Ru(bipy)_3~(2+)掺杂SiO_2纳米粒子—漆酚复合物修饰电极电化学发光传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要包括绪论、Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极的制备、Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极的电化学发光行为及分析应用研究,此外,建立了流动注射-化学发光测定香草醛的体系。
     第一章分别对电化学发光、化学修饰电极、Ru(bipy_3~(2+)的电化学发光特点及固定化方法、固定化Ru(bipy_3~(2+)修饰电极在药品检测中的应用、以及流动注射技术和漆酚成膜特性的研究现状进行了评述。
     第二章实验研究了Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物制备条件及复合物修饰玻碳电极的方法,用扫描电镜对Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物聚合膜进行了初步表征,比较了修饰玻碳电极与裸玻碳电极的电化学发光行为,探讨了影响修饰电极ECL的影响因素。结果表明,复合物聚合膜呈立体孔状结构,能将Ru(bipy_3~(2+)有效固定于玻碳电极表面,SiO_2的存在有利于电荷传输,在磷酸盐缓冲溶液介质中,用Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极制备的ECL传感器具有良好的ECL性能和稳定性。
     第三章分别以Ru(bipy_3~(2+)-三丙胺和Ru(bipy_3~(2+)-抗坏血酸经典发光体系考察检验了Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极ECL传感器用于分析检测的可行性。结果表明,三丙胺和抗坏血酸在Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极上的ECL行为与裸电极在液相Ru(bipy_3~(2+)中的ECL行为类似,三丙胺和抗坏血酸对固定化Ru(bipy_3~(2+)ECL强度的增强作用与液相Ru(bipy_3~(2+)的ECL相似,且ECL强度与三丙胺和抗坏血酸的浓度均呈线性关系,其检出限分别达到2.1×10~(-7)mol/L和2.5×10~(-8)g/mL,且具有良好的重现性。说明实验研制的Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极ECL传感器是可以用于实际样品分析检测的。
     第四章实验研究发现,厚朴酚对Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极的ECL强度有明显的增强作用,据此建立了Ru(bipy_3~(2+)掺杂SiO_2纳米粒子-漆酚复合物修饰电极ECL传感器测定厚朴酚含量的检测体系。在实验选定的优化条件下,在8×10~(-7)~8×10~(-5)mg/mL浓度范围内,ECL强度与厚朴酚浓度成线性关系,检出限为3.7×10~(-8)mg/mL。对浓度为8×10~(-6)mg/mL厚朴酚进行8次平行测定的RSD为3.5%。
     第五章实验研究发现,在酸性条件下,香草醛对Ru(phen_3~(2+)-Ce(Ⅳ)反应体系化学发光有显著的减弱作用,据此建立了流动注射-化学发光检测香草醛的新体系。对影响流动注射化学发光的各因素进行了实验研究,优化了反应条件和各项测定参数。结果表明,优化条件下,在质量浓度为4.00×10~(-7)~8.25×10~(-6)g/mL的范围内,相对发光强度与其质量浓度呈对数线性关系,检出限(3σ)为2.90×10~(-7)g/mL,对质量浓度为3.0×10~(-6)g/mL的香草醛进行11次平行测定,相对标准偏差(RSD)为2.6%。对合成样品中香草醛测定的回收率在98.3%~102.8%之间。采样频率120次/h。
This thesis includes the introduction, the composite film prepared using urushioland Ru (bipy_3~(2+)doped silica nanoparticles as a novel adhesive for modified electrode,and the researches of electrogenerated chemiluminescence analysis (ECL) behavior ofthe modified electrode with the composite film using urushiol and Ru (bipy_3~(2+)dopedsilica nanoparticles as a novel adhesive, the researches of flow injection-electrogenerated chemiluminescence analysis behavior.
     Chapter1is a summarization, which includes the introduction of ECL, theprinciple of flow injection method, the developing status, current status and theapplication of chemically modified electrode, the modified electrodes with Ru (bipy)32+and its application in pharmaceutical analysis, and research progress of Chineselacquer.
