-并混联研抛机床的运动与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1994年在芝加哥国际机床展览会(IMTS94)上,美国的Ingersoll和Giddings & Lewis公司分别首次展出了名为Hexapod和Variax的并联机床,引起举世关注。并联机床以空间并联构型为基础,打破了近两个世纪以来单一的以笛卡尔坐标直线位移为基础的联机床结构和运动学原理,被誉为“本世纪机床机构的最大变革与创新”、“21世纪的机床”。其后,意大利、日本、俄罗斯、挪威、瑞士、瑞典、丹麦等国的制造商竟相研发并联机床。1997年底,清华大学和天津大学联合研制出了我国第一台并联机床VAMT1Y。
     与传统的联构型机床相比,纯并联构型的并联机床在结构及运动特性上具有刚度重量比大,运动部件质量小、响应速度快,误差累积小,可以很容易地实现6轴联动,运动学逆解求解容易、便于实现实时控制,机床结构简单,技术附加值高等优点。但并联机床同时也存在着工作空间小,运动学的正解求解困难,控制复杂,各轴间存在着深度的非线性运动耦合,运动学标定困难,机床的刚度和运动精度不高等缺点。为克服并联机床的缺点,-并混联式机床应运而生。
     混联机床几乎继承了并联机床的全部优点,同时其工作空间增大,运动学正解的求解困难程度及控制复杂程度均明显降低。尽管其刚度和运动学精度仍不如联机床高,但已显示出强大的生命力。目前,商品化的并联机床已投入使用。
     课题组通过多年的研究发现,研抛属于弹性加工,研抛过程中作用反力较小,因而对机床的刚度要求较低,同时,研抛机床需要在其终端执行器上安装位移-力柔顺控制器,柔顺控制器的安装使研抛加工对机床运动精度的要求被弱化。研抛加工所具有的这些工艺特性,使得-并混联机床扬长避短,可以在研抛加工中得到较好的应用。
     基于对吉林省科技发展重点规划课题“精密自动研抛加工模具自由曲面的虚拟轴专用机床”的研究(机床照片见图1),本文就-并混联研抛机床的概念设计、运动学分析、插补控制、研抛实验等问题展开研究。
     对联构型、并联构型、混联构型机床的结构特性、运动特性、控制特性等内容进行
In 1994 on the Chicago international exhibition of machine tool (IMTS'94), the parallel machine tools of Hexapod and Variax are displayed by the Ingersoll and Giddings & Lewis company of America for the first time, and it is paid close attention by the whole world. Based on the three dimensional parallel mechanism, the parallel machine tool founds a new principle of the construction and the kinematics for the machine tool, and is known as " the biggest transformation and innovation of the mechanism for machine tool in this century "," the machine tool of the 21 century ". In after years, the manufacturers of Italy, Japan, Russia, Norway, Switzerland, Sweden and Danish etc. develop parallel machine tool competitively. In the end of 1997, the first parallel machine tool VAMT1Y of our country was developed by the Tsinghua University and Tianjin University jointly.Compared with the traditional series machine tool, the parallel machine tool has many merits on the aspect of the structure and the kinematics characteristic such as higher proportion of the rigidity and weight, less quality of the moving parts, rapider respond speed, less error accumulation, easier realization for 6 axles uniting to move, easier calculation for inverse kinematics result that is expedient for real time control, simpler structure of machine tool, higher technical additional value and so on. However, the parallel machine tool has also the disadvantages such as smaller work space, more difficult calculation for forward kinematics result, deeper nonlinear coupling among each axis and more complex control for interpolation, more difficult kinematics marking, weaker rigidity and movement precision of the machine tool. It is against the shortcomings of the parallel machine tool that the hybrid machine tool with series-parallel conformation has been developed.The series-parallel hybrid machine tool has inherited all advantages of the parallel virtual axis machine tool nearly, and its workspace to be increased, the difficulty to calculate the forward kinematics result and to control the machine tool to be reduced. For these reasons, the
    series-parallel hybrid machine tool has shown powerful vitality though its rigidity and movement precision is still lower than the series machine tool. Observing the conformation of the machine tools to be made recently, mostly of them are series-parallel one.Studying the polishing for many years, the group knows that the polishing machining belongs to flexible machining. In the polishing process, the requirements for the rigidity and the movement precision of the machine tool are both lower because the active force of the polishing process is smaller and the displacement-force obedience controller is installed in the bearing rod of the polishing tool. For these reasons, the series-parallel hybrid machine tool can be used as a better polishing machine tool.Based on the polishing machine tool made by the group, these questions such as the conception design, the kinematics analysis, the interpolation control and the polishing experiment of the series-parallel hybrid polishing machine tool have been discussed deeply in the paper. Fig. 1 is the photo of the machine tool.Fig. 1 The