NaHCO_3胁迫下柽柳根部组织基因的表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柽柳(Tamarix spp.),灌木(或小乔木),广泛分布于中国西部和中亚地区,能够在干旱和盐渍化土地上生长,对干旱、盐渍、高温等非生物胁迫具有很强的耐受能力,是改造环境的理想树种,也是研究植物抗逆机理和克隆抗逆基因的理想材料。
     本研究以0.3M NaHCO3处理的柽柳根部组织为材料,利用Solexa技术建立胁迫0(对照),12,24和48h的柽柳转录组,共获得81344个Unigenes.通过转录组分析,与对照相比,胁迫12、24和48h显著差异表达的基因分别有3976、6057和3069个。为了鉴定差异表达基因与胁迫之间的关系,对基因表达模式的动态变化进行了聚类分析,差异基因可以分为10类显著共表达的基因表达模式。对共表达的差异表达基因进行GO功能富集分析,结果显示细胞防护、蛋白结构保护和修复、胁迫应答信号通路、细胞内离子平衡保持和重建等生物过程在柽柳抵抗逆境胁迫中具有重要作用。鉴定了15个转录因子家族的1605个基因,这些转录因子家族包括MYB,MYC,bZIP, ERF,WRKY,NAC,ABRE,DREB,bHLH和MADS Box等,这些家族基因的表达大部分都响应NaHCO3胁迫。此外,NaHCO3胁迫下,脯氨酸和海藻糖合成相关基因的表达量增加,提示胁迫下柽柳的脯氨酸和海藻糖含量提高。同时。15个编码热激蛋白的转录本的表达显著变化(占总数45%)。另外,分别有32.7%-50.5%的差异表达基因为未知功能的新基因,说明这些基因在柽柳的胁迫应答反应中也具有重要作用。总之,对这些胁迫应答的关键基因进行系统的分析对深入了解柽柳耐盐机理具有重要意义。
     从柽柳中克隆获得14个脂质转运蛋白基因(ThLTP1-14),利用实时荧光定量RT-PCR技术对这些基因在不同的非生物胁迫和外源激素ABA处理下柽柳根、茎、叶中的表达模式进行研究。结果表明,正常生长条件下,14个ThLTPs在根、茎、叶中均表达。但是,在相同组织中它们的基因表达量存在明显差异,在根、茎、叶中分别相差3700倍、540倍和9000倍,说明它们在柽柳组织器官中活性和生理功能可能不同。14个脂质转运蛋白基因和在NaCl,PEG,NaHCO3和CdCl2胁迫下至少在一个组织中表达发生明显改变(>2倍),并且所有基因的表达均受ABA高度诱导,说明这些基因的表达依赖于ABA信号转导途径,参与柽柳非生物胁迫应答。
     水通道基因在响应干旱和盐碱胁迫中其重要作用。本研究克隆了18个水通道蛋白基因(ThAQP1-18)。实时荧光定量RT-PCR结果表明,这些基因至少在一个组织中表达发生明显改变,且相对于茎和叶,在根组织中受诱导程度更高,表明这些基因可能主要在柽柳根部胁迫应答反应中发挥作用。其中ThAQP2.ThAQP11和TgAQP14在胁迫前后表达差异最明显,表明这些基因与柽柳非生物胁迫的耐受性密切相关,可作为候选的抗逆基因资源对其功能和调控机理进行深入研究。
     为了深入了解柽柳水通道蛋白的表达调控途径,我们选取了一个受非生物胁迫高度诱导表达的水通道蛋白基因(ThAQP11),利用TAIL-PCR技术克隆得到ThAQP11启动子序列,长度1605bp。序列分析发现,该启动子区域包含多种与逆境响应相关的顺式作用元件,如MYB.MYC.WRKY.ABRE等。将其定向替换植物表达载体pCAMBIAl301中的35S启动子,构建了ThAQP11启动子驱动GUS的二元表达载体,浸花法转化拟南芥再通过GUS染色研究ThAQP11启动子活性和基因的特异性表达。结果显示ThAQP11基因启动子可以驱动GUS,而且其表达有一定的组织特异性,主要在子叶、主根和叶脉表达。利用酵母单杂交技术筛选与其启动子ABA应答顺式作用元件ABRE互作的上游调控因子,得到一个bZIP类转录因子,表明ThAQP11响应逆境胁迫可能是由于逆境胁迫会促使细胞内ABA含量增加,激活bZIP转录因子,调控bZIP转录因子与启动子上ABRE元件的相互作用,从而促进了ThAQP11的表达。
Tamarix plants, which include shrubs or small trees, are widely distributed in drought-stricken areas and in salinic soil in Central Asia and Western of China. Tamarix plants are highly tolerant to different abiotic stresses including drought, salinity and high temperatures, thus making them ideal plants to aid reversing environmental degradation. These characteristics make them also valuable for the study of mechanisms of stress resistance.
