损伤预应力钢筋混凝土介质中波的传播
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力钢筋混凝土结构在工程中得到了广泛的应用,混凝土组织构造的密实度、均匀性和组分变化,以及强度的高低,是否存在损伤或微裂纹,这些都将引起波传播路径、相位、波幅、传播时间、能量衰减以及频率成分发生变化,而接收波则综合携带了混凝土特性信息,可通过这些信息研究混凝土强度和损坏的程度。因此,在损伤的预应力钢筋混凝土结构中波传播理论的研究具有广泛的应用前景。
     局部损伤混凝土介质中的波的传播理论是本文研究的基础。求出了接收波位移的时域曲线;分析了各种损伤度,损伤位置,损伤区域大小对波幅,首波延时时间等的影响。通过分析可知损伤对波传播的影响较大。因此,在无损检测时,损伤是必须考虑的因素。
     伴随预应力混凝土结构中可能具有损伤,在其它外部因素作用下,混凝土结构内部也可能引起局部损伤,分析了预应力各种参数与波传播之间的定量关系。
     混凝土的损伤会同时引起材料的弹性和粘性的改变,本文利用弹性和粘性双参变量来描述损伤,建立了双参数损伤理论,更能准确地描述材料损伤程度和损伤后的材料性质。分析了粘弹性混凝土介质中损伤区域长度、损伤度等对波传播的影响,给出了它们的关系曲线。
     钢筋对波的传播路径、传播时间以及波幅均会产生较大的影响。本文分析了波在传播路径中的波形转换,在时域中对波型进行了叠加分析计算。进行了钢筋的直径大小,钢筋到探头的距离都对波形、波幅的定量影响分析。
     本文较全面地研究了预应力钢筋混凝土结构中各种因素对波传播的影响,系统地给出了各种影响因素与波形、波幅以及传播时间之间的定量关系,为无损检测的定量化反分析提供了可靠的依据。
The prestressed and reinforced concrete structures are used extensively in the engineering. The path, phase, amplitude, time, energy attenuation and frequency of wave propagation are changed by the consistency, uniformity, constituent, strength, damage and micro cracks etc. in the concrete structure. Because the characteristic information of concrete can be carried from the received wave, the strength and the damaged degree of concrete can be gained by studying this information. There are extensive prospects of application for the wave propagation theory in the prestressed and reinforced concrete structures.
    The theory of wave propagation in concrete media with local damage is the basis of the study in this paper. The time-displacement curve of the received wave is calculated. The strong influence of the degree, location and length of damage on the amplitude and the delaying time of the first wave are analyzed. Therefore, the damage is considered necessary in the nondestructive test of concrete structure.
    There may be damage in concrete structure when the prestress is loaded. The local damage may be produced in the interior of concrete structure by the other factors. The quantitative relationships between wave propagation and damage, prestress and other parameters are given.
    According to the experiment, the elasticity and viscosity can be changed by the damage in concrete media. A damage theory with double parameters is presented which use both elastic and viscous parameters as description of the damage, and the damaged degree and the materials properties in damaged concrete are exactly described by this theory. The influence of the damaged length and degree on the wave propagation is analyzed in the viscoelastic concrete media, and the corresponding influence curves are given.
    The influence of the reinforcing steel bar on the path, time and amplitude of the wave propagation are strong. The transformation of the form of wave in course of propagating is analyzed and the wave form is calculated by addition method. The quantitative influence relationships between the diameter of reinforcing steel bar, the distance (between reinforcing steel bar and the probe) and the amplitude of wave are analyzed.
    The influence of every factor in the prestressed and reinforced concrete structures on the wave propagation is studied in this paper. The quantitative relationships between every factors and form, amplitude, delaying time of the first wave are gained, the dependable basis is provided for further quantitative study of inversion and nondestructive test.
