具有年龄结构的捕食者猎物模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捕食被捕食是自然界中普遍存在的种间相互作用关系之一,如食蚜蝇与蚜虫的关系。由于捕食者(如食蚜蝇)各阶段的生物学特性不同,其食性、食量、搜索率、发现率等完全不同,因此考虑具有年龄结构的捕食者与猎物模型有非常重要的理论意义和实用价值。但是,现有的捕食者与猎物模型总是假设只有成年捕食者捕食猎物而幼年不捕食,这不符合实际情况。本研究根据食蚜蝇仅在幼年捕食的生物学特点,建立了一个幼年捕食者捕食猎物的具年龄结构模型,并对其进行数学分析,解释昆虫数量动态,以期为有害生物综合治理提供理论依据。
     通过对食蚜蝇具有幼年捕食特性的捕食者的生物学特性的分析,建立了幼年捕食者捕食猎物模型,并对模型的稳定性、永久持续生存的条件以及数量变动条件和机理进行了分析,得到如下主要结论:
     首先,建立了一个幼年捕食者捕食猎物的具有年龄结构的数学模型。
     其次,根据系统的初始条件和特点,证明了系统解的正性和有界性,符合系统的生态意义。
     再次,得到了系统的三个平衡点。其中,平衡点E1为不稳定;满足一定条件时,边界平衡点E2为局部渐近稳定,此时随着时间的增加,蚜虫种群将幸存并趋于环境容纳量K,而食蚜蝇种群将灭绝,也即害虫种群将会爆发;在一定条件下,正平衡点E3亦为局部渐近稳定的,此时随着时间的增加,蚜虫和食蚜蝇种群均存活并趋于平衡态E3,此时可得到一个重要参数:天敌和害虫的益害比。利用益害比可以将害虫种群控制在平衡点附近,防止害虫种群的大爆发。所以益害比是一个控制害虫的阈值密度,也是生物防治效果中最为重要的评价参数。
     最后,应用一直生存理论,得到了系统永久持续生存的条件。在此条件下,捕食者与猎物种群都不会绝灭,将持续生存。并通过给定相应参数,对系统进行了数值模拟分析。
     综上,根据捕食性食蚜蝇的生物学特点,本研究建立了一个幼年捕食者捕食猎物的年龄结构模型,通过对其进行数学分析,讨论了系统的平衡点及其稳定性,并建立了系统持续生存的条件。以此解释昆虫种群动态,为有害生物综合治理提供了理论依据。
Predator-prey is one of the most prevalent interactions among species in the nature. For example, syrphid fly and aphid. Because the predator’s biological characteristics of each age are different, it is of very important theoretical significance and practical value to take into account the predator-prey models with age structure. For example, their feeding habits, appetite, searching rate and detection rate are absolutely different. However, the existing predator prey models with age structure always assume that only mature predators catch prey. This is inconsistent with observed fact. In this paper we establish a syrphid fly-aphid model with age structure based on the biological characteristics of the predatory syrphid fly that only the immature predators can catch prey. We also explain the insect population dynamics by a mathematical analysis of the models, in order to provide a theoretical basis for Integrated Pest Management.
     Through the analyses of syrphid fly’s biological characteristics that only the immature predators can catch prey. We establish a model with age structure that only the immature predators can catch prey. We also analyze the criterion for the stability and permanence of populations and the quantity change conditions and mechanism. Obtains the following conclusions:
     Firstly, a model with age structure that only the immature predators can catch prey was established.
     Secondly, according to the given initial conditions and characteristics of the system, we have proven that the solutions of the system are always positive and bounded.This is consistent with the ecological significance of the system.
     Thirdly, we get three equilibrium points of the system when we suppose the right-hand side is zero. The results show that one equilibrium point E1 is unstable, and the boundary equilibrium point E2 is locally asymptotically stable under certain conditions. With time increasing at the boundary equilibrium point, the aphid populations tend to survive and achieve the maximum capacity, while the syrphid fly species will get extinct, that would be the outbreak of the pest populations which should be prevented. The results also indicate that the positive equilibrium point E3 is locally asymptotically stable under certain conditions. With time increasing at this point, both the aphid and syrphid fly populations will tend to survive and approach a positive equilibrium E3. At this point we can also get the ratio of natural enemies by the pest, which is a very important parameter and can help control the pest population to reach the positive equilibrium point so as to prevent the outbreak of the pest population. So this ratio is a threshold value density to control harmful insect and the most important appraisal parameter in the effect of biological control.
     Last but not the least; we get the criterion for the permanence of populations using uniform persistence theory. Under the condition, both the predator and the prey populations will not be survive. Given certain corresponding parameters, we can draw some results of the system with numerical simulation analysis.