     To investigate stress responses in plant roots, four transcriptomes from roots of Tamarix hispida treated with NaHC03for0,12,24and48h were built using Solexa technology. In total,81,344unigenes were generated. There were3,976,6,057and3,069genes significantly differentially expressed after stress for12,24and48h, respectively. The dynamic changes in the differentially expressed genes (DEGs) and their relationship to stress were identified. Ten clusters of genes were found to be significantly co-expressed. GO-enriched analysis showed that the processes of cellular protection, protection and repair of damaged structural proteins, signal pathway responses to stress, and maintaining and re-establishing cellular ion homeostasis may play major roles in the stress tolerance of T. hispida. We examined15transcriptional factor (TF) families from the transcriptomes, including Myb, Myc, bZIP, ERF, WRKY, NAC, ABRE, DREB, bHLH, and MADS Box. These TF families contained1605unique TF genes. DGE analysis showed that the largest numbers of TFs were differentially expressed at24h, followed by12and48h. Under NaHCO3stress, genes involved in proline and trehalose synthesis were highly induced, suggesting that proline and trehalose levels were highly increased in T. hispida. Fifty heat shock proteins (45%in total) were DEGs, suggesting important roles in stress tolerance. Novel genes accounted for a high percentage (32.7%-50.5%) of total DEGs, indicating their importance for an in-depth characterization of stress tolerance mechanisms. This systematic analysis has identified several stress response genes pivotal for an in-depth characterization of stress tolerance mechanisms in plants.
     In this study, we cloned14unique LTPs genes (ThLTP1-14) from T. hispida to investigate their roles under various abiotic stress conditions. The expression profiles of the14ThLTPs in response to various abiotic stresses and abscisic acid (ABA) exposure in root, stem and leaf tissues were investigated using real time RT-PCR. The results showed that all14ThLTPs were expressed in root, stem and leaf tissue under normal growth conditions. However, under normal growth conditions, ThLTP abundance varied from each organ, with expression differences of9000-fold in leaves,540-fold in stems, and3700-fold in roots. These results indicated that activity and/or physiological importance of these ThLTPs are quite different. Differential expression of the14ThLTPs and18ThAQPs were observed (>2-fold) for NaCl, PEG, NaHCO3and CdCl2in at least one tissue indicating they were all involved in abiotic stress responses. All ThAQPs were highly induced (>2-fold) under ABA treatment in roots, stems and/or leaves, and suggesting they are regulated by the ABA signal transduction pathway. In addition, ThAQPs were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stem and leaves. We hypothesize that ThLTPs and ThAQPs expression constitutes an adaptive response to abiotic stresses in T. hispida and plays an important role in abiotic stress tolerance.
     To investigate the expression pattern of ThAQP11, the promoter of ThAQPll was isolated using TAIL-PCR approach. The obtained promoter sequence is1605bp in length and contains some stress-response cis-acting elements such as MYB, MYC, WRKY, ABRE and so on. The promoter of ThAQP11was inserted into a plant expression vector pCAMBIA1301to replace CaMV35S promoter (PAQ11:GUS). The Arabidopsis seedlings tansformed with PAQ11: GUS were obtained. The histochemical GUS staining analysis showed that the ThAQP11mainly expressed in cotyledon, leaf veins and taproot.