     Chapter2, the researches of ECL behavior of the modified electrode with thecomposite film using urushiol and Ru(bipy_3~(2+)doped silica nanoparticles as a noveladhesive.The modified electrode were prepared using the composite film of urushioland Ru(bipy_3~(2+)doped silica nanoparticles as a novel adhesive. Moreover, thedifferences in the analysis of the modified electrode and the bare glassy carbonelectrode were compared in order to its effective application in the electrochemistryanalysis.
     Chapter3, the ECL behavior of the chemiluminescence sensor prepared usingmodified electrode with the composite film of urushiol and Ru(bipy_3~(2+)doped silicananoparticles as a novel adhesive with coreaction reagion of tripropylamine andascorbic acid, the limit of detections of tripropylamine and ascorbic acid are2.1×10~(-7)mol/L and2.5×10~(-8)g/mL, respectively. The sensitivity is higer than that ofliterature reports. It shows that with the method of new type of modifed electrodematerials studied in the experiment, Ru (bipy_3~(2+)can be fixed on the electrode surface.In this way, we can prepare an effective and good charge-transfer function of sensor,which can be used to determination of drug samples.
     Chapter4, the determination of trace magnolol using the chemiluminescencesensor prepared using modified electrode with the composite film of urushiol and Ru(bipy_3~(2+)doped silica nanoparticles as a novel adhesive. The each parameters ofchemiluminescence system were optimized. Under optimal conditions, the signalstrength of the system reached the maximum in order to improve the sensitivity. ECLintensity is proportional to the concentration of magnolol in the range of 8×10~(-7)~8×10~(-5)mg/mL. The linear regression equation is I=1.97×10~6c(mg/mL)+96.91,correlation coefficient r=0.9915, the limit of detection is3.7×10~(-8)mg/mL, and therelative standard deviation (RSD) of eight determinations of magnolol atconcentration of8×10~(-6)mg/ml was3.5%.
     Chapter5, the determination of vanillin with FIA-CL method. Under acidicconditions, vanillin have significantly weakened on the chemiluminescence ofRu(phen_3~(2+)-Ce(Ⅳ) reaction system, whereby a new system determination ofvanillin with the flow injection-chemiluminescence was developed. Various factorsthat affect the flow injection chemiluminescence experimental were studied tooptimize the reaction conditions and the determination of the parameters. The resultsshowed that under the optimized condition, in the mass concentration range of4.00×10~(-7)~8.25×10~(-6)g/mL, the relative luminous intensity and concentration was alinear relationship in logarithm, the detection limit (3σ) was2.90×10~(-7)g/mL. The RSDof11determinations of Vanillin at mass concentration of3.0×10~(-6)g/mL was2.6%, andthe recoveries of determination of vanillin in synthetic samples were between98.3%and102.8%under sampling frequency of120times/h.
引文
[1] Tokel NE, Bard AJ. Electrogenerated chemiluminescence. IX. Electrochemistryand emission from systems containing tris (2,2'-bipyfidine) ruthenium (II) dichloride[J]. J. Am. Chem. Soc.,1972,94(8):2862-2863.
    [2] Duford RT, Nightingale D, Gaddum LW. Luminesecence of Grignard compoundin electric and magnetic field, and related electrical phenomena [J]. J. Am. Chem.Soc.,1972,49(8):1858-1864.
    [3] Havery N. Luminescence during electrolysis [J]. J. Phys. Chem.,1929,33(10):1456-1459.
    [4] Kuwana T, Epstein B, Seo E. Electrochemical generation of solution luminescence[J]. J. Phys.Chem.,1963,67(10):2243-2244.
    [5] Zweig A, Metzler G, Maurer AH, et al. Electrochemiluminescence ofarysubstituted isobenzofurans, isoindoles, and related substances [J]. J. Am. Chem.Soc.,1967,89(16):4091-4098.
    [6] Feldburg SW. Theory of controlled potential electrogeneration ofchemiluminescence [J]. J. Am. Chem. Soc.,1966,88(3):390-393.