引文
[1] Gong Z, Nyborg E O, Oommen G. Aconstic emission monitoring of steel railroad bridges. Material Evaluation, 1992, 50(7):883-887
    [2] Wood R J. Cracks in concrete bridge. Concrete, 1983, 7:40-43
    [3] Hutton P H, Skorpik J R. Acoustic emission methods for flaw detection in steel highway bridges. Federal Highway Administration Report, 1978:78-98
    [4] Hopwood T. Acoustic emission, fatigue, and crack propagation. Kentucky Bureau of Highway, 1976,457
    [5] Dunegan Testing Group. Acoustic emission testing of buried pipeline. Dunegan Testing & Inspection, Houston: 1989
    [6] Dunegan Corporation. Acoustic emission monitoring of electroslag and Butt Welds on Dunbar bridge. West Virginia: 1985
    [7] 聂鹏,杨彬,鲍卫平.超声波在水泥混凝土路面评价中的应用.东北公路,1998,2
    [8] 赵明阶,徐蓉.超声波CT成像技术在大型桥梁基桩无损检测中的应用.重庆交通学院学报,2001,2
    [9] 杜红阳,周建群.超声波无损检测在混凝土工程桩上的应用.岩土工程界,2001,08
    [10] 童寿兴,张晓燕,金元.超声波首波相位反转法检测混凝土裂缝深度.建筑材料学报,1998,3
    [11] Chen H L, Cheng C T, Chen S E. Determination of fracture parameters of mortar and concrete beams by using acoustic emission. Materials Evaluation, 1992, 50(7):273-281
    [12] Hearn S W, Shield C K. Acoustic emission monitoring as a nondestructive testing technique in reinforced concrete. ACI Material Journal, 1997, 11:510-519
    [13] Kimura S, Adachi I, Hironaka Y, Ohtsu M. AE evaluation of concrete structures, progress in acoustic emission Ⅳ, The Japanese Society for NDI, 1988:350-358
    [14] Lim M K , Koo T K. Acoustic emission from reinforced concrete beams. Mag of Concrete Res, 1989, 41:229-234.
    [15] Lovass S. Acoustic emission of offshore structures: Attenuation: Noise; Crack Moniyoring. Journal of Acoustic Emission, 1985, 4:109
    [16] Maji A , Shah S P. Process zone and acoustic-emission measurement in concrete. Experimental Mechanics, 1988, 28(1):27-33
    [17] Maliszkiewicz P A. Acoustic emission possibilities of application to tests of concrete structures. 2nd Workshop on Bridge Engineering Research, 1990:99-102.
    [18] Matsuyama K T, Fujiwara A I ,shibashi. Ohtsu M. Field application of acoustic emission for
    
    diagnostic of structural deterioration of concrete. Journal of Acoustic Emission, 1993, 11 (4):65-73.
    [19] Ohtsu M. Determination of crack orientation by acoustic emission. Materials Evaluation, 1986,45(9): 1070-1075
    [20] Ohtsu M. Acoustic emission characteristics in concrete and diagnostic application. Journal of Acoustic Emission, 1987,6(2): 99-108
    [21] Ohtsu M. Crack propagation in concrete: linear elastic fracture mechanics and boundary element method. Theoretical and Applied Fracture Mechanics, 1988, 9(1): 55-60.
    [22] Ohtsu M, Okamoto T, Yuyama S. Moment tensor analysis of acoustic emission for cracking mechanisms in concrete. ACI Structural Journal, 1998, 3:87-95
    [23] Olivito R S, Surace L. The damage assessment of concrete structures by time-frequency distributions. Experimental Mechanics, 1997, 37(3):355-359
    [24] Ouyang C S, landis E, Shah S R Damage assessment in concrete using quantitative acoustic emission. Journal of Engineering Engineering Mechanics Division, 1991, 117(11): 2681-2698.
    [25] Umoto T. Application of acoustic emission to the field of concrete engineering. Journal of Acoustic Emission, 1987, 6(3): 137-144
    [26] Yuyama S, Imanaka T, Ohtsu M. Quantitative evaluation of microfracture due to disbonding by waveform analysis of acoustic emission. Journal of the Acoustical Society of America, 1994, 83(3):976-983
    [27] Yuyama S, Okamoto T, Nagataki S. Acoustic emission evaluation of structural integrity in repaired reinforced concrete beams. Materials Evaluation, 1994, 52(1):86-90
    [28] Yuyama S, Okamoto T, Shigeishi M. Acoustic emission generated in corners of reinforced concrete rigid frame under cyclic loading. Materials Evaluation, 1995a, 53(3):409-412.