photo of the machine tool1. Column 2. Drive bolt 3. Sliding block 4. Bearing rod 5. U-joint 6 Moving platform 7. Series mechanism S. Polishing tool 9. Fixed platform Fig. 2 The mechanism of the machine toolAfter analyzing the structure characteristic, the kinematics characteristic and the control characteristic among the series conformation, the parallel conformation and the series-parallel conformation, select the conformation connected 2 series rotation mechanisms on the 3 DOFS translation moving platform as the conformation of the polishing machine tool. Fig. 2 is the mechanisms of the machine tool.The chain structure of 3 DOFS translation platform is analyzed. Through the method of
    homogeneous transformation and the analysis of dimensional geometry connection about the position-posture of the parallel platform, the closed position connection of the parallel platform is given out, and based on it, the conclusion is revealed that the most simple mechanism of the 3 DOFS translation platform is 3 single-link chains mechanism which is symmetrical in space and jointed by Hook joints. The structure parameters are discussed under the condition of the biggest ratio between the workspace and the structure space of the platform.Based on the closed position connection of the parallel platform, the forward kinematics result of the machine tool is given out, and the workspace of the machine tool is discussed in form and shape. The workspace of the series-parallel hybrid virtual axis polishing machine tool is a column space that is made up of 3 circular-arc surfaces, and its top and bottom are both the complex curved surface consists of 4 ball-arc surfaces. The concept of tool flexibility was introduced firstly in the analysis of machine tool workspace, and according to it, the workspace of the machine tool is divided into four kinds of flexible workspace, the full flexible-workspace, the most flexible-workspace, the fraction flexible-workspace and unhandy workspace. The main influence factor on the full flexible-workspace of the machine tool is the bearing rod length of the polishing tool. The workspace of the machine tool is shown as Fig. 3.
    Based on the closed position connection of the parallel platform and the requirement of position-posture on polishing tool, the inverse kinematics result of the machine tool is analyzed in form and calculating method. Being the polishing posture angle 8X, the axes of the polishing tool bearing rod can form a cone with half-angle 5X (shown as Fig. 4). That makes the inverse kinematics result of the machine tool have the characteristic of more values and uncertainty. In order to make the inverse kinematics result uniquely, the technical restricting conditions and the motion restricting conditions should be appended. The relations among the active force, the polishing velocity and the polishing posture angle Sx are analyzed, and the technical restricting conditions, the motion restricting conditions are put forward. The method of calculating the polishing posture in four kinds of flexible workspace is introduced. After that, the inverse kinematics result of the machine tool is given out. Fig. 5 is the semi-cone that the axes of the polishing tool bearing rod should be located on. ,F. F.Semi-coneBearing rod^ Polishing toolPolishing surfaceFig. 4 The posture cone of the polishing tool Fig. 5 Semi-cone the axes of the polishing toolbearing rod located onAccording to the property of the variable definition region of the NURBS curved surface, the polishing path has been planned. For the reason of its excellent property, online direct interpolation control is chosen as the interpolation control method of the new developing system.Based on the analysis about the row space of the polishing trace and its influence factor, the interpolation step size and its influence factor, the methods how to determine the row space of the polishing trace and the interpolation step size are given out. The relation between row space and radius of the curved surface is shown in Fig. 6, and the relation between interpolation step size and radius of the curved surface is shown in Fig. 7.