    [7] Rubinstein I., Bard A. J., Electrogenerated cheniluminescence.35. Aqueous ECLsystems based on tris (2,2’-bipyridine) ruthenium (2+) oxalate or organic acids [J]. J.Am.Chem.Soc.,1981,103(3):512-516.
    [8] Noffsinger J.B., Danielson N. D., Generation of chemiluminescence upon reactionof aliphatic amines with tris (2,2’-bipyridine) ruthenium (Ⅲ)[J].Anal. Chem.,1987,59(6):865-868.
    [9] David J., et al, Meas. Sci. Technol.,1995,6(9):1325.
    [10]赵藻藩,周性尧,张悟铭.仪器分析[M].北京:高等教育出版社,1990:170-173.
    [11] Deaver DR. A new nonisotopic detection system for immunoassays [J]. Nature,1995,377(6551):758-760.
    [12]陶颖,林志杰,陈晓梅等.联吡啶钉修饰电极固相电致化学发光[J].化学进展,2008,20(2-3):362-367.
    [13] Lee WY. Tris(2,2’-bipyridyl)ruthenium(Ⅱ) elecrogenrated chemiluminescencein analytical science[J]. Microchip. Acta.1997,127(1-2):19-39.
    [14] Fahnrich KA, Pravda MG, Guilbault G. Recent applications of elecrogenratedchemiluminescence in chemical analysis [J], Talanta,2001,54(4):531-539.
    [15] Nonidez WK, Leyden DE. Effect of reducing agents of pharmacologicalimportance on the chemiluminescence of tris(2,2’-bipyridyl)ruthenium(Ⅱ)[J]. Anal.Chim. Acta,1978,96(2):401-404.
    [16] Ala-Kleme T, Kulmala S, Vare L, et al. Hot electron induced electrogeneratedchemiluminescence of chelate at oxide covered aluminum electrodes[J]. Anal. Chem.,1997,71(24):5538-5543.
    [17] Wei H, Wang EK. Solid sate electrochemiluminescence of tris (2,2’-bipyridine)ruthenium [J]. Trends Anal. Chem, in press.
    [18] Richter MM. Electrochemiluminescence (ECL)[J]. Chem. Rev.2004,104:3003-3036.
    [19] Greenway GM, Knight PJ. Determination of oxprenolol by electrogeneratedchemiluminescence [J]. Anal. Proc.,1995,32(7):251-253.
    [20]陈曦,李梅金等.某些含氮神经药物的流动注射联毗啶钉电致化学发光研究[J].分析化学,2002,30(5):513-517.
    [21] Morita H, Konishi M, Electrogenerated chemilumincescence derivatizationreagents for carboxylic acids ana amines in high-performance liquid chromatographyusing tris(2,2’-bipyridine) ruthenium(Ⅱ)[J]. Anal. Chem.,2002,74(7):1584-1589.
    [22] Waite JH. Surface chemistry: Mussel power. Nature Mater,2008,7:8-9.
    [23] Gerardi RD, Bamett NW, Lewis SW. Analytical application of tris (2,2’-bipyridine) ruthenium as a chemiluminescent reagent [J]. Anal. Chem.,1987,59(6):865-868.
    [24] Zu Y, Bard AJ. Electrogenerated Chemiluminescence.66. The role ofdirectcoreactant oxidation in the ruthenium tris (2,2’-bipyridyl)/tripropylaminesystem and theeffect halide ions on the emission intensity [J]. Anal. Chem.,2000,72(14):3223-3232.
    [25] Ala-Kleme T, Kulmala S, Vare L, et al. Hot electron-induced electrogeneratedchemiluminescence of chelate at oxide-covered aluminum electrodes[J]. Anal. Chem.,1999,71(24):5538-5543.
    [26] Richter MM. Electrochemiluminescence (ECL)[J]. Chem.Rev.2004,104:3003-3036.
    [27] Pyati R, RichterMM. ECL-Electrochemical luminescence [J]. Annu. Rep. Prog.Chem., Sect. C,2007,(103)12-78.
