新型五轴并联机床的运动学分析与结构参数设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的联机构相比,纯并联机构在结构及运动特性上具有承载能力强、定位精度高、刚度重量比大、结构简单、动平台运动灵活等一系列优点。但并联机构同时也存在着工作空间小、控制复杂、运动学标定困难能缺点。相对于与以Stewart平台型并联机机构为代表的6自由度机构,少自由度并联机构由于具有结构简单、工作空间大、造价低等突出优点,近年来广受学术界和工业界的关注。本文提出一种四自由度并联机构新构型——2-TPR/2-TPS并联机构,对该机构进行了深入的分析研究,在此基础上通过在2-TPR/2-TPS并联机构机构上联一个转动轴,提出了一种新型5轴并联机床,对该机床机构进行了相关的运动学分析与结构参数设计的研究。
     研究了新型2-TPR/2-TPS空间四自由度并联机构结构布局特点;应用螺旋理论分析了机构的运动性质,确定了机构的运动自由度;通过机构的结构约束关系推导了机构动平台位姿参数的解耦关系式;应用解析法推导了机构的位姿反解方程,应用数值方法给出了机构的位姿正解;在螺旋理论的基础上提出了一种分析并联机构奇异位形的新方法——瞬时坐标系法,并应用此方法得到了机构的三种奇异位形。
     基于2-TPR/2-TPS并联机构,通过在其运动平台上联一个回转轴,提出了一种新型5轴并联机床。研究了该机床的结构特点,得出了该机床的位姿正反解;应用矢量几何法推导了机构一阶影响系数矩阵及二阶影响系数矩阵,并在此基础上进行了速度分析与加速度分析。
     借助机床的位姿反解算法,采用空间三坐标交替搜索的数值方法生成了给定刀具最大加工倾角的机床刀头点的可达工作空间;分析了机床工作空间的特点,采用数值法计算了工作空间的体积;分析了刀具的加工倾角的变化对工作空间的影响;研究了机床工作空间的大小随机床结构参数变化的情况,为机床结构参数的设计提供了理论依据。
     基于2-TPR/2-TPS空间四自由度并联机构的一阶影响系数矩阵,对机床的灵活度进行了解析;分析了机床的的位置灵活度和姿态灵活度指标在工作空间中的分布状况;研究了机床的灵活度指标随机床结构参数的变化情况,为机床的结构设计提供了必要的理论依据。
     给出了机床工作空间的规则化表示,在此基础上进行了工作空间逆向分析,实现了基于给定工作空间的机床结构参数设计。在ADAMS软件环境下对机床进行了简化的三维实体建模,应用ADAMS仿真模块对机床进行了运动学仿真,通过仿真验证了机床的自由度数、虚约束数、位姿正反解算法及速度和加速度算法的正确性。
The pure parallel mechanisms have lots of the merits in structural configuration and kinematic characteristics compared with the traditional serial mechanisms, such as larger carrying capability, higher location accuracy, the great ratio of stiffness over weight, simple structure and agile mobile ability, etc. However, parallel mechanism has the following disadvantages, such as small workspace, complicated control system, difficulties in kinematic calibration, etc. Compared with six Degrees-Of-Freedom(DOFs) parallel mechanisms represented by Stewart platform, the research of the limit-DOF parallel mechanisms has been highly focused by academia and indutry, the outsdanding merits of the mechanism include the simple structure, the larger workspace and the lower cost, etc. A novel kind of 4-DOF parallel mechanism of 2-TPR/2-TPS is proposed in this thesis. The analysis of the concerned mechanism is investigated in details. Based on that mechanism a novel five axes serial-parallel machine tool is developed by combining a serial rotational axis. The kinamatic analysis and structural parameters design the concerned machine tool are investigated.
     The structural layout features of 2-TPR/2-TPS parallel mechanism are discussed. Moving character of the concerned mechanism is analyzed by using the theory of screws, and then the movements of the mechanism are determined. The decoupling equation of position and posture parameters are formulated on the basis of structural constraint of the concerned mechanism. The inverse kinematic solution of this mechanism is deduced by analytical method and the forward kinematic solution of this mechanism is achieved by numerical method. A novel approach of analying singularity for parallel mechanism, instantaneous coordinate system method, is presented based on the theory of screws, and then three possible types of singular configuration of this mechanism are achieved by this method.