引文
[1] 施法中.计算机辅助几何设计与非均匀有理B样条.北京:北京航空航天大学出版社,1994
    [2] Vergeest S M. CAD Surface data exchange using STEP. CAD, 1991, 23 (1): 269-281
    [3] 朱心雄.自由曲线曲面造型技术.北京:北京航空航天大学出版社,2000
    [4] 汪劲松,黄田.并联机床——机床行业面临的机遇与挑战.中国机械工程,1999,10(10):1103-1107
    [5] Stewart D. A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 1965, 180(5): 371-386
    [6] 汪劲松,段广洪,杨向东等.VAMT1Y虚拟轴机床.制造技术与机床.1998,2:42-43
    [7] 王知行,李建生.BY—1型并联机床.制造技术与机床,1999,9:55
    [8] Bonev I. The True Origins of Parallel Robots. The Parallel Mechanisms Information Center. 2002. www.paralemic.org.
    [9] Martin A. Das Hexapod-Teleskop. Spica. 2000.10. www.bph.ruhr-unibochum.de.
    [10] 顾锋,汪通悦,康志军等.并联机床的研究与技术进展.机床与液压,2002,6:14-16
    [11] 胡明.三杆并联平动机器人运动学、力学及误差的若干研究.博士学位论文,沈阳:东北大学,1999
    [12] 张曙,Heisel.并联机构及其应用.机电21世纪,2003,(1/2):46-52.
    [13] Kreidler V.并联运动机械及其模拟技术.第一届国际机械工程会议论文集,上海:2000:74-87.
    [14] 张曙,Heisel.并联运动机床.机械工业出版社.2003.4.
    [15] 盛忠起,姚群,蔡光起.并联机床研究.机械,2002,29(3):4-5
    [16] Patel A J, Ehmann K F. Volumetric error analysis of a Stewart platform-based machine Tool. Annals of the CIRP, 1997, 46(1): 287-290
    [17] Patel A J, Ehmann K F. Calibration of a hexapod machine tool using a redundant leg. International Journal of Machine Tools and Manufacture. 2000, 40(4): 489-512
    [18] Tlusty J, Ziegert J, Ridgeway S. Fundamental comparison of the use of serial and parallel kinematics for machine tools. Annals of the CIRP, 1999, 48(1): 351-356
    [19] EI-Khasawneh B S, Ferreira P M. Computation of stiffness and stiffness bounds for parallel link manipulators. International Journal of Machine Tools and Manufacture, 1999, 39(2): 321-342
    [20] Rehsteiner F, Neugebauer R, Spiewak S, et al. Putting parallel kinematics machines(PKM) to productive work. Annals of the CIRP, 1999, 48(1): 345-351
    [21] Wang Jinsong, Wang Zhonghua, Huang Tian, et al. Nonlinearity for a parallel manipulator machine tool and its application on interpolation accuracy analysis. Science in China Series E, 2002, 45(1): 97-105
    [22] 朱煜.并联类装备虚拟产品设计系统研究.博士学位论文,北京:中国矿业大学,2001
    [23] 黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997
    [24] 杨建新,郁鼎文,王立平,汪劲松.并联机床研究现状与展望.机械设计与制造工程,2002,31(3):10-13
    [25] 黄田,倪雁冰,王洋,林汉元.3-HSS并联机床运动学设计.制造技术与机床,2000,3:10-12
    [26] 李波,蔡光起.新型三杆五自由度虚轴机床五坐标加工数学模型.东北大学学报,2000,21(3):312-315
    [27] 唐晓强,汪劲松,段广洪,朱煜.新型并联机床作业空间与奇异性分析.中国机械工程,2002,13(10):817-819
    [28] 李金泉,丁洪生,付铁等.并联机床的历史、现状及展望.机床与液压,2003,3:3-8
    [29] 张龙,张友良.并联机床高速加工性能分析.机械科学与技术,2002,21(3):433-436
    [30]汪 劲松,李铁民,段广洪.并联构型装备的研究进展及若干关键技术.中国工程科学,2002,4(6):63-70
    [31] Ji Zhao, Jianming Zhan, Rencheng Jin and Minzhong Tao. An oblique ultrasonic polishing method by robot for free-form surfaces. Int. J. Mach. Tools Manufact. 2000, (6): 795-808.
    [32] J. M. Zhan, J. Zhao and M. Yu. Compliant EDM forfree-form surfaces polishing. Key Engineering Materials Trans. Tech. Publications in Switzerland (瑞士科技文献出版公司). 2001, (202-203): 73-787.
