋巴管新生,为前列腺癌转移提供途径。CCR7/CCL21作用在前列腺癌细胞上调,为肿瘤细胞经淋巴系统向局部淋巴结定向迁移提供趋化吸引信号。前列腺癌细胞在淋巴结的富集后经体内循环系统向远处转移与CXCR4受体上调有关。
Background
     Metastasis is the main cause of cancer mortality, including prostate cancer. Recent reports suggested a direct role of the lymphatic system in the tumor spread not only to loco-regional lymph nodes but also to distant organs. Preliminary findings from our group suggest that a preferred route of prostate cancer dissemination is via lymphatic vessels to the regional lymph nodes (LN), which in turn provide a reservoir for subsequent spread to distal vital organs. Vascular Endothelial Growth Factor sub-family member C, VEGF-C, has been demonstrated to play a dominant role in lymphatic vessels formation and thus facilitating tumor cells metastasizing to lymph nodes. Chemokine-receptor axis has been suggested helping drain tumor cells escaping to certain organs.
     Objectives
     Our first aim is to build a lymphatic metastasis model of prostate cancer by modulating lymphangiogenesis in the stroma. The secondary aim is to demonstrate the CCR7/CCL21 chemokine-receptor axis as the guidance signal in lymph node metastasis of prostate cancer.
     Methods
     1. In order to determine the role of stromal cell secreted VEGF-C in prostate tumor dissemination, we generated a recombinant human prostate xenograft model composed of Renilla luciferase (RL)-expressing LAPC-9 human prostate tumor cells accompanied with murine NIH 3T3 stromal cells that overexpressing human VEGF-C (hVEGF-C). The genetic modulation of both the tumor and stromal cells was accomplished by lentiviral vectors, and the lentivirus expresses only the Gfp gene was used as control. The LAPC-9/3T3 tumor-stroma combined xenografts model was established subcutaneously in severe combined immunodeficiency (SCID) mouse. Optical CCD imaging of RL was employed to monitor tumor growth and dissemination in vivo and ex vivo. Expression and secretion of chemokines and receptors by primary tumor and tumor metastases were determined by quantitative real-time polymerase chain reaction (real time RT-PCR), immunohistochemical staining and western blot assay, respectively.
     2. To refine our model system, we employed prostate cancer cell lines CWR22Rvl (CWR) and LNCaP as in vitro models, which were marked as highly expressing human CCR7 with CMV-CCR7-IRES-GFP lentiviruses. An adeno-CCL21 vector (Ad-CCL21) was used to generate the medium containing CCL21 for chemokine-receptor interaction study. The assays of gene profiles and protein production alterations were carried out using real time RT-PCR and western blot. Chemotaxis assay was performed to test the chemotactic activity of CCR7+prostate cancer cells.
     Results
     1. The LAPC-9/3T3-hVEGF-C tumors exhibited abundant peritumeral lymphatic vessels promoting regional LN metastases and lung metastasis with detectable luciferase signals, at an incidence of 4/6 animals in the cohort. Conversely, the LAPC-9/3T3-GFP control tumors displayed negligible metastatic potential in 0/6 mice. The expression of a selected set of metastasis-related genes between these 2 tumor samples were analyzed and compared by real time RT-PCR. We observed a consistent elevation of hVegfr-3, hMmp9, Ccr7 and Ccl21in the nodal metastatic lesion, and Cxcr4 in lung metastasis lesion. Moreover, we isolated and expanded the primary and LN metastatic lesions and propagated as subcutaneous tumors in SCID mice to profile their gene expression. We observed a consistent up-regulation of C-C chemokine receptor 7 (CCR7) (11.62 folds, P=0.0007) and its cognate ligand CCL21 (11.37 folds, P=0.001) at the gene expression level in the LN lesions over primary tumors, which were confirmed by immunohistochemical staining of LN and tumor sections. Furthermore, the disrupted single tumor cell derived from the LN metastases with higher expression of CCR7 responded more robustly to chemotactic attraction of CCL21 in an in vitro migration assay as compared to control primary tumor cells lacking CCR7 upregulation (P= 0.000009).