     To screen the upstream regulatory genes of ThAQP11promoter using yeast one-hybrid, a bZIP transcription factor binding to cis-element ABRE was obtained. The results indicated that the bZIP can regulate the expression of ThAQP11through interaction with the cis-acting elements ABRE under abiotic stresses.
引文
[1]Bernstein L. Osmotic adjustment of plants to saline media. I. Steady state. American Journal of Botany,1961:909-918.
    [2]Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology,2000,51 (1):463-499.
    [3]Rodriguez HG, Roberts JK M, Jordan WR, et al. Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant physiology,1997,113 (3):881-893.
    [4]赵可夫,范海.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究.应用与环境生物学报,2000,(02):99-105.
    [5]Flowers TJ, Yeo A. Ion relations of plants under drought and salinity. Functional Plant Biology,1986,13 (1):75-91.
    [6]Cheeseman JM. Mechanisms of salinity tolerance in plants. Plant physiology,1988,87 (3):547-550.
    [7]Sommer C, Thonke B, Popp M. The compatibility of D-pinitol and 1D-1-O-methyl-muco-inositol with malate dehydrogenase activity. Botanica acta,1990,103 (3):270-273.
    [8]Banu MNA, Hoque MA, Watanabe-Sugimoto M, et al. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology,2009,166 (2):146-156.
    [9]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版)2003,(02):177-182.
    [10]刘凤华,郭岩,谷冬梅等.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,(01):56-60.
    [11]赵可夫.植物抗盐生理.北京:中国科学技术出版社.1993.
    [12]刘凤华,孙仲序.细菌mtl—D基因的克隆及在转基因八里庄杨中的表达.遗传学报,2000,27(5):428-433.
    [13]王慧中,黄大年,鲁瑞芳等.转mt1D/gutD双价基因水稻的耐盐性.科学通报,2000,45(7):724-729.
    [14]戴秀玉,王忆琴.大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究.微生物学报,2001,41(004):427-431.
    [15]戴秀玉,吴大鹏,周坚.大肠杆菌海藻糖合成酶基因的克隆和表达.遗传学报,2000,27(2):158-164.
    [16]Singh NK, Nelson DE, Kuhn D, et al. Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant physiology,1989,90 (3):1096-1101.
    [17]Bressan R, Singh N, Handa A, et al. Stability of altered genetic expression in cultured plant cells adapted to salt. Drought Resistance in Plants, Physiological and Genetic Aspects Commission of the European Communities, Washington, DC,1987:41-58.
    [18]何宝坤,李德全.植物渗调蛋白的研究进展.生物技术通报,2002,(2):6-10.
    [19]Flowers T, Troke P, Yeo A. The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology,1977,28 (1):89-121.
    [20]Michelet B, Boutry M. The Plasma Membrane H+-ATPase (A Highly Regulated Enzyme with Multiple Physiological Functions). Plant physiology,1995,108 (1):1- 6.
    [21]Guo F, Bang Z. Enhanced H+ transport activity of tonplast vesicles isolated from roots of salt-tolerant multanto. Chin Sci Bull,1999,4 (13):1198.
    [22]Blumwald E, Gelli A. Secondary inorganic ion transport at the tonoplast. Advances in Botanical Research,1997,25:401-417.
    [23]Yokoi S, Quintero FJ, Cubero B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. The Plant Journal,2002,30 (5):529-539.
    [24]Pardo JM, Quintero FJ. Plants and sodium ions:keeping company with the enemy. Genome Biology,2002,3 (6):reviews1017.
    [25]Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999,285 (5431):1256-1258.
    [26]Hedrich R, Schroeder JI. The physiology of ion channels and electrogenic pumps in higher plants. Annual Review of Plant Biology,1989,40 (1):539-569.
    [27]Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant Journal,2001,27 (2) 129-138.
    [28]Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National Academy of Sciences,2001,98 (24):14150-14155.
    [29]Liu W, Fairbairn DJ, Reid RJ, et al. Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant physiology. 2001,127 (1):283-294.
