装配式空心板桥铰缝受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
装配式空心板桥由于其预制、安装、施工工艺简单、工程造价较低,同时板桥具有建筑高度最小等优点,所以在中小跨径桥梁中得到广泛地应用。但从已建成桥梁的运营状况来看,也存在一些较为典型的病害。通过调研分析表明,影响空心板桥正常使用和结构安全最突出的问题是由于横向联系结构偏弱,单板刚度较低所造成的,而究其根源,空心板桥铰缝破坏是主要原因。空心板间铰缝处混凝土破碎、脱落、大面积渗漏,除引起梁本身破坏外,还可引起桥面铺装、伸缩装置、桥梁支座等的破坏,使桥面平整度降低,甚至出现桥面铺装拥起、破碎、脱落等现象。这不仅严重地影响了行车的舒适性,增加了行车的安全隐患,还大大降低了桥梁结构的整体承载力。
     本文通过调研分析和阅读大量的相关文献对空心板桥铰缝破坏的原因、一般特征及其危害性进行了探讨和研究。简要介绍了基于ABAQUS有限元方法分析空心板桥所涉及到的非线性理论及其处理办法,本文主要包括材料非线性和接触条件非线性,非线性材质采用Newton-Raphson方法来解决,接触条件非线性采用了满足Coulomb摩擦定律罚函数公式进行处理。铰缝中的混凝土和筋用ABAQUS有限元提供的混凝土塑性损伤模型和经典的金属塑性模型分别实现。
     建立实桥模型并与静载实验实测数据进行对比,由此验证了采用三维有限元程序ABAQUS6.8对考虑铺装层影响的空心板桥进行数值模拟和仿真研究是可行的、合理的和有效的,得到桥面板和铰缝的接触面采用滑动摩擦体系与实际相符。
     利用有限元程序ABAQUS6.8对有限元模型进行如下分析:
     (1)横向和纵向荷位对铰缝受力性能的影响,通过变化横向和纵向荷位,得到铰缝受力的最不利位置,并对不利荷载位置作用下的铰缝受力性能(包括沿纵向和跨中截面板高方向)进行深入细致的分析。
     (2)对不同跨径空心板桥进行对比分析,在相同荷载,相同作用位置其荷载横向分布系数也是不相同的,跨径越小,横向荷载分布系数越不均匀。同一编号的空心板桥纵向正应力随跨径增大而增大。从荷载传递率来看,随着跨径的增大,荷载传递率逐渐增大。
     (3)超载是对空心板桥铰缝结构各项指标中影响最大的因素,超载比例的增大会引起各项应力的增大,而且可能使铰缝混凝土的拉应力超过其抗拉强度,造成破坏。
     (4)摩阻系数跟桥面的粗糙程度、车辆的速度、车辆的轮胎样式等因素有关。通过改变摩阻系数实现水平荷载的变化,并对比分析其对铰缝结构应力及变形的影响,发现水平荷载对铰缝结构中沿桥跨纵向的应力影响很大。
     (5)沥青混凝土铺装层厚度改变对铰缝结构的各项应力影响较大,增加铺装层厚度将减小铰缝结构的纵向拉应力最大值,其余应力随着铺装层厚度增加,在10cm~12cm之前衰减幅度很大,之后衰减幅度逐渐减缓。其中剪应力衰减较大,当厚度由4cm增加到20cm时,剪应力衰减最大近90.4%。可见,增加铺装层厚度对于降低铰缝结构剪应力效果明显。
     (6)沥青混凝土弹性模量随外界气温变化和荷载作用时间的改变变化很大,分析证明沥青铺装层的模量变大时,各应力均呈减小状态,而且增加铺装层弹性模量对铰缝结构的剪应力影响较大。
     (7)当铺装层厚度一定时,桥面铺装材料采用刚性的筋混凝土和纤维混凝土对铰缝结构受力性能更为有利。
     (8)通过改变铰缝结构弹性模量模拟不同等级的铰缝混凝土,发现随着铰缝弹性模量增加,铰缝结构的最大正应力及剪应力都呈现单调增加趋势,铰缝的竖向位移减小。
     (9)铰缝结构泊松比的变化对铰缝的各应力及挠度影响不明显。
     (10)桥面板与铰缝结构的接触状态比较复杂,研究发现接触条件变化对铰缝剪应力影响较大,铰缝结构和桥面板之间的良好粘结,对铰缝结构的受力性能有利。
     (11)通过改变梁体密度,发现在跨径和截面相同的情况下,减轻自重,对铰缝结构受力性能有利。
     (12)对铰缝常见加固方案进行对比分析,发现施加横向预应力筋效果最好。其次是加粗铰缝筋,但是采用该方法加固时不容易施工,不过在设计中适当加粗筋对新建桥梁还是有现实意义的。再次是铰缝底部及顶部增加板的方案,这两种方案不仅加固效果明显,而且施工也方便。
     中小跨径装配式空心板桥在内蒙古地区应用十分广泛。不过从已建成桥梁的使用状况来看,铰缝破坏病害比较突出。故本论文研究成果将及时服务于正在蓬勃发展的西部地区中小跨径桥梁工程建设,对提高工程质量,保证空心板桥的结构安全度及耐久性,减轻高速公路养护阶段的工作量以及节省大量的养护资金,促进当地社会经济的发展,都具有迫切性和重要意义。
Fabricated concrete hollow slab bridges are applied widely in bridge engineering, because of its simple prefabrication and construction craft, lower cost and lowest construction height etc. However, some typical diseases have been found according to the operation condition of some bridges. Through analysis of research studies show that the most prominent problems that should impact the normal use of hollow slab and its structural safety are due to the weaker horizontal ties、the lower veneer stiffness, and the root reason of the damage of the bridges is the destroy of hinge joints. Hinge joints between hollow concrete slab broken off, large areas of leakage, it might cause the damage of beam itself, and also cause the damage of bridge deck, expansion join, and bearing, even though leading to the lower deck flatness, bridge deck over, broken off and so on. This is not only seriously affected the traffic comfortable, an increase the traffic safety problems, but also greatly reduce the bearing capacity of overall bridge.
     In this dissertation, a large number of relevant literatures and research analysis of the damaged reasons and the general characteristics for the hollow slab bridge hinge joints are discussed. The nonlinear theory and its approach are introduced to hollow slab bridge with ABAQUS finite element method. The article involved material nonlinearity and contact conditions nonlinearity,the non-linear material uses Newton-Raphson method to solve, the contact conditions use the penalty function formula of Coulomb friction law to deal with. The concrete damaged plasticity model and the classic plasticity metal models of ABAQUS finite element are provided for hinge joint concrete and steel respectively.