     2. The gene modified CWR and LNCaP cells chemotactically responded to Ad-CCL21 arose conditioned medium (CCL21-CM), and the chemotaxis pattern could be impaired by the anti-CCL21 antibody. The CCL21-CM also caused the activation of prosurvival PI3K/Akt signaling pathway and NF-κB.
     Conclusions
     Our findings suggest that, stromal VEGF-C expression induced lymphangiogenesis and functional lymphatics that provide an escape route for the prostate tumor cells. And the nodal enrichment possibly induced the metastasis to lung by the upregulation of CXCR4 in prostate tumor cells. Moreover, the CCR7/CCL21 axis upregulated in the prostate tumor cells likely provided a chemotactic guidance aiding the tumor cells to navigate to regional lymph nodes through the lymphatics.
引文
1. Jemal, A., et al., Cancer Statistics,2009. CA Cancer J Clin,2009.59:p.26.
    2. Riethdorf, S., H. Wikman, and K. Pantel, Review:Biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer,2008.123:p. 1991-2006.
    3. Clarke, N.W., C.A. Hart, and M.D. Brown, Molecular mechanisms of metastasis in prostate cancer. Asian J Androl,2009.11:p.57-67.
    4. Wegiel, B., et al., Molecular Pathways in the Progression of Hormone-Independent and Metastatic Prostate Cancer. Current Cancer Drug Tar.,2010.10(4):p.392-401
    5. Wong, S.Y., et al., Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res.,2005.65(21):p.9789-98.
    6. Matsuda, K., et al., Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem Biophys Res Commun.,2010.394(4):p. 947-54.
    7. Vecchiarelli-Federico, L.M., et al., Vascular endothelial growth factor-a positive and negative regulator of tumor growth. Cancer Res.,2010.70(3):p.863-7.
    8. Santos, A.F., et al., Angiogenesis:an improved in vitro biological system and automated image-based workflow to aid identification and characterization of angiogenesis and angiogenic modulators. Assay Drug Dev Technol.,2008.6(5):p. 693-710.
    9. Abdollahi, A. and J. Folkman, Evading tumor evasion:current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat.,2010.13(1-2): p.16-28.
    10. Gerber, P.A., et al., Chemokines in tumor-associated angiogenesis. Biol Chem., 2009.390(12):p.1213-23.
    11.Verbeke, H., et al., Expression of angiostatic platelet factor-4var/CXCL4L1 counterbalances angiogenic impulses of vascular endothelial growth factor, interleukin-8/CXCL8, and stromal cell-derived factor 1/CXCL12 in esophageal and colorectal cancer. Hum Pathol.,2010.
    12. Rossi, D. and A. Zlotnik, The Biology of Chemokines and Their Receptors. Annu. Rev. Immunol.,2000.18:p.217-242.
    13. Achen, M.G., B.K. McColl, and S.A. Stacker, Focus on lymphangiogenesis in tumor metastasis. Cancer Cell,2005.7(2):p.121-7.
    14. Alitalo, K. and P. Carmeliet, Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell.,2002.1(3):p.219-27.
    15. Ishii, H., et al., Primary tumor induces sentinel lymph node lymphangiogenesis in oral squamous cell carcinoma. Oral Oncol.,2010.
    16. Ribatti, D., et al., Podoplanin and LYVE-1 expression in lymphatic vessels of human neuroblastoma. J Neurooncol.,2010.
    17. He, Y., et al., Preexisting Lymphatic Endothelium but not Endothelial Progenitor Cells Are Essential for Tumor Lymphangiogenesis and Lymphatic Metastasis. Cancer Res.,2004.64:p.3737-3740.