    [33] Miao Yu, Ji Zhao et al. Collision Prediction in Robotic: Ultrasonic Polishing of Moulds with Curved Surfaces. CIRP International Symposium, 1997, August, 21-22.
    [34] 三好隆志.金型磨加工——现状今后课题.型技术(日),Vol.6,No.9,1991
    [35] Weule H., Timmermann S.. Automation of the Surface finishing in the Manufacturing of Dies and Moulds. Annals of the CIRP 39 (1992): 299-302
    [36] Bogdan Nowicki. The New Method of Free form surface Honing. Annals of the CIRP 42 (1993): 425-428
    [37] 詹建明.机器人研磨自由曲面时的作业环境与柔顺控制研究.博士学位论文,长春:吉林大学,2002
    [38] 佐久间敬三,齐藤胜政等.工作机械—要素制御.日本社,1992,9
    [39] 齐藤胜政.金型加工CAD/CAM.精密工学会志(日),Vol.58,No.12,1992
    [40] A. K. Srivastava, D. B. Rogers and M. A. Elbestawi. Workpiece Burn and Surface Finish during Controlled Force Robotic Disk Grinding. Int. J. Mach. Tools Manuf. 32 (1992): 797-809
    [41] M. Shoham et al. Neural Network Control of Robot Arms. Annals of the CIRP 41 (1992): 407-411
    [42] Jia Zhixin, Zhang Jianhua and Ai Xing. Study on a new kind of combined machining technology of ultrasonic machining and electrical discharge machining. Int. J. Math. Tools Manuf. 37 (1997): 193-199
    [43] K. Suzuki et al. A New Grinding Method for Ceramics Using a Biaxially Vibrated Non-rotational Ultrasonic Tool. Annals of the CIRP 42 (1)(1993): 375-378
    [44] J. M. Zhan, J. Zhao, S. X. Xu, P. X. Zhu, Study of the contact force in free form-surfaces compliant EDM polishing by robot, Journal of Materials Processing Technology, 129(2002) 186-89.
    [45] Guvenc L, Srinivasan K, An overview of robot-assisted die and mold polishing with emphasis on process modeling, Int. Journal of Manufacturing System, 1997, 16(1): 48-58.
    [46] Kuo R J, A robotic die polishing system through fuzzy neural networks, Computers in Industry, 1997, 32(3): 273-280.
    [47] Ji Zhao, Jianming Zhan, Rencheng Jin, Minzhong Tao, An oblique ultrasonic polishing method by robot for free-form surfaces, International Journal of Machine Tools & Manufacture, 40 (2000) 795-808.
    [48] Zhao Ji, K. Saito et al., A new method of automatic polishing on curved aluminium alloy surface at constant pressure, Int. Journal of Machine Tools & Manufacture, 35(1995) 1683-1692.
    [59] Hon-yuen Tam et al., Robotic polishing of free-form surfaces using scanning paths, Journal of Material Processing Technology, 1999, 95: 191-200.
    [50] J. M. Zhan, J. Zhao, M. Yu, Compliant EDM for free-form surfaces polishing, Key Eng. Mater. (2001) 202-203.
    [51] M. Yu, J. Zhao et al., Collision prediction in robotic ultrasonic polishing of moulds with cured surface, in: CIRP International Symposium, 21-22 August, 1997.
    [52] J. M. Zhan, J. Zhao et al., Force control and its effects on the polishing results in the robot-ultrasonic polishing, in: Proceedings of Conference on Advanced Manufacturing Technology, 16-19 June, 1999.
    [53] J. Zhao, J. M. Zhan, P. X. Zhu, R. C. Jin, Assessment and optimization for robot ultrasonic polishing, J. Mech. Eng. 82 (1) (2000) 71-74 (in Chinese).