    [30]Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences,2000,57 (5):779-795.
    [31]Orozco-Cardenas M, Ryan CA. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences,1999,96 (11):6553-6557.
    [32]Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science,2001,161 (3):613-619.
    [33]Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. The Plant Cell,2002,14 (suppl 1):S165-S183.
    [34]Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment,2010,33 (4):453-467.
    [35]Sekmen AH, Turkan I, Takio S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia plantarum,2007,131 (3):399-411.
    [36]Gupta AS, Heinen JL, Holaday AS, et al. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences,1993,90 (4):1629-1633.
    [37]Tanaka Y, Hibino T, Hayashi Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science,1999,148 (2):131-138.
    [38]Roxas VP, Smith RK, Allen ER, et al. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology,1997,15 (10):988-991.
    [39]Roxas VP, Lodhi SA, Garrett DK, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant and cell physiology,2000,41 (11):1229-1234.
    [40]Costa V, Angelini C, De Feis I, et al. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol,2010,853916.
    [41]Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nature Reviews Genetics,2009,10 (1):57-63.
    [42]Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270 (5235):467-470.
    [43]Rensink WA, Buell CR. Microarray expression profiling resources for plant genomics. Trends in plant science,2005,10 (12):603-609.
    [44]Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science, 1995,270 (5235):484-487.
    [45]包文斌,陈国宏,束婧婷等.基因表达系列分析(SAGE)及其在生命科学中的应用.中国兽医学报,2008,28(001):106-110.
    [46]Hu M, Polyak K. Serial analysis of gene expression. Nature protocols,2006,1 (4) 1743-1760.
    [47]Matsumura H, Nirasawa S, Terauchi R. Technical advance:transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). The Plant Journal,1999,20 (6):719-726.
    [48]Jung SH, Lee JY, Lee DH. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant molecular biology,2003,52 (3) 553-567.
    [49]Lee JY, Lee DH. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant physiology,2003, 132 (2):517-529.
    [50]Fizames C, Munos S, Cazettes C, et al. The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant physiology,2004,134 (1):67-80.
    [51]Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology,2000,18 (6):630-634.
    [52]陈杰.大规模平行测序技术(MPSS)研究进展.生物化学与生物物理进展,2004,31(008):761-765.
    [53]Jongeneel CV, Iseli C, Stevenson BJ, et al. Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing. Proceedings of the National Academy of Sciences,2003,100 (8):4702-4705.
    [54]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences,1977,74 (12):5463-5467.
    [55]Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science, 2001,291 (5507):1304-1351.
    [56]Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002,296 (5565):79-92.
    [57]Goff S A, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp.japonica). Science,2002,296 (5565):92-100.
    [58]Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437 (7057):376-380.
    [59]Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology,2008,26 (10):1135-1145.
    [60]Ruparel H, Bi L, Li Z, et al. Design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis. Proceedings of the National Academy of Sciences of the United States of America,2005, 102 (17):5932-5937.
    [61]Seo TS, Bai X, Kim DH, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (17):5926-5931.
    [62]Ju J, Kim DH, Bi L, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proceedings of the National Academy of Sciences,2006,103 (52):19635-19640.
    [63]Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature,2008,456 (7218):53-59.
    [64]Mardis ER. The impact of next-generation sequencing technology on genetics. Trends in Genetics,2008,24 (3):133-141.
    [65]http://www.illumina.com/index.ilmn
    [66]Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science (Washington),1998,281 (5375):363-365.
    [67]Smith DR. Quinlan AR, Peckham HE, et al. Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome research,2008,18 (10) 1638-1642.
    [68]祁云霞,刘永斌,荣威恒.转录组研究新技术:RNA-Seq及其应用.
    [69]Cloonan N, Forrest ARR, Kolle G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature methods,2008,5 (7):613-619.
    [70]Nagalakshmi U, Wang Z, Waern K, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science,2008,320 (5881):1344.
    [71]Mortazavi A, Williams BA, Mccue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods,2008,5 (7):621-628.