    [29] Yuyama S, Okamoto T, Shigeishi M. Quantitative evaluation and visualization of cracking process in reinforced concrete by a moment tensor analysis of acoustic emission. Materials Evaluation, 1995b, 53(6): 751-756
    [30] Hawkins N M, McCabe W M, Nobuta Y. Use of acoustic emission to detect debonding of reinforcing bars in concrete. Progress in Acoustic Emission Ⅳ, The Japanese Society for NDT, 1988:342-349.
    [31] Li Z F, Zdunek A, Landis E, Shah S P. Application of acoustic emission technique to detection of reinforcing steel corrosion in concrete. ACI Material Journal, 1998, 1:68-76
    [32] Yoon D J, Weiss W J, Shah S. Assessing damage in corroded reinforced concrete using acoustic emission. Journal of Engineering Mechanics, 2000, 126(3):273
    [33] 李俊如,高建光,王耀辉.超声波检测混凝土裂缝及裂缝成因分析.岩土力学,2001,(3)
    
    
    [34] 商涛平,童寿兴.混凝土裂缝深度的超声波检测方法研究.无损检测,2002,(1)
    [35] 丁培幡.超声波无损检测对缺陷,微观组织和残余应力的测定.中国机械工程,1997,(3)
    [36] Pollock A A. Acoustic emission inspection. Physical Acoustic Corporation, Princeton: 1989
    [37] Rabotnov Y N. On the equations of state for creep. Progress in Applied Mechanics, 1963: 307—315
    [38] Jong Gye Shin, Dale G Karr. Propagation of continuum damage in nonlinear viscoelastic bar by finite difference method. ASME AMD, 1990, 109
    [39] Vallappan S, murit V, Zhang Wohua. Finite element analysis of anisotropic damage mechanics problems. Engng Fract Mech, 1990,35(6): 1061-1071
    [40] 张我华,金荑,陈云敏.损伤材料的动力响应特性.振动工程学报,1999,13(3):513—527
    [41] 王五平,宋人心,傅翔等.用超声波CT探测混凝土内部缺陷.水利水运工程学报,2003,(2)
    [42] 刘其伟,程跃辉,王建等.超声波无损检测的特点分析及其在混凝土缺陷评定中的应用.华东公路,2003,(4)
    [43] 秦晓光,武杰.超声波在矿井建设中的应用.煤矿开采,2002,(2)
    [44] 商涛平,童寿兴,王新友.混凝土表面损伤层厚度的超声波检测方法研究.2002,(9)
    [45] 王亚莉.超声波在已键结构非破损微破损检测中的应用.西南工学院学报,2002,(1)
    [46] 童寿兴,汪央,商涛平.钢-混凝土组合结构的超声波检测方法.建筑材料学报,2002,(04)
    [47] 陈士纯.超声波测试法在混凝土非局部损伤本构模型中的应用.武汉大学学报,2001,34(3):92-94
    [48] 于天来,肖生智,李亚平等.钢管混凝土超声波检测实验.东北林业大学学报,1997,(03)
    [49] 岳丹,王菊.混凝土框架梁内部缺陷的超声波检测及分析.东北煤炭技术,1999,(4)
    [50] 刘红桂,南金生,马建军等.用超声波无损检测技术检测混凝土的厚度.地震学刊,1998,(1)
    [51] 仝秋红.混凝土中超声波传播方式研究.中国公路学报,1998,(2)
    [52] 王登科.超声波检测钻孔桩混凝土质量的缺陷分析和判断.公路,1995,(9)
    [53] 朱灵芝.超声波混凝土检测仪的研究.煤矿开采,1996,(3)
    [54] 林维正,袁益镛,洪有根等.水泥混凝土路面质量的超声波无损检测.无损检测,1997,(05)
    [55] 张广明,马宏伟,王裕文.超声无损检测中的缺陷识别与噪声抑制.中国机械工程,1996,10(12):1389—1391
    [56] 马宏伟,杨桂通.结构损伤探测的基本方法和研究进展.力学进展,1999,(11)
    [57] 吴克成,蒋立强.弱正交异性材料残余应力测量的声弹性方法.固体力学学报,1991,12(3)
    [58] 徐博侯,王大钧.声波在无限大多层板上的反射和透射的准确解.固体力学学报,1991,
    
    12(3)
    [59] 赵明阶,徐荣.岩石损伤特性与强度的超声波速研究.岩土工程学报,2000,22(6)