    18. Witte, M.H., et al., Structure function relationships in the lymphatic system and implications for cancer biology. Cancer Metastasis Rev,2006.25:p.159-184.
    19. Roma, A.A., et al., Peritumoral lymphatic invasion is associated with regional lymph node metastases in prostate adenocarcinoma. Modern Pathology,2006.19:p. 392-398.
    20. Liang, P., et al., Prognostic Significance of Immunohistochemically Detected Blood and Lymphatic Vessel Invasion in Colorectal Carcinoma:Its Impact on Prognosis. Annals of Surgical Oncology,2006.14(2):p.470-477.
    21. Leong, S.P., Paradigm of metastasis for melanoma and breast cancer based on the sentinel lymph node experience. Ann Surg Oncol.,2004.11(3 Suppl):p.192S-7S.
    22. Shah, S. and E. Small, Emerging biological observations in prostate cancer. Expert Rev Anticancer Ther.,2010.10(1):p.89-101.
    23. McMahon, C.J., N.M. Rofsky, and I. Pedrosa, Lymphatic metastases from pelvic tumors:anatomic classification, characterization, and staging. Radiology,2010. 254(1):p.31-46.
    24. Zeng, Y., et al., Lymphatic vessel density and lymph node metastasis in prostate cancer. Prostate,2005.65(3):p.222-30.
    25. Zeng, Y., et al., Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin Cancer Res.,2004.10(15):p.5137-44.
    26. Skobe M, H.T., Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M., Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med.,2001.7(2):p.192-8.
    27. Achen MG, J.M., Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA., Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flkl) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A., 1998.95(2):p.548-53.
    28. Stacker, S.A., et al., VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med.,2001.7(2):p.186-91.
    29.Li, R., et al., Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in human prostate. Prostate,2004.58(2):p.193-9.
    30.Jennbacken, K., et al., Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate,2005.65(2):p.110-6.
    31.Tuomela, J., et al., Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors. BMC Cancer,2009.9:p.362.
    32. Issa, A., et al., Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res,2009. 69(1):p.349-57.
    33. Takeuchi, H., M. Kitajima, and Y. Kitagawa, Sentinel lymph node as a target of molecular diagnosis of lymphatic micrometastasis and local immunoresponse to malignant cells. Cancer Sci.,2008.99(3):p.441-50.
    34. Ruddell, A., et al., p19/Arf and p53 suppress sentinel lymph node lymphangiogenesis and carcinoma metastasis. Oncogene,2008.27(22):p.3145-55.
    35. Cunha, G.R., et al., Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer.,2003.107(1):p.1-10.
    36. Zlotnik, A., Chemokines in neoplastic progression. Semin Cancer Biol,2004.14:p. 181-185.
    37. Ben-Baruch, A., The multifaceted roles of chemokines in malignancy. Cancer Metast Rev,2006(25):p.357-371.
    38. Moore, M.A., The role of chemoattraction in cancer metastases. Bioessays,2001. 23(8):p.674-6.
    39. Vindrieux, D., P. Escobar, and G. Lazennec, Emerging roles of chemokines in prostate cancer. Endocrine-Related Cancer,2009(16):p.11.
    40. Zlotnik, A., Chemokines and cancer. Int. J. Cancer,2006.119:p.2026-2029.
    41. Raman, D., et al., Role of chemokines in tumor growth. Cancer Lett,2007.256:p. 137-165.
    42. Mburu, Y.K., et al., CCR7 Mediates Inflammation-Associated Tumor Progression. Immunol Res,2006.36(1-3):p.61-72.
    43. Balkwill, F., Cancer and the chemokine network. Nat Rev Cancer,2004.4(7):p. 540-50.
    44. Forster, R., A.C. Davalos-Misslitz, and A. Rot, CCR7 and its ligands:balancing immunity and tolerance. Nat Rev Immunol.,2008.8(5):p.362-71.