    [72]Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature,2008,456 (7221):470-476.
    [73]Wilhelm BT, Marguerat S, Watt S, et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature,2008,453 (7199):1239-1243.
    [74]Morin RD, Bainbridge M, Fejes A, et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 2008,45 (1):81-94.
    [75]Filichkin SA, Priest HD, Givan SA, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome research,2010,20 (1):45-58.
    [76]Zhang G, Guo G, Hu X, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome research,2010,20 (5):646-654.
    [77]Cheng-Ying S, Hua Y, Chao-Ling W, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics,2011,12:131.
    [78]Sultan M, Schulz MH, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science,2008,321 (5891) 956-960.
    [79]Denker BM, Smith B, Kuhajda F, et al. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. Journal of Biological Chemistry,1988,263 (30):15634-15642.
    [80]Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science,1992,256 (5055):385-387.
    [81]Maurel C, Reizer J, Schroeder JI, et al. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. The EMBO journal,1993,12 (6) 2241-2247.
    [82]Kammerloher W, Fischer U, Piechottka GP, et al. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. The Plant Journal,1994,6 (2):187-199.
    [83]Quigley F, Rosenberg JM, Shachar-Hill Y, et al. From genome to function:the Arabidopsis aquaporins. Genome Biol,2002,3 (1):1-17.
    [84]Tyerman SD, Niemietz C, Bramley H. Plant aquaporins:multifunctional water and solute channels with expanding roles. Plant, Cell & Environment,2002,25 (2):173-194.
    [85]Maurel C. Aquaporins and water permeability of plant membranes. Annual Review of Plant Biology,1997,48 (1):399-429.
    [86]Luu D T, Maurel C. Aquaporins in a challenging environment:molecular gears for adjusting plant water status. Plant, Cell & Environment,2005,28 (1):85-96.
    [87]Tornroth-Horsefield S, Wang Y, Hedfalk K, et al. Structural mechanism of plant aquaporin gating. Nature,2005,439 (7077):688-694.
    [88]Pao G, Wu L F, Johnson K, et al. Evolution of the MIP family of integral membrane transport proteins. Molecular microbiology,1991,5 (1):33-37.
    [89]Agre P, Bonhivers M, Borgnia MJ. The aquaporins, blueprints for cellular plumbing systems. Journal of Biological Chemistry,1998,273 (24):14659.
    [90]Heymann JB, Engel A. Aquaporins:Phylogeny, Structure, and Physiology of Water Channels. News in physiological sciences:an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society,1999,14:187.
    [91]Maeshima M, Ishikawa F. ER membrane aquaporins in plants. Pflugers Archiv European Journal of Physiology,2008,456 (4):709-716.
    [92]Jung JS, Preston GM, Smith BL, et al. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. Journal of Biological Chemistry,1994,269 (20):14648.
    [93]Walz T, Hirai T, Murata K, et al. The three-dimensional structure of aquaporin-1. Nature, 1997,387 (6633):624-626.
    [94]Li H, Lee S, Jap BK. Molecular design of aquaporin-1 water channel as revealed by electron crystallography. Nature structural biology,1997,4(4):263.
    [95]Verbavatz JM, Brown D, Sabolic I, et al. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes:a freeze-fracture study. The Journal of cell biology, 1993,123 (3):605-618.
    [96]Sui H, Han BG, Lee JK, et al. Structural basis of water-specific transport through the AQP1 water channel. Nature,2001,414 (6866):872-878.
    [97]Maurel C, Verdoucq L, Luu DT, et al. Plant aquaporins:membrane channels with multiple integrated functions. Annu Rev Plant Biol,2008,59:595-624.
    [98]Kaldenhoff R, Bertl A, Otto B, et al. Characterization of plant aquaporins. Methods in enzymology,2007,428:505-531.
    [99]Bansal A, Sankararamakrishnan R. Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis:comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Structural Biology,2007,7 (1):27.
    [100]Chaumont F, Barrieu F, Wojcik E, et al. Aquaporins constitute a large and highly divergent protein family in maize. Plant physiology,2001,125 (3):1206-1215.