    [60] Kelly S M, Hooshyar M A. The inverse problem for transversely isotropic media. Eisevier science publishers B.V, 1991,14
    [61] Wesolowski Z, Warsaw, Poland. Wave reflection on a continuous transition zone between two homogeneous materials. Acta Mechanica, 1994, 105:119—131
    [62] 程昌钧,陈显尧.粘弹性介质中逆散射问题的求解方法.力学季刊,2000,21(1)
    [63] 申爱琴,徐江萍.超声波法测定路用无机非金属材料力学性能的分析研究.西安公路交通大学学报,1998,18(3)
    [64] 夏勇,张振仁.分形维数在内燃机振动诊断中的应用.振动测试与诊断,2001,21(3)
    [65] Bindal Ashok Kumar V N.评定超声表面波探头性能的校准试块.无损检测,1987,9(8)
    [66] 杨恩臣.超声探头的声场测试.无损探伤,1987,1(2)
    [67] 闫鸣,刘宏华.钢管混凝土超声波检测.铁道技术监督,2001,(2)
    [68] 黄小广.超声波检测立井壁后注浆质量.焦作工学院学报,2000,(4)
    [69] 关洪光,李正利.管道纵向缺陷的超声波检测.山东电力技术,2000,(1)
    [70] Lemaitre J A .Course on Damage Mechanics. Spring-Verlag, 1992
    [71] Lemaitre J A, Chaboche J L. Mecanique des Materiaux Solides. Chap.7, Endommagement, Dunond, 1985
    [72] Krajcinovic D, Lemaitre J. Continuum Damage Mechanics. Theory and Applications, Spring-Verlag, 1987
    [73] Krajcinovic D. Damage Mechanics. Elsevier Science Publisers, North-Holland, 1996
    [74] 郑长卿,周利,张克实.金属韧性破坏的细观力学及其应用研究.国防工业出版社,1995
    [75] 楼志文.损伤力学基础.西安交通大学出版社,1991
    [76] 杨光松.损伤力学与复合材料损伤.国防工业出版社,1995
    [77] 谢和平.岩石,混凝土损伤力学.中国矿业大学出版社,1990
    [78] 曾攀.材料的概率疲劳损伤特性及现代结构分析原理.科学技术文献出版社,1993
    [79] Nemat-Nasser S ,Hori M. Micromechanics: Overall Properties of Heterogeneous Elastic Solids. Elsevier Science Publishers, North-Holland, 1993
    [80] 黄克智,余寿文,程莉.大变形与损伤力学.力学与实践,1989,11(2):1—6
    [81] 余寿文.固体力学发展的某些趋势—从损伤力学和薄膜力学谈起.固体力学发展趋势,北京理工大学出版社,1995:108—135
    [82] Kachanov L M. On the time to failure under creep condition. Izv, Akad, Nauk, USSR, Otd, Tekhn, Nauk. 1958,8:26—31
    [83] Kachanov L M. Introduction to Continuum Damage Mechanics. Martinus Nijhoff Publishers, Dordrecht. The Netherlands, 1986
    
    
    [84] Rabotnov Y N. Creep ruptures. Applied Mechanicsm, Proceedings of the Twelfth International Congress of Applied Mechanics, Standford-Springer-Verlag,1969:342-3495,
    [85] Pao Y H etal. Acoustoelasticity and Ultrasonic Measured of Residual Stresses. Phy Acoustics, 1984, ⅩⅦ: 61-143
    [86] 熊祝华,郭平.弹性动力学.长沙:湖南大学出版社,1989
    [87] 余同希.弹塑性波的研究与趋势.力学进展,1992,22(3):347—357
    [88] 马宏伟,杨桂通.结构损伤探测的基本方法和研究进展.力学进展,1999,25:513—527
    [89] 张培源,卢晓霞,严波等.初应力场的Rayleigh波.重庆大学学报.2000,23(4):64-67
    [90] Kazuyuki Sasaki, Yukio Lwashimizu, Osami Kobori. Strain-Induced Elastic Anisotropy Measured with Ultrasonic Waves. Transactions of the ASME, 1990,(57): 930-936
    [91] 逯静洲,林皋,王哲,肖诗云.混凝土经历三向受压荷载历史后强度劣化及超声波探伤方法的研究.工程力学,2002,19(5):52-57
    [92] 朱金颖,陈龙珠,严细水.混凝土受力状态下超声波传播特性研究.工程力学.1998,15(3):111-117.