    [54] 詹建明,赵继,祝佩兴.机器人超声研抛自由曲面的精加工系统.中国机械工程,2000,11(80):852-854
    [55] 王通,袁楚明,陈幼平等.机器人模具抛光自由曲面刀具轨迹的生成研究.中国机械工程,2001,12(4):401-404
    [56] 张雷,袁楚明,陈幼平,周祖德.模具曲面机器人抛光工艺过程的建模与仿真.华中科技大学学报,2001,29(4):50-52
    [57] 张雷,袁楚明,周祖德,陈幼平.模具曲面抛光过程中表面去除的实验研究.汽车工艺与材料,2001,2:1-3
    [58] 袁楚明,张雷,陈幼平,周祖德,谭汉元.机器人辅助模具自动抛光研究及发展趋势.中国机械工程,2000,11(12):1428-1430
    [59] Guvenc L, Srinivasan K. An Overview of Robot-assisted Die and Mold Polishing with Emphasis on Process Modeling. Int. Journal of Manufacturing System, 1997, 16(1): 48-58
    [60] 施浒立,陈志平,贺存君.机电产品的现代概念设计.机电工程,2002,19(4):4-6
    [61] 亢金月.机电一体化系统设计理论与方法的研究.学位论文,上海,上海交通大学,1996
    [62] 李瑞琴,邹慧君.机电一体化产品概念设计理论研究现状与发展展望.机械设计与研究,2003,19(3):10-13
    [63] 陈琪,徐林林.产品创新与概念设计技术研究.机电产品开发与创新,2003,2:44-46
    [64] 成经平.产品概念设计中的创新设计方法及研究.机电产品开发与创新,2002,3:27-29
    [65] 刁培松,仪垂杰,邢建国等.概念设计的动态规划评价模型.机械设计与研究,2003,19(4):25-27
    [66] 费丽兰,张家泰.概念设计及机械产品计算机辅助概念设计过程分析.应用科技,2003,30(11):5-7
    [67] 郭为忠,梁庆华,邹慧君.机电一体化产品创新的概念设计研究.中国机械工程,2002,13(16):1411-1415
    [68] Vollbracht G T. The Time for CAEDM Is Now. SDRC Corp. Technical Report. CAE, CAD/CAM Section, 1988, 10(7): 28
    [69] French M J. Conceptual Design for Engineers. London: Springer, 1999: 1-15
    [70] Pahl G. Beitz W. Engineering Design. London: The Design Council, 1984
    [71] Tomiyama T, Kiriyama T, Umeda Y. Toward Knowledge Intensive Engineering. In: Proceedings of the 1994 Lancaster International Workshop on Engineering Design CACD'94: Conceptual Design, Lancaster, 1994: 319-338
    [72] Bracewell R H, Sharpe J E E. Functional Descriptions Used in Computer Support for Qualitative Scheme Generation-"Scheme builder", AIEDAM, 1996, 10(4): 333-345
    [73] Sturges R H, O'Shaughnessy K, Kilani M I. Computational Model for Conceptual Design Based on Extended Function Logic. AIEDAM, 1996, 10(4): 255-274
    [74] 宋慧军,林志航,罗时飞.机械产品概念设计中的知识表示.计算机辅助设计与图形学学报,2003,15(4):439-443
    [75] 柴保明.机械系统概念设计阶段设计方案综合选优决策方法.煤矿机械,2004,5:5-6
    [76] 邹光明,胡于进,肖文生,李成刚.基于功能基的产品概念设计模型研究.中国机械工程,2004,15(3):206-210
    [77] 景旭文,易红,潘宝俊等.基于数据挖掘工具的机械产品概念设计研究.机械科学与技术,2004,23(10):1215-1218
    [78] 胡伟,李彦,赵武.基于网络白板的概念设计系统研究.机械工程师,2004,1:32-35
    [79] 李善仓,李宗斌.加工中心概念设计方案的综合评判法.机械设计与研究,2003,19(5):13-16
    [80] 费丽兰.概念设计过程及其计算机辅助实现技术的研究.硕士学位论文,哈尔滨:哈尔滨工程大学,2003
    [81] 刘辛军,汪劲松等.一种新型空间3自由度并联机构的正反解及工作空间分析.机械工程学报,2001(10):36-39
    [82] Gosselin C M, Lemieux S, Merlet J. P. A new architecture of planar three-degrees-of freedom parallel manipulator. In: IEEE Int. Conf. on Robotics and Automation, 1996: 3738-3743
    [83] 理查德·摩雷,李泽湘,夏恩卡·萨思特里著;徐:卫良,钱瑞明译.机器人操作的数学导论.北京:机械工业出版社,1997
    [84] 牧野洋,谢存禧,郑时雄著.空间机构及机器人机构学.北京:机械工业出版社,1987
    [85] 孔迪生,王炎.机器人控制技术.北京:机械工业出版社,1997
    [86] 孙增圻.机器人智能控制.北京:北京教育出版社,1995
    [87] 申铁龙.机器人鲁棒控制基础.北京:清华大学出版社,2000
    [88] 《机械设计手册》编写组.机械设计手册.北京:机械工业出版社,1998
    [89] Piegl L. On NURBS: A survey. IEEE Computer Graphics and Applications, 1991, 11(1): 55-71
    [90] Rogers D. Earnshaw R (editors). State of the Art in Computer Graphics - Visualization and Modeling. New York, Springer- Verlag, 1991, 225-269