    45. Takeuchi, H., et al., CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res.,2004.10(7):p.2351-8.
    46. Sharma, S., et al., Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol.,2000.164(9):p.4558-63.
    47. Miiller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature,2001.410:p.50-56.
    48. Wang, J., et al., Expression Pattern of Chemokine Receptor 6 (CCR6) and CCR7 in Squamous Cell Carcinoma of the Head and Neck Identifies a Novel Metastatic Phenotype. Cancer Res,2004.64:p.1861-1866.
    49. Mashino, K., et al., Expression of Chemokine Receptor CCR7 Is Associated with Lymph Node Metastasis of Gastric Carcinoma. Cancer Res,2002.62:p.2937-2941.
    50. Shields, J.D., et al., Chemokine-mediated migration of melanoma cells towards lymphatics-a mechanism contributing to metastasis. Oncogene,2007.26:p. 2997-3005.
    51. Cabioglu, N., et al., CCR7 and CXCR4 as Novel Biomarkers Predicting Axillary Lymph Node Metastasis in T1 Breast Cancer. Clin Cancer Res,2005.11(16):p. 5686-5693.
    52. Ding, Y., et al., Association of CC Chemokine Receptor 7 with Lymph Node Metastasis of Esophageal Squamous Cell CarcinomaClin Cancer Res. Clin Cancer Res,2003.9:p.3406-3412.
    53. Kodama, J., et al., Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Annals of Oncology,2007.18: p.70-76.
    54. Gunther, K., et al., Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int. J. Cancer,2005.116:p.726-733.
    55. TAKANAMI, I., OVEREXPRESSION OF CCR7 mRNA IN NONSMALL CELL LUNG CANCER:CORRELATION WITH LYMPH NODE METASTASIS. Int. J. Cancer,2003.105:p.186-189.
    56. Wagner, P.L., et al., The Chemokine Receptors CXCR4 and CCR7 are Associated with Tumor Size and Pathologic Indicators of Tumor Aggressiveness in Papillary Thyroid Carcinoma. Annals of Surgical Oncology 2008.15(10):p.2833-2841.
    57. ISHIDA, K., et al., High CCR7 mRNA expression of cancer cells is associated with lymph node involvement in patients with esophageal squamous cell carcinoma. Int J Oncol,2009.34:p.915-922.
    58. ARIGAMI, T., et al., CCR7 and CXCR4 expression predicts lymph node status including micrometastasis in gastric cancer. Int J Oncol,2009.35:p.19-24.
    59. Nakata, B., et al., Chemokine Receptor CCR7 Expression Correlates with Lymph Node Metastasis in Pancreatic Cancer. ONCOLOGY-BASEL,2008.74 p.69-75.
    60. Liu, Y., et al., Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. J EXP CLIN CANC RES,2010.29:p.16-25.
    61.Ueda, M., et al., Expression of CC-chemokine receptor 7 (CCR7) and CXC-chemokine receptor 4 (CXCR4) in head and neck squamous cell carcinoma. Auris Nasus Larynx,2010.37:p.488-495.
    62. Struckmann, K., et al., pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol.,2008. 214(4):p.464-71.
    63.Zlotnik, A., New insights on the role of CXCR4 in cancer metastasis. J Pathol.,2008. 215:p.211-213.
    64. Nathanson, S.D., Insights into the mechanisms of lymph node metastasis. Cancer., 2003.98(2):p.413-23.
    65. Stacker, S.A., et al., Lymphangiogenesis and cancer metastasis. Nat Rev Cancer, 2002.2(8):p.573-83.
    66. Pepper, M.S., Lymphangiogenesis and tumor metastasis:myth or reality? Clin Cancer Res.,2001.7(3):p.462-8.
    67. Burton, J.B., et al., Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res.,2008.68(19):p.7828-37.
    68. Brakenhielm, E., et al., Modulating metastasis by a lymphangiogenic switch in prostate cancer. Int J Cancer,2007.121(10):p.2153-61.