     Contrast the test results with the calculation results, hollow slab bridge numerical simulation is feasible, reasonable and effective for ABAQUS6.8. It is feasible for using sliding friction contact system to simulate the contact conditions of slab and hinge joints.
     With Finite Element Method ABAQUS6.8, the analysis is included:
     (1)For changing the transverse and longitudinal load positions. The most unfavorable position of loading was found. And the mechanical property of hinge joints has been analyzed under those unfavorable conditions.
     (2)Hollow slab bridges of different span are analyzed in the same load, The transverse distribution coefficient of the different length hollow slab is not the same, the smaller the span was, the greater the transverse distribution coefficient is. In the same number slab, the vertical stress increases with the span. As the span increasing, the load transfer rate was increasing gradually.
     (3)The effect of the overload is the biggest factor to hollow slab bridge, the overload proportion increasing can enlarge each stress, even lead to the hinge joints destroy because the tensile stress would surpass concrete tensile strength.
     (4)Friction coefficient is related to the bridge floor rough degree, vehicles speed, vehicle tyre style. The horizontal load equal to the vertical load multiplied the friction coefficient. In this dissertation we discuss the influence about stress and deformation of the hinge joints under the change horizontal loads. .
     (5)Thickness change of asphalt concrete pavement has a greater impact to the stress of hinge joints, increasing the thickness of pavement layer will reduce the maximum vertical tensile stress, and the remaining pavement thickness in 10cm ~ 12cm ,the stress decay rate is big, and then decay rate become gradually slower. Attenuation of shear stress in which is larger, when the thickness changed from 4cm to 20cm, the maximum shear stress decay nearly 90.4%. Obviously, increasing the thickness of pavement layer structure is effective method to reduce the shear stress of hinge joint.
     (6)Elastic modulus of asphalt concrete pavement will change greatly with the outside temperature and load period, with the elastic modulus of asphalt concrete pavement enlarging, all the stress are reduced, and increased elastic modulus of pavement impacts the shear stress largely in hinge joints structure.
     (7)When thickness of pavement is a certain, using rigid reinforced concrete and steel fiber concrete as the bridge deck pavement material have more favorable mechanical properties for the hinge joints structure.
     (8)The different grades of concrete is simulated by changing the elastic modulus of hinge joints, it is found in the study: with increasing elastic modulus, the greatest stress is increasing, the vertical displacement is decreasing.
     (9)The affect of stress and deflection in hinge joints structure are not obvious by changing Poisson’s ratio of hinge joints concrete .