    [28]易长青,陈曦. Ru(bpy)32+固相电致化学发光研究进展[J].世界科技研究与进展,2004,26(4):56-65.
    [29] Ding SN, Xu JJ, Zhang WJ, et al. Tris (2,2’-bipyridyl)ruthenium(Ⅱ)-zirconia-nafion composite modified electrode applied as solid--stateelectrochemiluminescence detector on electrophoretic microchip for detection ofpharmaceuticals of tramadol, lidocaine and ofloxacin. Talanta,2006,70:572-577.
    [30]李利军,陈昌东等.多壁碳纳米管/壳聚糖-联吡啶钌复合物修饰的石墨电极上电化学发光行为的研究及分析应用[J].分析实验室,2009,28(8):5-9.
    [31]张国凡,孙雪梅.碳纳米管/Nafion-联吡啶钌修饰的ITO固相电化学发光电极[J].山东理工大学学报(自然科学版),2011,25(4):26-29.
    [32]杨秀云,徐春荧等.基于电纺碳纳米纤维材料的阿托品固态点化学发光传感器[J].分析化学,2011,39(8):1233-1237.
    [33]熊小莉,肖丹.采用新支持体系阎定联吡啶钌(II)的溶解氧传感器[J],分析仪器,2007,1:18-20.
    [34] Zhang LH, Dong SJ. Electrogenerated chemiluminescence sensors using Ru (bpy)32+doped in silica nanoparticles [J]. Anal. Chen.2006,78(14):5119-5123.
    [35]混旭,章竹君.纳米粒子修饰电极点化学发光传感器的研究进展[J].陕西师范大学学报(自然科学版),2009,37(5):56-66.
    [36] Xu Hun, Zhujun Zhang. Electrogenerated chemiluminescence sensor for itopridewith Ru (bpy)32+-doped silica nanoparticles/chitosan composite films modifiedelectrode. Sensors and Actuators B,2008,(131):403–410.
    [37]杜予民.中国生漆成分化学与涂料应用的新进展[J].涂料技术,1993,(1):1-7.
    [38]甘景镐.生漆的化学[M],科学出版社,北京,1986.
    [39] Oshima R, Yamauchi Y, Watanabe C, Kumanotani J. Enzymic OxidativeCoupling of Urushiol in Sap of the Lac Tree, Rhus vernicifera[J]. Org Chem,1985,(50):2613.
    [40] Eiichi O, Yuhzo F, Yoshitaka O, et al. Effect of Aging and Moisture on theDynamic Viscoelastic Prop erties of Oriental Lacquer Film[J]. Poly. Scie,2002,83.
    [41]生漆化学成分(漆酚部分).武汉大学资源应用技术研究所1999,5.
    [42]甘景镐,甘纯矶,胡炳环.天然高分子化学,高等教育出版社,北京.1993,142-158.
    [43]周绍武.天然大漆的改性研究和应用[J].涂料工业,1998,28(9):14-15.
    [44]封孝华,柳卫莉.生漆精制过程的漆酚聚合[J].涂料工业.1994(6):7-10.
    [45]廉鹏.生漆的化学组成及成膜机理[J].陕西师范大学学报(自然科学版),2004,(32):99-101.
    [46]史伯安,雷福厚等.漆酚金属盐聚合物催化合成缩酮[J].林产化学与工业,1999,19(3):41-45.
    [47]潘恩霆,周雪梅等.稀土饱和漆酚冠醚配合物的合成镧(Ⅲ)离子选择电极的研究[J].分析化学,1994,(1):12-16.
    [48]杨春海,史伯安.新型漆酚铁树脂修饰的固体传感器的制备及应用[J].林产化学与工业.2003,23(3):41-44.
    [49]唐洁渊,高峰.电化学聚合漆酚-锌配合物的合成及性质[J].应用化学,2000,17(3):325.
    [50]齐文启,孙宗光.流动注射分析(FIA)及其在环境监测中的应用[J].现代科学仪器,1999, l(2):24-35.