     To sum up, based on the biological characteristics of the predatory syrphid fly, in this article we establish a syrphid fly-aphid system with age structure, in which only the immature predators catch prey. Through mathematical analysis, we discuss the equilibrium points and stability of the system, and build a criterion for the permanence of populations. We can explain the insect population dynamics by these results. All of these results provide a foundation for Integrated Pest Management.
引文
曹玉,赵惠燕.2003.黑带食蚜蝇对禾谷缢管蚜的捕食作用研究.陕西农业科学,338:24~26.
    陈凤德,陈晓星,林兴发,黄春潮.2005.一类具有功能性反应的中立型捕食者食饵系统全局正周期
    解的存在性.数学物理学报,25A(7):981~989.
    陈风德,陈晓星,张惠英.2006.捕食者具有阶段结构HollingⅡ类功能性反应的捕食模型正周期解的
    存在性以及全局吸引性.数学物理学报,26A(1):93~103.
    陈兰荪.1988.数学生态学建模与研究方法.北京:科学出版社:129~273.
    陈兰荪,陈键.1993.非线性生物动力系统.北京:科学出版社:53~110.
    陈兰荪,井竹君.1984.捕食者-食饵相互作用中微分方程的极限环存在性和唯一性.科学通报,29(9):521~523.
    陈兰荪,宋新宇.1999.非自治阶段结构捕食系统.平顶山师专学报,14(2):1~4.
    陈兰荪,王东达,杨启昌.2000.阶段结构种群动力学模型.北华大学学报:自然科学版,1(3):185~191.
    程荣富,赵明.2008.一类捕食者与被捕食者模型定额持久性与稳定性.生物数学学报,23(2):289~294.
    崔启武,Lawson.1992.一种新的种群增长数学模型-对经典的Logistic方程和指数方程的扩充.生态学报,2(4):403~414.
    丁岩钦.1980.昆虫种群数学生态学原理与应用.北京:科学出版社.
    丁岩钦.1994.昆虫数学生态学.北京:科学出版社.
    董应才,汪世泽.1989.七星瓢虫对不同龄级棉蚜的选择性及功能反应.西北农业大学学报,17(增):67~71.
    董应才,汪世泽.1994.七星瓢虫幼虫对两种麦蚜的数值反应.生态学报,14(4):387~390.
    E.C.皮洛.1988.卢泽愚译.数学生态学.北京:科学出版社.
    马恒俊.1999.具有第Ⅲ类功能性反应的捕食者-食饵系统的定性分析.生物数学学报,14(1): 12~19.
    马知恩.1996.种群生态学的数学建模与研究.合肥:安徽教育出版社.
    马知恩,周义仓.2001.常微分方程定性与稳定性方法.北京:科学出版社:41~95.
    马智慧,李自珍,王淑璠.2008.具有阶段结构的捕食-食饵模型.兰州大学学报:自然科学版,44(2):103~106.
    范猛,王克.2001.一类具有HollingⅡ型功能性反应的食者-食饵系统全局周期解的存在性.数学物理学报,21A(4):492~497.
    耿春梅,甘文珍.2006.一类具有阶段结构的捕食模型的稳定性.扬州大学学报(自然科学版),9(1):9~14.
    国家自然科学基金委员会.1997.生态学.自然科学学科发展战略调研报告,北京:科学出版社,57~60.
    何朝晖,崔景安.2005.具有年龄结构捕食系统的永久持续生存.南京师大学报(自然科学版),28(1).
    何其慧.2009.捕食者具有阶段结构的食饵-捕食系统的研究.合肥工业大学学报(自然科学版),32(4):546~549.
    胡殿旺.2007.一类阶段结构捕食系统的持久性和全局稳定性.数学理论与应用,27(1):68~70.
    胡殿旺,戴斌祥.2007.一类阶段结构捕食系统的持久性和全局稳定性.数学理论与应用,27(l):65~70.
    黄玉梅.2006.具HollingⅡ类功能反应的时滞扩散模型的全局稳定性.生物数学学报,21(3):370~376.
    李典谟,马祖飞.2000.展望数学生态学与生态模型的未来.生态学报,20(6):1083~1089.
    李典谟,马祖飞,王正军.2002.生态模型当前的热点与发展方向——兼记2002年国际数学家大会
    生物数学卫星会议暨第四届全国数学生态学研讨会.生态学报,22(10):1788~1792.
    李金仙.2006.一类具有阶段结构捕食系统的永久持续生存.山西师范大学学报(自然科学版),20(4):34~37.