    [101]Danielson J, Johanson U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC plant biology,2008,8 (1):45.
    [102]Johansson I, Karlsson M, Johanson U, et al. The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta (BBA)-Biomembranes,2000, 1465 (1-2):324-342.
    [103]Chaumont F, Moshelion M, Daniels M. Regulation of plant aquaporin activity. Biology of the Cell,2005,97:749-764.
    [104]Johanson U, Gustavsson S. A new subfamily of major intrinsic proteins in plants. Molecular biology and evolution,2002,19 (4):456-461.
    [105]Johansson I, Larsson C, Ek B, et al. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. The Plant Cell,1996,8 (7):1181-1191.
    [106]Suga S, Maeshima M. Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis. Plant and cell physiology,2004,45 (7):823.
    [107]Kjellbom P, Larsson C, Johansson I, et al. Aquaporins and water homeostasis in plants. Trends Plant Sci,1999,4 (8):308-314.
    [108]Siefritz F, Tyree MT, Lovisolo C, et al. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. The Plant Cell,2002.14 (4):869-876.
    [109]Gustavsson S, Lebrun AS, Norden K, et al. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant physiology,2005, 139 (1):287-295.
    [110]Postaire O, Verdoucq L, Maurel C. Aquaporins in plants:from molecular structure to integrated functions. Advances in Botanical Research,2007,46:75-136.
    [111]Wudick MM, Luu DT, Maurel C. A look inside:localization patterns and functions of intracellular plant aquaporins. New Phytologist,2009,184 (2):289-302.
    [112]Chaumont F, Barrieu F, Herman EM, et al. Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant physiology,1998,117 (4):1143-1152.
    [113]Chaumont F, Barrieu F, Jung R, et al. Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant physiology, 2000,122 (4):1025-1034.
    [114]Tyerman S, Bohnert H, Maurel C, et al. Plant aquaporins:their molecular biology, biophysics and significance for plant water relations. Journal of Experimental Botany, 1999,50 (Special Issue):1055.
    [115]Maeshima M, Hara-Nishimura I, Takeuchi Y, et al. Accumulation of vacuolar H+ pyrophosphatase and H+-ATPase during reformation of the central vacuole in germinating pumpkin seeds. Plant physiology,1994,106 (1):61-69.
    [116]Jauh GY, Phillips TE, Rogers JC. Tonoplast intrinsic protein isoforms as markers for vacuolar functions. The Plant Cell,1999,11 (10):1867-1882.
    [117]Neuhaus JM, Rogers JC. Sorting of proteins to vacuoles in plant cells. Plant molecular biology,1998,38 (1):127-144.
    [118]Marty F. Plant vacuoles. The Plant Cell,1999,11 (4):587-600.
    [119]Niemietz CM, Tyerman SD. Characterization of water channels in wheat root membrane vesicles. Plant physiology,1997,115 (2):561-567.
    [120]Wallace IS, Choi WG, Roberts DM. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochimica et Biophysica Acta (BBA)-Biomembranes,2006,1758 (8):1165-1175.
    [121]Mizutani M, Watanabe S, Nakagawa T, et al. Aquaporin NIP2; 1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant and cell physiology,2006,47 (10):1420-1426.
    [122]Takano J, Wada M, Ludewig U, et al. The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell,2006,18 (6):1498-1509.
    [123]Ishikawa F, Suga S, Uemura T, et al. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS letters,2005,579 (25):5814-5820.
    [124]Steudle E, Peterson CA. How does water get through roots? Journal of Experimental Botany,1998,49 (322):775-788.
    [125]Chou C, Ma T, Yang B, et al. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. American Journal of Physiology-Cell Physiology,1998,274 (2):C549-C554.
    [126]Strzalka K, Hara-Nishimura I, Nishimura M. Changes in physical properties of vacuolar membrane during transformation of protein bodies into vacuoles in germinating pumpkin seeds. Biochimica et Biophysica Acta (BBA)-Biomembranes,1995,1239 (2):103-110.