    [93] 蔡四维,蔡敏.混凝土的损伤断裂.北京:人民交通出版社,1999
    [94] 惠荣炎,黄国兴,易冰若.混凝土的徐变.中国铁道出版社,1988
    [95] 杨挺青.粘弹性动力学.武汉:华中理工大学出版社,1990
    [96] 姜锡权.水泥沙浆静、动态力学行为及短纤维增强性能研究.中国科技大学博士学位论文,1996
    [97] 杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988
    [98] 李克明等.超声波探伤.电力工业出版社,1980
    [99] 吴慧敏.结构混凝土现场检测技术.长沙:湖南大学出版社,1988
    [100] Doyle J F. Determining the size and location of transverse cracks in beams. Experimental Mechnics, 1995,9:272-280
    [101] Gopalakrishnan S, Doyle J F. Spectral super-elements for wave propagation in structures with local nonuniformities. Computer Methods Appl Mech Engrg, 1995,121:77-90
    [102] Lakshmanan K A, Pines D J. Detecting crack size and location in composites rotorcraft flexbeams. Proceedings of SPIE, Smart Structures and Integrated System, 1997,3:383-392
    [103] Natke H G, Tomlinson G R, Yao J T P. Safty Evaluation Based on Identification Approaches. Berlin: Springer-Verlag, 1993
    [104] Doebling S W, Farrar C R, Prime M B. Summary review of vibration-based damage identification methods. Shock and Vibration Digest, 1998,30(2) :91-105
    [105] Farrar C R, Jauregui D A. Comparative study of damage identification algorithms applied to a bridge: I.Experiment. Smart Materials and Structures, 1998,7(5):704-719
    [106] Friswell M I.Penny J E T, Garvey S D. Combined genetic and eigensensitivity algorithm for
    
    the location of damage in structure. Computers and Structures,1998,69(5):547-556
    [107] Fritzen C P, Jennewein D, Kiefer T. Damage detection based on model updating methods. Mechanical Systems and Signal Processing, 1998,12(1): 163-186
    [108] Law S S, Shi Z Y, Zhang L M. Structural damage detection from incomplete and noisy modal test data. Journal of Engineering Mechanics,1998,124(11):1280-1288
    [109] Messina A, Williams E J, Contursi T. Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 1998,216(5):791-808
    [110] Oh B H,Jung B S. Structural damage assessment with combined data of static and modal tests. Jounal of Structural Engineering, 1998,124(8):956-965
    [111] Pines D J, Lovell P A. Conceptual framework of a remote wireless health monitoring system for large civil structures. Smart Materials and Structures,1998,7(5):627-636
    [112] Ramamurti V, Neogy S. Effect of cracks on the natural frequency of cantilevered plates---a Rayleigh-Ritz solution. Mechanics of Structures and Machines, 1998,26(2): 131-143
    [113] Rivola A, White P R. Bispectral analysis of the bilinear oscillator with application to the detection of fatigue cracks. Mechanics of Structures and Machines, 1998,216(5):889-910
    [114] Thyagarajan S K,Schulz M J,Pai P F ,Chung J. Detecting structural damage using frequency reponse functions. Journal of Sound and Vibration, 1998,210(1): 162-170
    [115] Banks H T, Smith R C, Zhang Y. Damage detection as inverse problems for distributed parameter systems: Computational approaches .International Journal of Applied Electromagnetics and Mechanics, 1997,8(1):61-76
    [116] Cattarius J, Inman D J. Time domain analysis for damage detection in smart structures. Mechanical Systems and Signal Processing, 1997, 11(3):409-423
    [117] Jenkins C H, Kjerengtroen L, Oestensen H. Sensitivity of parameter changes in structural damage detection .Shock and Vibration, 1997,4(1):27-37
    [118] Juneja V, Haftka R T, Cudney H H. Damage detection and damage detectability-analysis and experiments. Journal of Aerospace Engineering, 1997, 10(4): 135-142