     Based on the 2-TPR/2-TPS parallel mechanism, a novel five axes serial-parallel machine tool is proposed by combining a serial rotational axis on the moving platform of the mechanism. The structural characteristics of this machine tool is discussed. The inverse kinematic solution and forward kinematic solution of this machine tool are achieved. The first-order kinematic influence coefficient matrix and the sencond-order kinematic influence coefficient matrix can be obtained by using vector geometry approach, and then the ananlysis of the velocity and acceleration is carried out based on the influence coefficient matrixs.
     On the basis of the inverse kinematic solution of this machine tool, the shape of the reachable workspace of the cutter of this machine tool with given the maximum cutter dip is described by numerical method of spatial three dimensions alternating search. The characteristics of workspace for this machine tool is discussed. The volume of the workspace for this machine tool is calculated by numerical method. The effect of the change on the cutter dip to the workspace of the machine tool is analyzed. The effects of the change on structural parameterts to the workspace are investigated, it povides a theoretical basis for the selecting design parameters of structure of this machine tool.
     The dexterity of machine tool is resolved baesd on the first-order kinematic influence coefficient matrix of the 2-TPR/2-TPS parallel mechanism. The distribution in the workspace of position dexterity index and posture dexterity index for machine tool is discussed. The effects of the change on structural parameterts to the dexterity index of machine tool are investigated, it can serve as a theoretical basis for the selecting design parameters of structure of this machine tool .
     The specified representation of working space for machine tool is represented, and then the inverse analysis of workspace is investigated. The structure design for this machine tool according to a given workspace is achieved. The three-dimensional solid model of the machine tool is established in ADAMS. The kinematic simulation of machine tool is carried out in the ADAMS simulation module. On the basis of the kinematic simulation of the machine tool, The results of the previous theoretical analysis are verified , including the number of degrees of freedom and redundant constraints, inverse kinematic solution and forward kinematic solution, the calculation of the velocity and acceleration.
引文
1 J. E. Gwinnett. Amusement Devices. US Patent No. 1,789,680, January 20, 1931.
    2 W. L. G. Pollard. Spray Painting Machine. US Patent No. 2,213,108, August 26, 1940.
    3 V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. FISITA Ninth International Technical Congress, 1962:117-137.
    4 D. Stewart. A Platform with Six Degrees of Freedom. IMechE, 1965, 180(15): 371-386.
    5 K. H. Hunt. Kinematic Geoemtry of Mechanisms. Oxford: Claredon Press, 1978: 10-18.
    6张曙,U.Hesiel.并联运动机床.北京:机械工业出版社, 2003.
    7 Anonymous. The Russians Are Coming! Machinery and Production Engineering. 1995, 153(3897): 19-20.
    8 El-khasawneh, Ferreira. On Using Parallel Link Manipulators as Machine Tools. Trans of the NAMRI/SME, Nebraska, 1997: 305-310.
    9 J. Kim and F. C. Park. Eclipse-A New Parallel Mechanism Prototype. Proc. of the First European-American Forum on Parallel Kinematic Machines, Milan, Italy, 1998.
    10 F. Pierrot and T. Shibukawa. From Hexa to HexaM. Proc. of IPK’98, Zürich, 1998: 75-84.
    11 H. J. Warnecke, R. Neggebauer, F. Wieland. Development of Hexapod Based Machine Tool.Annals of the CIRP, 1998, 47(1): 337-340.
    12 B. Sicilian. The Tricept robot: Inverse Kinematics, Manipulability Analysis and Closed-loopdirect Kinematics Algorithm. Robotica. 1999, 17: 437-445.
    13 A. Lilla. Quicker Success with Hybrid Kinematics ECOSPEED. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002: 775-783.
    14 M. Weck, D. Staimer. Application Experience with a Hexapod Machine Tool for Machiningcomplex Aerospace Parts. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany,2002: 807-815.
    15 T. Czwielong, W.Zarske. Pegasus-Incorporating PKM into Woodworking. The
    3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002:843-855.
    16 E. Schoppe, A. Ponisch, V. Maier, et al. Tripod Machine SKM 400 Design, Calibration and Practical Applicatino. The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz, Germany, 2002:579-593.
    17 Molinari-Tosatti, Lorenzo, Fassi, et al. Parallel Kinematic Machines for An Application in Shoesmanufacturing: From the Conceptual Design to the First Experimental Campaign. IEEE International Conference on Intelligent Robots and Systems, 2001, 1: 433-438.
    18 M.Weck, D. Staimer. Parallel Kinematic Machine Tools-Current State and Future Potentials. CIRP Annals-Manufacturing Technology, 2002, 51(2): 671-683.