    [91] Piegl L, Tiller W. Computing the derivative of NURBS with respect to a knot. Computer Aided Geometric Design, 1998, 15(9): 925-934
    [92] Piegl L, Tiller W. Geometry-based triangulation of trimmed NURBS surfaces. Computeraided Design, 1998, 30(1): 11-18
    [93] Computer-Aided Design 1988, 20(3): 127-136
    [94] S. Kawabe, E Kimura, T. Sata, Generation of NC commands for sculptured surface machining form 3-coordinate measuring data, CIRP Ann. 1981, 30(1): 369-372
    [95] G. Loney, T. Ozsoy, NC machining of free form surfaces, Computer-Aided Design. 1987, 19 (2): 85-90
    [96] D. Wsocki, J. Oliver, E. Goodman, Gouge detection algorithms for sculptured surface NC generation, in: ASME Winter Annual Meeting, Computer-aided Design and Manufacture of Cutting and Forming Tools, 1989: 39-44.
    [97] H. T. Yau, C. H. Meng, Automated CMM path planning for dimensional inspection of dies and molds having complex surfaces, International Journal of Machine Tools and Manufacture. 1995, 35(6): 861-876
    [98] Rong-Shine Lin, Real-time surface interpolator for 3-D parametric surface machining on 3-axis machine tools, International Journal of Machine Tools and Manufacture. 2000, 40: 1513-1526
    [99] S. Bedi, A multi-processor based surface machining system with interference checking; in: Proceedings of the Second International Conference on Advanced Manufacturing System and Technology, Trento, Italy, 1990, pp: 104-113
    [100] D. Kiritsis, High precision interpolation algorithm for 3D parametric curve generation, Computer-Aided Design. 1994, 26 (11): 850-856
    [101] C. C. Lo, Feedback interpolators for CNC machine tools, ASME Journal of Manufacturing Science and Engineering. 1997, 119 (4): 587-592
    [102] M. Shpitalni, Y. Koren, C. C. Lo, Realtime curve interpolators, Computer-Aided Design. 1994, 26 (11): 832-838
    [103] M. K. Yeung, D. J. Walton, Curve fitting with arc splines for NC tool path generation, Computer-Aided Design. 1994, 26 (11): 845-849
    [104] D. C. H. Yang, T. Kong, Parametric interpolator versus linear interpolator for precision CNC machining, Computer-Aided Design. 1994, 26 (3): 225-233
    [105] J. J. Chou, D. C. H. Yang, On the generation of coordinated motion of five-axis CNC/CMM machines, ASME Journal of Engineering for Industry. 1992, 114: 15-22
    [106] C. C. Lo, Control scheme for a five-axis machine tool based on coordinate transformation, JSME Journal series, 1997, C 40 (3): 477-483
    [107] Y. Koren, Computer Control of Manufacturing Systems, McGraw-Hill, New York, 1983
    [108] C. C. Lo, Real-time generation and control of cutter path for 5-axis CNC machining, International Journal of Machine Tools & Manufacture. 1999, 39: 471-488
    [109] 张珲,徐宗俊等.CNC机床中的NURBS插补.制造技术与机床,1999,3:19-21
    [110] 黄翔,曾荣等.NURBS插补技术在高速加工中的应用研究.南京航空航天大学学报,2002,34(1):82-85
    [111] 李国龙,郭钢,徐宗俊等.NURBS插补应用研究.制造技术与机床,2000,11:48-50
    [112] 赵鸿,袁哲俊,卢泽生.NURBS曲线插补技术的应用.制造技术与机床,1999,12:44-45