    [127]Alcayaga C, Cecchi X, Alvarez O, et al. Streaming potential measurements in Ca2+ activated K+ channels from skeletal and smooth muscle. Coupling of ion and water fluxes. Biophysical journal,1989,55 (2):367-371.
    [128]Zhang R, Logee K, Verkman A. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. Journal of Biological Chemistry,1990,265 (26) 15375-15378.
    [129]Cabanero FJ, Martinez-Ballesta MC, Teruel JA, et al. New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants. Plant and cell physiology,2006,47 (2):224-233.
    [130]Aharon R, Shahak Y, Wininger S, et al. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. The Plant Cell,2003,15 (2):439-447.
    [131]Javot H, Lauvergeat V, Santoni V, et al. Role of a single aquaporin isoform in root water uptake. The Plant Cell,2003,15 (2):509-522.
    [132]Lienard D, Durambur G, Kiefer-Meyer MC, et al. Water transport by aquaporins in the extant plant Physcomitrella patens. Plant physiology,2008,146 (3):1207-1218.
    [133]Fraysse L, Wells B, Mccann M, et al. Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biology of the Cell,2005,97: 519-534.
    [134]Sarda X, Tousch D, Ferrare K, et al. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. The Plant Journal,1997,12 (5):1103-1111.
    [135]Uehlein N, Lovisolo C, Siefritz F, et al. The tobacco aquaporin NtAQP 1 is a membrane CO2 pore with physiological functions. Nature,2003,425 (6959):734-737.
    [136]Hanba YT, Shibasaka M, Hayashi Y, et al. Overexpression of the barley aquaporin HvPIP2; 1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant and cell physiology,2004,45 (5):521-529.
    [137]Uehlein N, Otto B, Hanson DT, et al. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. The Plant Cell,2008,20 (3):648-657.
    [138]Jahn TP, Moller ALB, Zeuthen T, et al. Aquaporin homologues in plants and mammals transport ammonia. FEBS letters,2004,574 (1-3):31-36.
    [139]Liu LH, Ludewig U, Gassert B, et al. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant physiology,2003,133 (3):1220-1228.
    [140]Holm LM, Jahn TP, Moller ALB, et al. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Archiv-European Journal of Physiology,2005,450 (6):415-428.
    [141]Loque D, Ludewig U, Yuan L, et al. Tonoplast intrinsic proteins AtTIP2; 1 and AtTIP2; 3 facilitate NH3 transport into the vacuole. Plant physiology,2005,137 (2):671-680.
    [142]Dordas C, Chrispeels MJ, Brown PH. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant physiology,2000, 124 (3):1349-1362.
    [143]Ma J F, Yamaji N, Mitani N, et al. An efflux transporter of silicon in rice. Nature,2007, 448 (7150):209-212.
    [144]Yamaji N, Mitatni N, Ma JF. A transporter regulating silicon distribution in rice shoots. The Plant Cell,2008,20 (5):1381-1389.
    [145]Bienert GP, Moller ALB, Kristiansen K A, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. Journal of Biological Chemistry,2007, 282 (2):1183-1192.
    [146]Dynowski M, Schaaf G, Loque D, et al. Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J,2008,414:53-61.
    [147]Mut P, Bustamante C, Martinez G, et al. A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria Xananassa) fruit ripening. Physiologia plantarum,2008,132 (4):538-551.
    [1481 Cao D, Malmstrom V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+T cells from the target organ of patients with rheumatoid arthritis. European journal of immunology,2003,33 (1):215-223.
    [149]Schuurmans J a MJ, Van Dongen JT. Rutjens BPW, et al. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant molecular biology,2003,53 (5):655-667.
    [150]Sun MH, Xu W, Zhu YF, et al. A simple method forIn Situ hybridization to RNA in guard cells ofVicia Faba L.:The expression of aquaporins in guard cells. Plant Molecular Biology Reporter,2001,19 (2):129-135.
    [151]Shiota H, Sudoh T, Tanaka I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. Plant Science,2006,171 (2) 277-285.