    19汪劲松等. VAMT1Y虚拟轴机床.制造技术与机床, 1998, 2: 42-43.
    20蔡光起,胡明,郭成,等.机器人化三腿磨削机床的研制.制造技术与机床, 1998, 10: 4-6.
    21王知行,陈辉,石勇.用七轴联动并联机床加工汽轮机叶片.世界制造技术与装备市场,2002, 6: 31-32.
    22江崇民,王振宇,王哲元. XNZD2415型数控龙门并联机床简介.机械工程师, 2003, 2:53-54.
    23黄玉美,史文浩,高峰,等.混联式六轴联动数控机床6PM2的方案创新.制造技术与机床,2003,No.6:20~21.
    24王希民,史家顺,胡明,等. PTT滑块式并联钢锭修磨机床的开发.机械制造, 2003, 11:29-31.
    25石宏. 3-TPS混联机床相关控制算法研究.东北大学博士学位论文. 2005:7-8.
    26陈月岩.-并混联研抛机床运动控制系统的研究.吉林大学博士学位论文. 2009:3-5.
    27王友渔,赵兴玉,黄田,赵学满,梅江平.可重构混联机械手TriVariant与Tricept的静动态特性预估与比较.天津大学学报,2007, 40(1):41-45.
    28 C. M. Gosselin, J. Sefrioui and M.J. Richard. On the Direct Kinematics of General Spherical 3-DOF Parallel Manipulator. Proc. Of ASME Mech.Conf,1992,7-11.
    29 C. M. Gosselin. On the Kniematic Design of Spherical 3-DOF Parallel Manipulators.Int.J. of Rob.Res,1993,12(4):394-402.
    30 30 C. M. Gosselin, S.Lemieux, and J.P. Merlet. A New Architecture of PlanarThree-Degree-of-Freedom Parallel Manipulator. Pro. Of 1996 IEEE,3738-3743.
    31 J.P. Merlet. Direct Kinematics of Planar Parallel Manipulators. Proc. Of 1996 IEEE,3744-3749.
    32 H.R.M. Daniali, P.J. Zsombor-Muray and J. Angeles. Singularity Analysis of a General Class of Planar Parallel Manipulators.1995 IEEE on Rob.& Auto,1547-1542.
    33 H.R.M. Daniali, P.J. Zsombor-Murray and J. Angles. The Isotropic Design of Two General Class of Planar Parallel Manipulators. Journal of Robotic Systems, 1995,12(12):795-805.
    34 R.E.M. Ellis, Qin. Singular-Value and Finite-Element Analysis of Tactile Shape Recognition.1994 IEEE,2529-2535.
    35 K.H. Hunt. Structural Kniematics of In-Parallel-Actuated Robot-Arms.J.of Mech. Trans. And Aut. In Des.,1983,105:705-712.
    36 K.M. Lee, D.K. Shah. Kinematic Analysis of a Three-Degree-of Freedom in Parallel Actuated Manipulator.IEEE Journal of Robotics and Automation,1988,4(3):354-360.
    37 K.M. Lee, D.K. Shah. Kinematic Analysis of a Three-Degree-of Freedom In Parallel Actuated Manipulators. Proc. IEEE Int. Conf. Robotics and Automation,1987,1:345-350.
    38 K.J. Waldron, M. Raghavan and B. Roth. Kinematics of a Hybrid Serial-Parallel Manipulation System. ASME J.Of Dyn. Sys. Meas. And Cont,1989,111:211-221.
    39 G..H. Pfreundschuh, T.G. Suger and V. Kumar. Design and Control of a 3-DOF In Parallel Actuated Manipulator. J. Of Rob. Sys, 1994,.11(2):103-115.
    40 K.H. Lee, S. Arjuman. A 3-DOF Micro-motion In-Parallel Actuated Manipulator,IEEE Trans. On Robot and Automation, 1991,7(5):634-640.
    41 R. Clavel, DELTA. A Fast Robot with Parallel Geometry. Proc. Of the Int. Symp. On Industrial Rob.,Switzerland,1988,91-100.
    42 A. Codourey, R. Clavel and C. W. Burckhardt. Control Algorithm and Controller for The Direct Drive DELTA Robot, IFAC Robot Control, Vicnna, Austria, 1991,543-549.
    43 A. Codourey. Dynamic Modeling and Mass Matrix Evaluation of The DELTA Parallel Robot for Axes Decoupling Control,1996 IEEE,1211-1218.