    廖晓听.1988.稳定性的数学理论及应用.武汉:华中师范大学出版社.
    林振山.2006.种群动力学.北京:科学出版社.
    刘启明.2006.一类时滞捕食系统的持续生存与全局稳定性.河北大学学报(自然科学版),26(3):238~241.
    刘旭阳.1996.生物数学与生态数学模型.湖北大学学报(自然科学版),18(1):1~6.
    陆征一,王稳地主编.2008.生物数学前沿.北京:科学出版社:48~56.
    陆征一,周义仓主编.2006.数学生物学进展.北京:科学出版社:74~87.
    秦元勋,刘永清,王联等.1989.带有时滞的动力系统的运动稳定性.北京:科学出版社.
    邱卫根,李传荣.1999.具收获项的Ⅱ类功能反应的捕食系统的定性分析.数学物理学报.
    师向云,郭振.2008.一类具有时滞和阶段结构的捕食系统的全局分析.信阳师范学院学报(自然科学版),21(1):32~35.
    SmithJ.M.著.1979.郎所译.生态学模型.北京:科学出版社.
    苏华,戴斌祥.2006.一类具有阶段结构的HollingⅡ型捕食系统的一致持久性.经济数学,23(3):293~296.
    孙多如.2007.生物种群的数学模型.[硕士学位论文].济南.山东大学.
    滕志东,陈兰荪.1999.非自治竞争Lotka-Volterra系统的持续生存和全局稳定.高校应用数学学报,14(2).
    滕志东,段魁臣.1990.三种群生态系统的持续生存.生物数学学报,5(1),33~41.
    肖氏武,王稳地.2003.一类具阶段结构的捕食者-食饵模型的周期解.西南师范大学学报:自然科学版,127:869~873.
    肖燕妮,陈兰荪.2002.具有阶段结构的竞争系统中自食的稳定性作用.数学物理学报,22A(2):210~216
    王芳,程惠东.2009.具有HollingⅡ功能反应和阶段结构的捕食者-食饵系统的一致持久与全局渐进稳定性.山东理工大学学报(自然科学版),23(5):9~12.
    王高雄等编.2002.常微分方程(第二版)(修订).北京:高等教育出版社.
    王豪,郑丽丽.2004.一类具有阶段结构和时滞的捕食与被捕食系统.信阳师范学院学报:自然科学版,17(2):140~145.
    汪世泽,李平.1986.七星瓢虫捕食棉蚜的功能反应.西北农业大学学报,14(4):13~16.
    汪世泽,夏楚贵.1987.Holling圆盘方程的改进.生态学杂志,6(6):17~18.
    汪世泽,夏楚贵.1988.Holling-Ⅲ型功能反应新模型.生态学杂志,7(l):1~3.
    王寿松.1990.单种群生长的Logistic模型.生物数学学报,5(1):21~25.
    王顺庆,王万雄等.2004.数学生态学稳定性理论与方法.北京:科学出版社.
    王育全,沈佐锐,高灵旺,马晓光.2007.一类具有年龄结构的麦蚜-瓢虫模型的全局分析.生物数学学报,22(1):59~66.
    伍代勇.2007.一类具有阶段结构的捕食-被捕食系统的渐进性质.淮北煤炭师范学院学报(自然科学版),28(4):18~22.
    徐长永,王美娟,周艳丽.2006.阶段结构和Hol1ingⅡ类功能反应的捕食系统研究.上海理工大学学报,28(5):449~454.
    徐汝梅,成新跃.2005.昆虫种群生态学.北京:科学出版社:350~383.
    徐瑞,郝飞龙,陈兰荪.2006.一个具有时滞和阶段结构的捕食-被捕食模型.数学物理学报,26A(3):387~395.
    张发秦,樊永红.2000.具功能性反应的食饵-捕食者两种群模型的定性分析.兰州大学学报(自然科学版),36(1):12~16.
    于宇梅,张勇,王稳地.2001.一类强身型食饵-捕食者模型的渐近性态.西南师范大学学报(自然科学版),26(2001):363~367.
    张炳根.1990.生态学数学模型.青岛:青岛海洋大学出版社.
    张锦炎,冯贝叶.2000.常微分方程几何理论及分支问题(第三版).北京:北京大学出版社.
    张娟,马知恩.1996.一类具HollingⅡ类功能性反应且存在两个极限环的捕食系统的定性分析.生物数学学报,11(4):37~42.
    张少林,朱婉珍.2006.具有阶段结构的连续时滞生态系统的一致生存与全局渐近稳定性.浙江大学学报,33(4):376~378.
    张树文,谭德君,刘兵.2001.捕食者与食饵均具有阶段结构捕食系统的研究.生物数学学报,16(2):162~168.