    69. Joukov V, et al., A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J., 1996.15(7):p.1751-1760.
    70. Joukov, V., et al., Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J.,1997.16(13):p.3898-911.
    71. Veikkola, T., et al., Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res.,2000.60(2):p.203-12.
    72. Roehl, K.A., et al., Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients:long-term results. J Urol.,2004.172(3):p.910-4.
    73. Epstein, J.I., et al., Adenocarcinoma of the prostate invading the seminal vesicle: prognostic stratification based on pathologic parameters. Urology,2000.56(2):p. 283-8.
    74. Hull, G.W., et al., Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol.,2002.167(2 Pt 1):p.528-34.
    75. Catalona, W.J., D.R. Miller, and L.R. Kavoussi, Intermediate-term survival results in clinically understaged prostate cancer patients following radical prostatectomy. J Urol.,1988.140(3):p.540-3.
    76. deKernion, J.B., et al., Prognosis of patients with stage D1 prostate carcinoma following radical prostatectomy with and without early endocrine therapy. J Urol., 1990.144(3):p.700-3.
    77. Burton, J.B., et al., Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat Med.,2008.14(8):p.882-8.
    78. Yang, F., et al., Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res.,2005.65(19):p. 8887-95.
    79. Barry, S.C., et al., Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther.,2001.12(9):p.1103-8.
    80. Ray, P., et al., Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res.,2004.64(4):p.1323-30.
    81. Klein, K.A., et al., Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med.,1997.3(4):p.402-8.
    82. Bhaumik, S. and S.S. Gambhir, Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A.,2002.99(1):p.377-82.
    83. Varghese, H.J., et al., Activated ras regulates the proliferation/apoptosis balance and early survival of developing micrometastases. Cancer Res.,2002.62(3):p. 887-91.
    84. Morizono, K., et al., Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med.,2005.11(3):p.346-52.
    85. Dull, T., et al., A third-generation lentivirus vector with a conditional packaging system. J Virol.,1998.72(11):p.8463-71.
    86. Mail, K.T., et al., A simple technique for calculation of the volume of prostatic adenocarcinomas in radical prostatectomy specimens. Pathol Res Pract.,2003. 199(9):p.599-604.
    87. Wiley, H.E., et al., Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst.,2001.93(21):p.1638-43.
    88. Wang, J., et al., Autocrine and paracrine chemokine receptor 7 activation in head and neck cancer:implications for therapy. J Natl Cancer Inst.,2008 100(7):p. 502-12.
    89. Heresi, G.A., et al., Expression of the chemokine receptor CCR7 in prostate cancer presenting with generalized lymphadenopathy:Report of a case, review of the literature, and analysis of chemokine receptor expression. UROL ONCOL-SEMIN ORI,2005.23:p.261-267.
    90. Lochter, A., Z. Werb, and M.J. Bissell, Transcriptional regulation of stromelysin-1 gene expression is altered during progression of mouse mammary epithelial cells from functionally normal to malignant. Matrix Biol.,1999.18(5):p.455-67.
    [1]Wang Z.Q., Lou Y. J.,2004. Proliferation-stimulating effects of icaritin and desmethylicaritin in MCF-7 cells. Eur. J. Pharmacol.504,147-153.
    [2]Liu J., Lou Y.J.,2004. Determination of icariin and metabolites in rat serum by capillary zone electrophoresis:rat pharmacokinetic studies after administration of icariin. J. Pharm. Biomed. Anal.36,365-370.
    [3]Ye H.Y., Lou Y.J.,2005. Estrogenic effects of two derivatives of icariin on human breast cancer MCF-7 cells. Phytomedicine 12,735-741
    [4]Santti R., Makela S., Strauss L., Korkman J., Kostian M.L.,1998. Phytoestrogens: potential endocrine disruptors in males. Toxicol. Ind. Health.14,223-237.