    44 S. A. Joshi, L. M. Tsai. The Kinematics of A Class of 3-DOF:4-Legged ParallelManipulators. ASME design Engineering Technical Conferences, Montreal,2002,MECH-34236.
    45 S. A. Joshi, L. M. Tsai. Jacobian Analysis of Limited-DOF Parallel Manipulators. ASME design Engineering Technical Conferences, Montreal,2002,MECH-34238.
    46 H. S. Kim, L. M. Tsai. Design Optimization of A Cartesian Parallel Manipulators. ASME design Engineering Technical Conferences, Montreal,2002,MECH-34301.
    47 H. S. Kim, L. M. Kinematic Synthesis of Spatial 3-RPS Parallel Manipulators. ASME design Engineering Technical Conferences, Montreal,2002,MECH-34302.
    48 S. STEFAN. Inverse Dynamics of the 3-PRR Planar Parallel Robot. Robotics and Autonomous Systems, 2009, 57 (5):556-563.
    49 P. L. YEN, C. H. LAI. Dynamic Modeling and Control of A 3-DOF Cartesian Parallel Manipulator. Mechatronics, 2009, 19 (3):390-398.
    50 J. S. SHI, X. Q. TANG, C. S. LIN, et al.A Comparison Study of Two Tricept Units for Reconfigurable Parallel Kinematic Machines. High Technology Letters,2005, 11(4):392-396
    51刘树青,吴洪涛.一种用于风洞的新型柔索驱动并联机构设计.南京理工大学学报,2004,28(6):601-605.
    52 M. Geldart, P. Webb, H. Larsson, et al. A Direct Comparison of the Machining Performance of A Variax 5axis Parallel Kinematic Machining Centre with Conventional 3 and 5 Axismachine Tools. International Journal of Machine Tools &Manufacture, 2003, 43: 1107 - 1116.
    53 S. J. ZHU, Z. HUANG, M. Y. ZHAO. Singularity Analysis for Six Practicable 5-DoF Fully-Symmetrical Parallel Manipulators. Mechanism and Machine Theory, 2009, 44 (4):710-725.
    54 J. GALLARDO-ALVARADO , J. M. RICO-MARTINEZ , ALICI G.Kinematics and Singularity Analyses of a 4-DOF Parallel Manipulator Using Screw Theory. Mechanism and Machine Theory,2006,41 (9):1048-1061.
    55 K. DANIEL, W. PHILIPPE, C. DAMIEN. Kinematic Analysis of A Serial-Parallel Machine Tool:The VERNE Machin . Mechanism and Machine Theory, 2009, 44 (2):487-498.
    56 X. W. KONG,C. M. GOSSELIN.Type Synthesis of 4-DOF SP-equivalentParallel Manipulators:A Virtual Chain Approach[J].Mechanism and Machine Theory,2006,41 (11):1306-1319.
    57 J. S. WANG, X. Q. TANG. Analysis and Dimensional Design of a Novel Hybrid Machine Tool. Journal of Machine Tools & Manufacture, 2003, 43(7): 647-655.
    58刘辛军,吴泽启,张立杰.基于力传递性能的一种平面并联机器人的优化设计.清华大学学报,2008,48(11):1751-1754.
    59姚蕊,唐晓强,黄鹏,杨建新.高加速度的柔性3-RRR并联机构尺度综合设计.清华大学学报,2008,48(2):184-188.
    60刘善增,余跃庆,刘庆波,苏丽颖,佀国宁.3-RRC并联机器人动力学分析.机械工程学报,2009,45(5):220-224.
    61刘延斌,贾现召,赵新华.3-RRRT并联机器人动力学建模及其正向求解.哈尔滨工业大学学报,2009,41(5):238-240.
    62孟广柱,赵新华,李彬.3-RRRT并联机器人运动学和奇异位形分析.天津理工大学学报,2009,20(2):10-16.
    63韩旭炤,黄玉美,陈纯,马斌良,徐宏伟.一种新型三自由度平面并联机构的运动学解析.西安理工大学学报,2009,25(1):23-27.
    64周玉林,高峰. 3-RRR 3自由度球面并联机构静刚度分析.机械工程学报,2009,45(4):25-32.
    65邵珠峰,唐晓强,王立平,黄鹏.平面柔性3-RRR并联机构自标定方法.机械工程学报,2009,45(3):150-155.
    66李秦川,胡旭东,陈巧红,武传宇.对称4自由度3R1T并联机构雅可比分析.机械工程学报,2009,45(4):50-55.
    67张克涛,方跃法,郭盛.新型3自由度并联机构的设计与分析.机械工程学报,2009,45(1):68-72.