     (10)The contact state is complex for bridge deck and hinge joints. It is found that the contact state is obviously effect for the shear stress of hinge joints. Improving the contact state, hinge joints structure will have favorable mechanical properties.
     (11)By changing the density of hollow slab bridge, It is showed that the favorable mechanical properties is obtained by reducing dead weight for hinge joints structure in the same span and cross-section cases.
     (12) The common programs of the hinge joints reinforcement were analyzed, it is found that exerting lateral tendons has the best affect, followed by bold steel hinge joints, but the first method is not easy to construction, using bold in design is appropriate to the newly building bridge. Secondly the program of increasing the steel plate at the bottom and at the top of the hinge joints was discussed, these two programs has effective reinforcement and convenient construction.
     Small and medium-span fabricated hollow slab bridge is widely used in China and Inner Mongolia province. However, when the bridge has been completed and operations, there are also some the more typical diseases of hinge joints. The research conclusion of the dissertation must be serving for the small and medium span bridge in the western region projects, improve the quality of the projects and ensure the structure safety and durability of the hollow slab bridge, reduce the workload of the highway conservation, as well as substantial saves conservation funds, and develop the promotion of local socio-economic. It is an immediate problem and has an important meaning.
引文
[1]姜云霞.不中断交通实施铰接板桥加固的研究[J].内蒙古公路与运输.2002,2:1~3
    [2]邓苗毅.基于静载试验的梁桥结构损伤系统识别研究[D].郑州:郑州大学硕士学位论文. 20 03:38
    [3]姚玲森.桥梁工程[M].北京:人民交通出版社,2001:32~37
    [4]谭洪河.装配式空心板梁桥桥面铺装纵向裂缝成因分析及防治措施研究[D].南宁:广西大学硕士学位论文.2006:1~5
    [5]徐辉.桥梁板结构优化试验研究[D].天津:天津大学硕士学位论文.2005:14~18
    [6]赵曼,王新敏,赵雅克.板梁桥“单板受力”的数值分析[J].中国安全科技学报.2004,11:252~258
    [7]秦禄生.重载条件下小跨径简支板桥的横向铰接能力分析[J].公路,2007,7:14~16
    [8]陈上钧.高速公路中小跨径桥梁单板受力分析及防治措施初步研究[D].重庆:重庆交通大学硕士学位论文.2006:3~8
    [9]赵慧芳.铰接板梁桥加固时单板受力原因及加固方法[J].交通科技与经济.2007,6 :26
    [10]曾智.混凝土桥梁铺装层受力分析和横向荷载分布系数计算[D].武汉:武汉理工大学硕士学位论文.2004,4:19
    [11]安井刚.公路桥梁“单板受力”现象浅析[J].交通世界,2004,6:64~65
    [12]霍德锋.浅析公路小桥涵单板受力成因与防治[J].黑龙江科技信息,2008,19:208
    [13]王砚桐.高等级公路中“单板受力”现象及原因分析[J].公路交通技术,2004,8:35~36.
    [14]董珍林.造成小桥涵单板受力病害的原因分析[J].青岛交通科技.2006,2:55
    [15]刘丹.公路桥梁铰缝破坏原因浅析与预防措施[J].邢台职业技术学院学报.2005,3:69~70
    [16]交通部公路科学研究所.“西部地区中小跨径适用桥梁型式的研究”技术响应书.交通部公路科学研究所,2003, 13~15
    [17]李占永.浅析桥涵单板受力原因及处治方法[J].交通科技与经济.2006,6:20~21
    [18]沙金.小议形成桥梁单板受力现象的原因[J].黑龙江科技信息.2007,14:220
    [19]李健,涂征宇.公路中小桥梁病害及处理方法[J].中南公路工程.1999,12:44~45
    [20]李长永.高性能预应力混凝土空心板整桥试验研究[D].郑州:华北水利水电学院硕士学位论文,2003:50~54
    [21]柴广,孙建民,郑杰.新型铰缝在重载交通道路桥梁设计中的应用[J].内蒙古公路与运输, 2005,4:20~22
    [22]陈保柱,薛幸伟.小桥涵“单板受力”原因及预防措施[J].科技信息(科学教研).2007(16):111
    [23]徐强,段新龙,刘胜松.装配式板(T梁)桥常见病害及对策[J].山东交通科技,2004,2:9~11
    [24]史建方.桥梁单板受力成因分析和防治对策[J].公路2004,10:71~73
    [25]庄茁,朱以文,肖金生,张帆等译.ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社.2004
    [26]高晖,ABAQUS在软基固结过程分析中的应用研究[D].武汉理工大学硕士学位论文,2006
    [27]杨曼娟,ABAQUS用户材料子程序开发及应用[D].武汉.华中科技大学硕士学位论文,2005
    [28]孙冰.预应力轻骨料混凝土组合板的试验研究及数值模拟[D].南华大学硕士学位论文,2005,5:39~46
    [29]杨桂通.弹塑性力学[M].北京:高等教育出版业,1980.