    [5]Linja M.J., Savinainen K.J., Tammela T.L., Isola J.J., Visakorpi T.,2003. Expression of ERa and ERβ in Prostate Cancer. Prostate.55,180-186.
    [6]K. Lau, M. LaSpina, J. Long, S. Ho. Expression of estrogen receptor (ER)-a and (ER)β in normal and malignant prostatic epithelial cells:regulation by methylation and involvement in growth regulation. Cancer Res. (2000):60:3175-3782.
    [7]Stevens J.F., Page J.E.,2004. Xanthohumol and related prenylflavonoids from hops and beer:to your good health! Phytochemistry.65,1317-1330.
    [8]Yim D., Singh R.P., Agarwal C., Lee S., Chi H., Agarwal R.,2005. A novel anticancer agent, decursin, induces Gl arrest and apoptosis in human prostate carcinoma cells. Cancer Res.65,1035-1044.
    [9]Yang R.M., Naitoh J., Murphy M., Wang H.J., Phillipson J., deKernion J.B., Loda M., Reiter R.E.,1998. Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J. Urol.159,941-945.
    [10]Freedland S.J., deGregorio F., Sacoolidge J.C., Elshimali Y.I., Csathy G.S., Dorey F., Reiter R.E., Aronson W.J.,2003. Preoperative p27 status is an independent predictor of prostate specific antigen failure following radical prostatectomy. J. Urol.169,1325-1330.
    [11]Huang Y.T., Chueh S.C., Teng C.M., Guh J.H.,2004. Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem. Pharmacol.67,727-733.
    1. A.J.R. Siegel, E. Ward, Y. Hao, J. Xu, M. J. Thun. Cancer Statistics,2009. CA Cancer J Clin 2009;59;225-249
    2. Zhihong Gong, Ilir Agalliu, Daniel W. Lin, Janet L. Stanford, Alan R. Kristal. Obesity Is Associated With Increased Risks of Prostate Cancer Metastasis and Death After Initial Cancer Diagnosis in Middle-aged Men. Cancer 2007; 109:1192-202.
    3. Eddy S. Leman, Grant W. Cannon, Bruce J. Trock, Lori J. Sokoll, Daniel W. Chan, Leslie Mangold, Alan W. Partin, Robert H. Getzenberg. EPCA-2:A Highly Specific Serum Marker for Prostate Cancer. UROLOGY 2007; 69:714-720.
    4. Marco Bisoffi, Christopher M. Heaphy, Jeffrey K. Griffith. Telomeres:Prognostic markers for solid tumors. Int. J. Cancer 2006;119:2255-2260.
    5. CALEB M. BAILEY, ZHILA KHALKHALI-ELLIS, ELISABETH A. SEFTOR, MARY J.C. HENDRIX. Biological Functions of Maspin. JOURNAL OF CELLULAR PHYSIOLOGY 2006;209:617-624.
    6.郑树。结直肠基础研究与临床实践。人民卫生出版社,2006年。
    7. Jun-Li Luo, Wei Tan, Jill M. Ricono, Olexandr Korchynskyi, Ming Zhang, Steven L. Gonias, David A. Cheresh, Michael Karinl. Nuclear cytokine-activated IKKa controls prostate cancer metastasis by repressing Maspin. Nature 2007; 446(7136):690-4.
    8. Shahrokh F. Shariat, Claus G Roehrborn, John D. McConnell, Sangtae Park, Nina Alam, Thomas M. Wheeler, Kevin M. Slawin. Association of the Circulating Levels of the Urokinase System of Plasminogen Activation With the Presence of Prostate Cancer and Invasion, Progression, and Metastasis. J Clin Oncol 2007;25:349-355.
    9. Alvin Y. Liu, Martine P. Roudier, Lawrence D. True. Heterogeneity in Primary and Metastatic Prostate Cancer as Defined by Cell Surface CD Profile. Am JPathol 2004, 165:1543-1556.