    68李秦川,陈巧红,武传宇,胡旭东.变自由度4一护RxRxRy琢并联机构.机械工程学报,2009,45(1):83-87.
    69李艳文,黄真,王鲁敏,赵铁石.新型4自由度并联机器人运动学分析.机械工程学报,2008,44(10):66-71.
    70王玉新,李雨桐.3SPS-3PRS并联机构构型分岔特性.机械工程学报,2007,43(12):34-38.
    71 Z. Huang, Y. F. Fang. Motion Charateristics and Rotational Axis Analysis of 3-DOF Parallel Robot Mechanisms. Proc. Of IEEE Int. Conf. On Sys Man and Cyb. Vancouver,1995,1:67-71.
    72 Z. Huang, Y. F. Fang. Kinematic Characteristics Analysis of 3 DOF In-parallelActuated Pyramid Mechanisms.Mechanism and Machine Theory,1996,31(8):1009-1018.
    73黄真,赵铁石.一种新型四自由度空间并联机器人机构.中国发明专利CN1306899A, 2000.
    74赵铁石,黄真.一种新型四自由度并联平台机构及其位置分析.机械科学与技术, 2000, 19(6):927-929.
    75汪劲松,刘辛军,段广洪等.两维移动两维转动四轴并联机床结构.中国发明专利CN1094085C, 2002.
    76 J.P. Merlet. Parallel Robots. Netherland: Kluwer Academic Publishers,2000:187-190.
    77 J. Gallardo-Alvarado, J.M. Rico-Martinez, G. Alici. Kinematics and singularity analyses of a 4-dof parallel manipulator using screw theory. Mechanism and Machine Theory, 2006, 41 (9):1048-1061.
    78 X. W. Kong, C.M. Gosselin. Type Synthesis of 4-dof SP-equivalent Parallel Manipulators: A Virtual Chain Approach. Mechanism and Machine Theory, 2006, 41 (11):1306-1319.
    79 X. W. Kong, C. M. Gosselin. Type Synthesis of Linear Translational Parallel Manipulators, Proceeding of the Advances in Robot Kinematics, Spain, 2002: 453-462.
    80 Y. F. Fang, L. W. Tsai. Structure Synthesis of a Class of 4-DOF and 5-DOF Parallel Manipulators with Identical Limb Structures. The International Journal of Robotics Research, 2002, 21(9): 799-810.
    81 M. Karouia, J. M. Hervé. A Family of Novel Orientational 3-dof Parallel Robots. The 14th CISM-IFToMM Symposium, Udine, Italy, 2002: 359-368.
    82 J. P. Merlet. Parallel Robot: Ppen Problems. 9th Int. Symp. of Robotics Research, Snowbird, 1999: 9-12.
    83 Z. Huang, Q. C. Li. General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel manipulators. International Journal of Robotics Research, 2002, 21(2): 131-145.
    84 Q. C. Li, Z. Huang. A Family of Symmetrical Lower-mobility Parallel Mechanisms with Spherical and Parallel Subchains. Journal of Robotic Systems, 2003, 20(6): 297-305.
    85 Z. Huang, Q. C. Li. Type Synthesis of Symmetrical Lower-mobility ParallelMechanisms Using Constraint-synthesis Method. International Journal of Robotics Research, 2003, 22(1): 59-79.
    86李秦川,黄真.基于位移子群分析的三自由度移动并联机构型综合.机械工程学报, 2003, 39(6): 18-21.
    87杨廷力,金琼,刘安心,等.基于单开链单元的三平移并联机器人机构型综合及其分类.机械工程学报, 2002, 38(8): 31-36.
    88朱煜,汪劲松,张华,等.并联机床构型及其设计方法初探.中国矿业大学学报, 2003, 32(3): 297-303.
    89 Y. S. Zhao, Q. C. Li, K. J. Zheng. A Novel 5-Axis Parallel Machine Tool Family. Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, 2004: 1588-1591.
    90梁崇高,荣辉.一种Stewart平台型机械手位移正解.机械工程学报,1991, 27(2): 26-30.
    91 C.Innocenti.Direct Kinematics in Analysis Form of the 6-4 Fully Parallel Mechanism.J. of Mech. Des.,Mar 1995,117:89-95.
    92 M. Raghavan. The Stewart Platform of General Geometry has 40 Configurations. In ASME Design and Automation Conf., Chicago, USA, 1991, 32(2): 397-402.