    [30]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1998.
    [31]过镇海.混凝土的强度和变形一试验基础和本构关系[J].北京:清华大学出版社,1997
    [32]郭建.粘法加固桥梁结构浅析[J].甘肃科技.2003,10:30~31
    [33]宋玉普.多种混凝土破坏准则和本构关系[M].北京:中国水利水电出版社,2002.
    [34]赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.
    [35] Lubliner J, J Oliver, S Oller, E. Onate. A Plastic-Damage Model for Concrete [J]. International Journal of Solids and Structures, 1989 25:299~329.
    [36] LeeJ, Fenves GL. Plastic-Damage Model for Cyclic Loading of Concrete Structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892~900.
    [37]陈洪涛,钟善桐,张素梅.管混凝土双重非线性分析[J].哈尔滨:哈尔滨建筑大学学报, 2001,34:32~35
    [38]朱伯龙,董振祥.筋混凝土非线性分析[M].上海:同济大学出版社,1985
    [39] 2Jones R and Swamy RN plate Separation and Anchorage of Reinforced Concrete Beams Strengthen by Epoxy-Bonded Steel plates The Structural Engineer, 1988, 66(5)
    [40]王海涛,亓路宽.-砼叠合梁接合部受力特性分析[C].第16届全国结构工程学术会议. 2007:10
    [41]戴巍伟.11.00R20载重子午胎结构非线性有限元分析[D].镇江:江苏大学硕士学位论文, 20 06:22~24
    [42] ABAQUS V6.8/CAE Use`s Manual
    [43] ABAQUS V6.8 Theory Manual
    [44]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社.2006
    [45]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社.2006
    [46]张军伟.预应力混凝土空心板桥桥面铺装层结构性能分析[D].郑州,郑州大学硕士学位论文,2007, 4
    [47]张云娜,施加横向体外预应力加固装配式空心板桥的研究[D]郑州:郑州大学硕士学位论文. 2007:2~6
    [48] Crisfield M A.Non-linear Finite Element Analysis of Solids and Structures.Vol.1, Wiley, New York, 1991
    [49]王国鼎.桥梁检测与加固[M].北京:人民交通出版社2003
    [50]彭彦忠.中小跨径预应力空心板桥铰缝加固处理方案的比选[C].第十四届全国结构工程学术会议.烟台.2005,9:389~392
    [51]崔建伟.桥面铺装结构性能数值仿真分析[D].郑州:郑州大学硕士学位论文.2005
    [52]徐翔宇.高速公路中小跨径桥梁单板受力分析.内蒙古公路与运输[J].2007,2:38~39
    [53]王佶,曾智.浅析桥梁荷载横向分布系数计算[J].国外建材科技.2004,6:109~110
    [54]赵久敏.混凝土桥梁桥面防水结构力学性能的有限元分析[D].呼和浩特:内蒙古工业大学硕士学位论文.2006,6:21~24
    [55]于颖.水泥混凝土桥桥面铺装受力机理分析[D].重庆:重庆交通大学硕士学位论文.2008,4: 44
    [56] Tan,Kiang-Hwee; Ng,,Chee-Khoon. Effects of Deviators and Tendon Configuration on Behavior of Externally Prestressed Beams [J]. ACI Structural Journal,1997, 94(1),January-February:13~22.
    [57] Harajli,M; Khairallah,N; Nassif, H. Externally Prestressed Members: Evaluationof Second-Order Effects [J]. Journal of Structural Engineering, 1999, 125(10):11511161.