    [51]方肇伦.流动注射分析法[M].北京:科学出版社.1999.
    [52]徐景文.天然生漆基互传网络聚合物的研究.福建师范大学硕士学位论文.2006:20.
    [53]徐艳莲.水辅助自组装制备漆酚基聚合物多孔膜.福建师范大学博士学位论文.2009:87.
    [54] Akerman ME, Chan WCW, Laakkonen P.Nanocrystal targeting in vivo [J]. Proc.Nat. Acad. Sci. USA,2002,(99):12617-12621.
    [55] Choi HN, Lee JY, Lee WY, et al. Tris(2,2’-bipyridyl) ruthenium(Ⅱ)electrogenerated chemiluminescence sensor based on carbon nantube dispersed insol-gel derived titania-Nafion composite films[J]. Anal. Chim. Acta,2006,565(1):48-55.
    [56] Wang HY, Xu GB, Dong SJ. Electrochemiluminescence of tris(2,2’-bipyridyl)ruthenium(Ⅱ) immobilized in poly(p-styrenesulfonate)-silica-Trition X-100composite thin-films. Analyst,2001,(126):1095-1099.
    [57] Keiichi S, Yuji I, Kazuhiko S, et al. Determination of magnolol and honokiol inmagnolia cortex using supercritical fluid chromatography online coupled withsupercritical fluid extraction by on-column trapping[J]. Journal of Chromatography A,1997,(786):366-370.
    [58]林桂云,谢生发,谢鸿等.和厚朴酚抑菌作用的研究[J].成都大学学报,2003,(22):18-20.
    [59]胡劲波,龚思源等.和厚朴酚的电化学行为及反应机理[J].分析化学,2000,(28):539-543.
    [60] Wu YT, Lin LC, Tsai TH. Simultaneous determination of honokiol and magnololin magnolia officinal is by liquid chromatography with tandem mass spectrometricdetection [J]. Biomedical Chromatography,2006,(20):1076-1081.
    [61] Chen G, Xu X J, Zhu Y Z, et al. Determination of honokiol and magnolol inCortex Magnolia Officinal is by capillary electrophoresis with electrochemicaldetection [J].Journal of Pharmaceutical and Biomedical Analysis,2006,41:1479-1484
    [62] Tian YL, Chen GH. Determination of magnolol and honokiol by non-aqueouscapillary electrophoresis [J]. Chemical Research in Chinese Universities,2006,(22):335-338.
    [63]保志娟,杨雪琼,丁中涛等.紫外分光光度法同时测定厚朴酚与和厚朴酚的含量及活性研究[J].天然产物研究与开发,2004,(16):435-438.
    [64]孙成科,龚思源等.和厚朴酚电化学还原机理的研究[J].高等学校化学学报,2000,(21):912-917.
    [65]汪多仁.香草醛的开发与应用[J].北京日化,2000,(3):13.
    [66]王铁杰,曹阳,王玉等. HPLC法测定芎中阿魏酸和香草醛的含量[J].中草药,2004,35(8):944.
    [67] Don F, Domenic S, Cheryl A, et al. High-performance liquid chromatographicmethod for determination of vanillin and vanillin acid in human plasma red bloodcells and urine[J]. Journal of Chromatography B,1999,(726):303.
    [68]王淑芬,邵先荣.气相色谱法测定饲料添加剂中香草醛和肉桂醛[J].辽宁畜牧兽医.2003,(5):26.
    [69]李永红,王瑞,孙志浩等.薄层色谱法同时测定生物转化液中的香草醛和异丁香酚[J].实验室科学,2007,8(4):56.
    [70]张志贤,张瑞镐编著.有机官能团定量分析[M].北京化学工业出版社.1990:177.
    [71]何新亚,刘金霞,曹晓红等.硫代巴比妥酸光度法测定香草醛[J].分析实验室,1999,18(5):56.
    [72]韦进宝,唐智勇,张良铁等.香草醛的极谱行为研究[J].武汉大学报(自然科学版),1998,44(2):190.