    93 C. Innocenti, V. P. Castelli. Forward Kinematics of the General 6-6 Stewart Fully Parallel Mechanism: an Exhaustive Numerical Approach via a Mono-Dimensional-Search Algorithm. In 22nd Biennial Mechanisms Conf., Scottsdale, USA, 1992, volume DE-45: 545-552.
    94 E. F. Ficher. A Stewart platform-based Manipulator: General Theory and Practical Construction. The International Journal Of Robotics Research, 1986, 5(2): 157-181.
    95 Y. X. Xu, D. Kohli, T. C. Weng. Direct Differential Kinematics of Hybrid-Chain Manipulators Including Singularity and stability Analysis. ASME J. of Mechanical Design, 1994, 116: 614-621.
    96 Z. Huang. Modeling Formulation of 6-DOF Multiloop Parallel Manipulators Part 1-Kinematic Influence Matrix. Proc. of the 4th IFToMM Conf. on Mechanisms and CAD, Romania, 1985.
    97姚裕,吴洪涛,左键民.3-DOF SMLT并联运动学机器的工作空间解析研究.机械科学与技术.2003,22(5):776-778.
    98许意华,刘德忠,费仁元. 3-PTT并联微操作机器人工作空间分析.机械科学与技术. 2003,22(1):102-104.
    99周兵,毛泰祥,杨汝清.3自由度RPS并联机构的工作空间分析.湖南大学学报.2003,30(1):59-61.
    100张顺心,范顺成,肖汾阳.并联机床主运动机构工作空间分析.机械设计.2003,20(3):39-42.
    101苏玉鑫,魏强,段宝岩.大射电望远镜精调Stewart平台工作空间分析.西安电子科技大学学报.2003,30(2):243-246.
    102孟祥志,赵静宜,蔡光起.3-RRR并联机床的工作空间分析.组合机床与自动化加工技术.2003,(10):9-12.
    103 E. F. Ficher. A Stewart Platform-based Manipulator: General Theory and Practical Construction. The International Journal Of Robotics Research, 1986, 5(2): 157-181.
    104方跃法,黄真.并联机器人机构学研究进展.机器人, 1995, 18(4): 221-225.
    105 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematics Chain. IEEE Trans. on Robotics and Automation,1990,6 (3):281-290.
    106 O. Ma, J. Angeles. Architecture Singularities of Parallel Manipulators. Int J. Robotics and Automation,1992,7(1):23-29.
    107 D. Basu, A. Ghousal. Singularity Analysis of Platform-Type Multi-Loop Spatial Mechanisms. Mechanism and Machine Theory, 1997, 32(3): 375-389.
    108黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社,1997.
    109 Yoshikawa T., Manipulability of Robotic Mechanisms. International Journal of Robotic and Research.,1978,4(2).
    110绕青. 6-6型Stewart机器人的可操作性分析及其定义.机器人,1994,16(6):345-349.
    111 Gosselin.C., Angeles.J. A Global Performance Index for the Kinematic Optimization of Robotic Manipulators. Transaction of ASME, Journal of Mechanical Design,1991,113(9):220-226.
    112韩先国.并联机床相关理论及设计方法研究.北京航空航天大学博士学位论文. 2002.12.
    113 Bhaskar Dasgupta, Prasun Choudhury. A General Strategy Based on the Newton-Euler Approach for the Dynamic Formulation of Parallel Manipulater. Mechanism and Machine Theory, 1999, 34(6): 801-824.
    114 C. M. Gosselin. Parallel Computational Algorithms for the Kinematics and Dynamics of Planar and Spatial Parallel Manipulators. ASME J. of Dyn. Sys.Meas. Control, 1996,118(1): 22-28.
    115 C. D. Zhang, S. M. Song. An Efficient Method for Inverse Dynamics of Manipulators Based on the Virtual Work Principle. J. of Robotics Systems, 1993, 10(5): 605-627.
    116胡颖.含约束链混联平台型机床的机构分析及其稳健优化研究.哈尔滨工业大学博士学位论文. 2007:30-35.
    117刘文涛.并联机床性能分析与研究.哈尔滨工业大学博士论文. 2000: 56-57
    118王瑞. 6-TPS并联平台型数控铣床关键技术的研究.哈尔滨工业大学博士论文. 2007: 25-27.
    119魏永庚.六自由度并联机床结构参数设计及实验用软件的研究.哈尔滨工业大学博士论文. 2005: 35-40.
    120郭旭伟.并联机床虚拟样机及数控编程技术的研究.哈尔滨工业大学博士论文. 2005: 9-10.