    张芷芬,丁同仁,黄文灶,董镇喜.1997.微分方程定性理论.北京:科学出版社.
    赵惠燕.1990.温度对萝卜蚜种群参数影响的研究.生态学报,10(3):202~212.
    赵惠燕,汪世泽.1991.麦蚜天敌自然种群数值反应研究.西北农业大学学报,19(3):32~35.
    赵学达,赵惠燕,刘光祖等.2005.天敌胁迫下食饵种群动态模型的突变分析.西北农林科技大学学报(自然科学版),33(4):65~68.
    赵中华.2001.昆虫种群动态非线性建模理论与应用.生物数学学报,16(4):430~447.
    郑立飞,赵惠燕,刘光祖.2003.Richards模型的推广研究.西北农林科技大学学报(自然科学版),32(8):107~110.
    郑丽丽,宋新宇.2004.一类带有扩散和时滞的捕食与被捕食模型的渐近性质.应用数学学报,27(2):361~370.
    周波,冯毅夫.2003.HollingⅢ功能反应的捕食系统的一致持续生存性.吉林师范大学学报(自然科学版),4:32~33.
    邹运鼎,毕守东等.1995.各种天敌对棉蚜种群动态数量影响程度的研究.应用生态学报,9(5):499~502.
    Aiello W.G., Freedman H.I.. 1990. A time-delay model of single-species growth with stage-structure. Math. Biosci, 101(1990):139~153.
    Aiello W G., Freedman H.I., Wu J.H.. 1992. Analysis of a model representing stage-structured population growth with stage-dependent time delay. SIAM J.Appl.Math,. 52(1992),855~869.
    Cai L M. 2008. A Kind of Stage-structured Fishery Model with Harvesting. Journal of Xinyang NormalUniversity, Natural Science Edition, 21(1):27~31.
    H. Smith. 1987. Monotone semiflows generated by functional differential equations. Journal ofdifferential equations, 66: 420~442.
    Hutson V, Schmitt K. 1992. Permanence in dynamical systems. Math. Biosc,. 111:1~71.
    Jiang G R, Lu Q Sh, Luo G L. 2003. Impulsive Control of a Stage-structured Pest Management System. Journal of Mathematical Study, 36(4):331~344.
    J.K. Hale and P. Waltman. 1989. Persistence in infinite-dimensional systems. Society for Industrial and Applied Mathematica, 20: 388~396.
    Kuang Y. 1993. Delay Differential Equations With Applications in Population Dynamics. New York: Academic Press.
    Liu Q. 2009. A Stage-Structured Predator-Prey System with Time Delay and TypeⅢFunctional Response. Guangxi Sciences, 16(2): 126~130.
    Liu S, Beretta E. 2006. A stage-structured predator-prey model of Bedding-DeAngelis type. SIAM J.Appl.Math, 66:1101~1129.
    Liu S, Chen L. 2002. Recent Progress on Stage-structured Population Dynamics. Mathematical and Computer Modeling, 36(11~13):1319~1360.
    Song X Y, Chen L S. 2002. Optimal Harvesting and Stability for a Predator-prey System with Stage Structure. Acta Mathematicae Applicatae Sinica, Vol.18, No.3:423~430.
    Song X Y, Chen L S. 2001. Optimal harvesting and stability for a two species competitive system with stage structure. Mathematical Biosciences, 170(2):173~186.
    Wang W and Ma Z. 1991. Harmless delays for uniform persistence. Math and Ana, Appl. 158: 256~268.
    Wang W D, Chen L S. 1997. A predator-prey system with stage structure for predator. Computers and Mathematics with Applications, 33 (8): 83~91.
    Xiao Sh W, Wang W D, Jin Y. 2007. Asymptotic Behavior of a Predator-Prey Population Model with Stage-Structure. Journal of Biomathematics, 22(1):37~45.
    Xiao Y and Chen L. 2001. Modeling and analysis of a predator-prey model with disease in the prey. Math. Biosci, 171: 59~82.
    Xiao Y N,Chen L S. 2003. Global Stability of a Predator-Prey System with Stage Structure for the Predator. Acta Mathematica Sinica, English Series, 19(2): 1~11.
    Yang J G, ZHou X Y, SHi X Y. 2009. Analysis of a Stage-structured Predator-prey Model with Delay. Journal of Xinyang Normal University (Natural Science Edition), 22(3):321~324.
    Zeng G Zh, Sun L H. 2005. Permanence and Existence of Periodic Solution of Non-autonomous Predator-Prey Model with Stage Structure and Delay. Journal of Biomathematics, 20(2): 149~156.