    [119] PiRatcliffe C P. Damage detection using a modified LapLacian operator on mode shape data. Journal of Sound and Vibration, 1997,204(3):505-517
    [120] Wang Z, Lin R M, Lim M K. Structural damage detection using measured FRF data. Computer Methods in Applied Mechanics and Engineering, 1997,147(1-2): 187-197
    [121] Worden K. Structural fault diction using a novelty measure. Journal of Sound and Vibration, 1997,201:85-101
    [122] Zimmerman D C, Smith S W, Kim H M, Bartkowicz T J. An experimental study of structural health monitoring using incomplete measurements. Journal of Vibration and Acoustics.ASME, 1996, 118:543-550
    
    
    [123] Banks H T, Inman D J, Leo D J,Wang Y. An experimentally validated damage detection theory in smart structures. Journal of Sound and Vibration, 1996, 161:859-880
    [124] Doebling S W. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification,AIAA-Journal, 1996, 34(12):2615-2614
    [125] Kahl K,Sirkis J S. Damage detection in beam structures using subspace rotation algorithm with strain data. AIAA-Journal, 1996, 34(12) :2609-2614
    [126] 黄文虎,荣吉利,张嘉钟.空间飞行器故障探测技术的发展和展望.振动与冲击,1996,15(2):1-6
    [127] 同淑荣,张安华,皱艳,陈德元.机械故障探测的人工神经网络方法.机械科学与技术,1996,15(6):1020-1024
    [128] Chen H L, Spyrakos C C, Venkatesh G. Evaluating structural detectioration by dynamic reponse. Journal of Structural Engineering, ASCE, 1995, 121: 1197-1204
    [129] Kim J-T, Stubbs N. Model-uncertainty impact and damage-detection accuracy in plate girder. Journal of Structural Engineering, ASCE, 1995, 121: 1409-1417
    [130] Lew J-S. Using transfer function parameter change for damage detection of structures .AIAA Journal, 1995, 33:2189-2193
    [131] Liu P-L. Identification and damage detection of trusses using modal data. Journal of Structural Engineering, ASCE, 1995, 121:599-608
    [132] Pandey A K, Biswas M. Experimental verification of flexibility difference method for locating damage in structures. Journal of Sound and Vibration, 1995, 184:311-328
    [133] Lim T W, Kashangaki T A L. Structural damage detection of space truss structures using best achievable eigenvectors. AIAA journal, 1994, 32:1049-1057
    [134] Scjutze M, Doll H, Hildebrandt P. Review on an expert system under development ---Measurement techniques in civil engineering ---including structural assessment. Processing of 12th International Modal Analysis conference, 1994, 2: 1349-1355
    [135] Kim J-H, Jeon H-S, Lee C-W. Application of the modal assurance criteria for detecting structural faults. Proceedings of the 10th International Modal Analysis Conference, 1992, 1:536-540
    [136] Ricles J M, Kosmatka J B. Damage detection in elastic structures using vibratory residual forces and weighted sensitivity. AIAA journal, 1992,30:2310-2316
    [137] Yao G C,Chang K C, Lee G C. Damage diagnosis of steel frames using vibrational signature analysis. Journal of Engineering Mechanics, A SCE, 1992, 118:1949-1961
    [138] Hearn G, Testa R B. Modal analysis for damage detection in structures. Journal of Structural Engineering, ASCE, 1991, 117:3042-3063
    [139] Lim T W. Submatix approach to stiffness matrix correction using modal test data. AIAA
    
    journal, 1990, 28(6):1123-1130
    [140] Wei F S. Stiffness matrix correction from incomplete test data. AIAA journal, 1980, 18(10):1274-1275