    10. Jia-Chi Wang, Louis R. Begin, Nathalie G Berube, Simone Chevalier, Armen G Aprikian, Henriette Gourdeau, Mario Chevrette. Down-Regulation of CD9 Expression during Prostate Carcinoma Progression Is Associatedwith CD9 mRNAModifications. Clin Cancer Res 2007;13(8):2354-2361.
    11. Ata Ghavidel, Gerard Cagney, Andrew Emili. A Skeleton of the Human Protein Interactome. Cell 2005;122(6):830-2.
    12. Frederic Rousseau and Joost Schymkowitz. A systems biology perspective on protein structural dynamics and signal transduction. Current Opinion in Structural Biology 2005,15:23-30.
    13. Daniel Figeys. Combining different'omics'technologies to map and validate protein-protein interactions in humans. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2004;2(4):357-365.
    14. Lan Chun Tu, Xiaowei Yan, Leroy Hood, Biaoyang Lin. Proteomics Analysis of the Interactome of N-myc Downstream Regulated Gene 1 and Its Interactions with the Androgen Response Program in Prostate Cancer Cells. Molecular & Cellular Proteomics 2007;6:575-588.
    15. Kovacevic Z, Richardson DR. The metastasis suppressor, Ndrg-1:a new ally in the fight against cancer. Carcinogenesis 2006;27(12):2355-66.
    16. Swanson GP, Thompson IM, Basler J. Current status of lymph node-positive prostate cancer:Incidence and predictors of outcome. Cancer 2006 Aug;107(3):439-50.
    17. Marc A Dall'Era, Lawrence D True, Andrew F Siege, Michael P Porter, Tracy M Sherertz, Alvin Y Liu. Differential expression of CD10 in prostate cancer and its clinical implication. BMC Urology 2007;7:3.
    18. Makoto Sumitomo, Ruoqian Shen, Marc Walburg, Jie Dai, Yiping Geng, Daniel Navarro, Guy Boileau, Christos N. Papandreou, Filippo G. Giancotti, Beatrice Knudsen, David M. Nanus. Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling. J. Clin. Invest. 2000;106:1399-1407.
    19. Pamela L. Paris, Matthias D. Hofer, Giancarlo Albo, Rainer Kuefer, Juergen E. Gschwend, Richard E. Hautmannb, Jane Fridyland, Jeffrey Simko, Peter R. Carroll, Mark A. Rubiny, Colin Collins. Genomic Profiling of Hormone-Nai(?)ve Lymph Node Metastases in Patients with Prostate Cancer. Neoplasia 2006;8:1083-1089.
    20. Alberto Briganti, Felix K.-H. Chun, Andrea Salonia, Andrea Gallina, Giuseppe Zanni, Vincenzo Scattoni, Luc Valiquette, Patrizio Rigatti, Francesco Montorsi, Pierre I. Karakiewicz. Critical Assessment of Ideal Nodal Yield at Pelvic Lymphadenectomy to Accurately Diagnose Prostate Cancer Nodal Metastasis in Patients Undergoing Radical Retropubic Prostatectomy. UROLOGY 2007;69: 147-151.
    21. Sunny Y. Wong, Herbert Haack, Denise Crowley, Marc Barry, Roderick T. Bronson, Richard O. Hynes. Tumor-Secreted Vascular Endothelial Growth Factor-C Is Necessary for Prostate Cancer Lymphangiogenesis, but Lymphangiogenesis Is Unnecessary for Lymph Node Metastasis. Cancer Res 2005; 65(21):9789-98.
    22. Giacomo Azzali. Tumor Cell Transendothelial Passage in the Absorbing Lymphatic Vessel of Transgenic Adenocarcinoma Mouse Prostate. Am J Pathol 2007;170:334-346.
    23. Charles J. Dimitroff, Mirna Lechpammer, Denise Long-Woodward, Jeffery L. Kutok. Rolling of Human Bone-Metastatic Prostate Tumor Cells on Human Bone Marrow Endothelium under Shear Flow Is Mediated by E-Selectin. CANCER RESEARCH 2004;64:5261-5269.