    [58]王贵珍.预应力轻集料混凝土空心板桥力学性能的数值模拟[D].武汉:武汉理工大学硕士学位论文.2005,2~4
    [59]刘文,朱兴月.板式桥梁中单板受力现象的危害及防治[J].山东交通科技.2005,3:57~58
    [60]周旭东.喷射混凝土在板桥加固中的应用研究[D].西安:长安大学硕士学位论文,2005.45~46
    [61]杨士炯.汽车严重超载损坏道路设施的调查报告[J].公路,1997,12(3):4~7
    [62]易建国.混凝土简支梁(板)桥[M].第三版.北京:人民交通出版社.2001
    [63]刘小强.新预应力混凝土板式桥梁设计研究[D].长沙:湖南大学硕士学位论文.2007:5~10
    [64]王铁成.桥梁板结构优化试验研究[J].中南公路工程,2006,6:89~90
    [65]李松辉,赵国藩,王松根.CFRP加固筋混凝土整体式板桥的受力性能研究[J].哈尔滨工业大学学报,2005, 37(2):207~211
    [66]严仁高.装配式简支板桥设计中铰缝抗剪强度的验算.城市道桥与防水[J].1999,23(4):25~27
    [67]宋建永,张浩阳,张树仁.公路桥梁荷载横向分布系数简化计算[J].东北公路.2003,4: 77~79
    [68]李宗民.农村公路中小桥病害分析与防治.科技与经济[J].2007,4:28~30
    [69]陈宇新,窦玉秋,韩伟峰.浅析简支梁桥横向分布系数计算[J].东北公路.2003,2
    [70]肇晓霞,于漭.中小跨径桥梁单梁单板受力原因初探[J].黑龙江科技,2008,1:84
    [71]郭玉民.浅析桥涵单板受力原因及处治方法[J].交通科技,2007,4:13~15
    [72]许足怀.碳纤维加固技术的增强机理分析与应用[J].重庆交通学院学报.2005,24(6):55~58
    [73]张伟明,寇小健,胡冠梅.浅谈空心板铰缝的破坏原因及防治措施[J].山西建筑.2007,8: 144
    [74]田永合,单板受力的成因分析及预防措施[J].河北交通科技.2006,12:53~55
    [75]魏洋,胡胜飞,张敏.环氧树脂在简支板梁桥铰缝加固中的应用[J].公路与运输.2006,4:78~79
    [76]张建奎,刘学成.呼包高速公路(北幅)小桥加固及改建处治方法[J].内蒙古公路与运输. 2005 1:10~11
    [77]陈园明.高速公路中小跨径桥梁单板受力病害分析与处理[J].交通标准化,2007,10:33~35
    [78]柴广.新型铰缝在重载交通道路桥梁设计中的应用[J].内蒙古公路与运输,2005,4:77~78
    [79]吴勇往.中小跨径桥梁单板受力的病害特征及预防措施[J].交通世界(建养.机械).2007,01 :84~85
    [80]陈晓强,赵佳军,吴建平.板梁结构由铰缝引起的病害分析及加固改造[J].现代交通技术,20 04,1:46~48
    [81]樊小伟,徐义军,赵伟.中、小跨径空心板梁设计及优化[J].中国水运.2007,7:98~99
    [82]刘凯.预制板桥单板受力病害分析[J].公路交通技术(应用技术版).2008,5:123~125
    [83]孟晓文,梁立新.筋混凝土矩形板梁桥单板受力分析及加固设计[J].科技信息,2007,2:70
    [84]张永放.高速公路板式桥梁中铰缝构造的病害与处治[J].技术论坛.2008,7
    [85] R. S. Rivlin. Rheology: Theory and applications. New York: Academic Press, 1956:351
    [86]王韵成.有限单元法[M].北京:清华大学出版社.2003
    [87]宋天霞.非线性结构有限元计算[M].武汉:华中理工大学出版社.1996
    [88]俞茂宏.工程强度理论[M].北京:高等教育出版社,1999.
    [89] ABAQUS Lecture Notes
    [90] Iiang I.J. Finite element teckniques for static analysis of structure in reinforced concrete[J]. Chalmers University of Technology. Syeden (1983)
    [91] Shima, H. Chou, L. and Okamura, H., Micro and macro models for bond behavior in reinforced concrete, Journal of the Faculty of Engineering, The University of Tokyo (B), Vo1.39, No.2, 1987
    [92] Okamura, H. and Maekawa, K., Nonlinear analysis and constitutive models of reinforced concrete, Tokyo, Japan, Gihodoshuppan, 1997
    [93]朱伯芳.有限单元法原理及应用[M].北京:中国水利水电出版社,1998
    [94]甄伟超.高速公路桥涵单板受力形成原因及防治措施[J].交通标准化.2004,7
    [95]马芹纲,叶建龙.中、小跨径空心板梁设计及优化[J].浙江交通科技.2003,l7(4):30~33
    [96]陆鼎中,程家驹.路基路面工程[M].上海:同济大学出版社,1999
    [97]张卿.桥梁工程中桥面裂缝产生的主要原因及防治措施[J].中国水运.2007,5:43~44
    [98]程石,程岩.东北地区公路桥梁“单板受力”现象的危害及预防[J].吉林交通科技.2007, 2: 48~51