    24. Marco Bisoffi, Christopher M. Heaphy, Jeffrey K. Griffith. Telomeres:Prognostic markers for solid tumors. Int. J. Cancer 2006;119:2255-2260.
    25. Justin M. Drake, Curtis L. Gabriel, Michael D. Henry. Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Cin Exp Metastasis 2005;22:674-684.
    26. D Wu, H E Zhau, W-C Huang, S Iqbal, FK Habib, O Sartor, L Cvitanovic, F F Marshall, Z Xu, LWK Chung. cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression:implication in human prostate cancer bone metastasis. Oncogene 2007;1-8.
    27. Green MM, Hiley CT, Shanks JH, Bottomley IC, West CM, Cowan RA, Stratford IJ. Expression of vascular endothelial growth factor (VEGF) in locally invasive prostate cancer is prognostic for radiotherapy outcome. Int J Radiat Oncol Biol Phys. 2007;67(1):84-90.
    28. Jin Gao, Rachael L. Collard, Loan Bui, Adrian C. Herington, David L. Nico, Judith A. Clements. Kallikrein 4 Is a Potential Mediator of Cellular Interactions Between Cancer Cells and Osteoblasts in Metastatic Prostate Cancer. Prostate 2007;67:348-360.
    29. Michael Lein, Manfred Wirth, Kurt Miller, Hans-Udo Eickenberg, Lothar WeiBbach, Katja Schmidt, Ulrike Haus, Carsten Stephan, Sven Meissner, Stefan A. Loening, Klaus Jung. Serial Markers of Bone Turnover in Men with Metastatic Prostate Cancer Treated with Zoledronic Acid for Detection of Bone Metastases Progression. Eur Urol.2007.
    30. A. Kajdacsy-Balla J. M. Geynisman V. Macias S. Setty N. M. Nanaji (?) J. J. Berman K. Dobbin, J. Melamed, X. Kong, M. Bosland, J. Orenstein, J. Bayerl, M. J. Becich, R. Dhir, M. W. Datta, The Cooperative Prostate Cancer Tissue Resource. Practical aspects of planning, building, and interpreting tissue microarrays: The Cooperative Prostate Cancer Tissue Resource experience. J Mol Hist 2007;38(2):113-21.
    31. Hamilto Yamamoto, R. Daniel Bonfil, Christoph Wiesner, Sanaa Nabha, Zhong Dong, Hong Meng, Allen Saliganan, Aaron Sabbota, Sreenivasa R. Chinni, Michael L. Cher. Quantitative Assessment of Small Intraosseous Prostate Cancer Burden in SCID Mice Using Fluorescence Imaging. Prostate 2007;67:107-114.
    32. Chia-Ling Hsieh, Zhihui Xie, Jie Yu, W. David Martin, Milton W. Datta, Guang-Jer Wu, Leland W.K. Chung. Non-Invasive Bioluminescent Detection of Prostate Cancer Growth and Metastasis in a Bigenic Transgenic Mouse Model. Prostate 2007;67(7):685-91.
    33. Vincenzo Scattoni, Maria Picchio, Nazareno Suardi, Cristina Messa, Massimo Freschi, Marco Roscigno, Luigi Da Pozzo, Aldo Bocciardi, Patrizio Rigatti, Ferruccio Fazio. Detection of Lymph-Node Metastases with Integrated [11C]Choline PET/CT in Patients with PSA Failure after Radical Retropubic Prostatectomy: Results Confirmed by Open Pelvic-Retroperitoneal Lymphadenectomy. Eur Urol. 2007;[Epub ahead of print].
    34. Nesrine I. Affara, Lisa M. Coussens. IKKα at the Crossroads of Inflammation and Metastasis. Cell 2007;129(1):25-6.