    [152]Jang J Y, Kim D G, Kim Y O, et al. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant molecular biology,2004,54 (5):713-725.
    [153]Li GW, Peng YH, Yu X, et al. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology, 2008,165 (18):1879-1888.
    [154]Katsuhara M, Akiyama Y, Koshio K, et al. Functional analysis of water channels in barley roots. Plant and cell physiology,2002,43 (8):885-893.
    [155]Yamada S, Katsuhara M, Kelly WB, et al. A family of transcripts encoding water channel proteins:tissue-specific expression in the common ice plant. The Plant Cell,1995,7 (8):1129-1142.
    [156]Shao HB, Chu LY, Shao MA, et al. Advances in functional regulation mechanisms of plant aquaporins:Their diversity, gene expression, localization, structure and roles in plant soil-water relations (Review). Molecular membrane biology,2008,25 (3) 179-191.
    [157]Phillips AL, Huttly AK. Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization:expression of the tonoplast water channel, γ-TIP, is increased by GA 3. Plant molecular biology,1994,24 (4):603-615.
    [158]Siefritz F, Biela A, Eckert M, et al. The tobacco plasma membrane aquaporin NtAQP1. Journal of Experimental Botany,2001,52 (363):1953-1957.
    [159]Sun MH, Zhang MH, Liu HY, et al. Distribution of water channel protein RWC3 and its regulation by GA and sucrose in rice (Oryza sativa). ACTA BOTANIC A SINICA-ENGLISH EDITION-,2004,46 (9):1056-1064.
    [160]Li L, Li S, Tao Y, et al. Molecular cloning of a novel water channel from rice:its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Science,2000,154 (1):43-51.
    [161]Aroca R, Amodeo G, Fernandez-Illescas S, et al. The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant physiology,2005,137 (1):341-353.
    [162]Beaudette PC, Chlup M, Yee J, et al. Relationships of root conductivity and aquaporin gene expression in Pisum sativum:diurnal patterns and the response to HgCl2 and ABA. Journal of Experimental Botany,2007,58 (6):1291.
    [163]Maurel C, Kado RT, Guern J, et al. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. The EMBO journal,1995,14 (13):3028.
    [164]Temmei Y, Uchida S. Hoshino D, et al. Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS letters,2005,579 (20):4417-4422.
    [165]Guenther JF, Chanmanivone N, Galetovic MP, et al. Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. The Plant Cell,2003,15 (4):981-991.
    [166]Azad A K, Sawa Y, Ishikawa T, et al. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals. Bioscience, biotechnology, and biochemistry,2004,68 (5):1170-1174.
    [167]Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature,2000,407 (6804):599-605.
    [168]Fu D, Libson A, Miercke LJW, et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science,2000,290 (5491):481.
    [169]Fotiadis D, Jeno P, Mini T, et al. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. Journal of Biological Chemistry,2001,276 (3):1707-1714.
    [170]Suga S, Maeshima M. Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis. Plant and cell physiology,2004,45 (7):823-830.
    [171]Fetter K, Van Wilder V, Moshelion M, et al. Interactions between plasma membrane aquaporins modulate their water channel activity. The Plant Cell,2004,16 (1):215-228.
    [172]Chrispeels MJ, Morillon R, Maurel C, et al. Aquaporins of plants:structure, function, regulation, and role in plant water relations. Current Topics in Membranes,2001,51: 277-334.
    [173]Tournaire-Roux C, Sutka M, Javot H, et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature,2003,425 (6956):393-397.
    [174]Vera-Estrella R, Barkla B J, Bohnert H J, et al. Novel regulation of aquaporins during osmotic stress. Plant physiology,2004,135 (4):2318-2329.
    [175]Ye Q, Wiera B, Steudle E. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration. Journal of Experimental Botany,2004,55 (396):449.
    [176]Steudle E, Tyerman SD. Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity ofChara corallina using the pressure probe: Effects of solute concentrations. Journal of Membrane Biology,1983,75 (1):85-96.
    [177]Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome research,2010,20 (2):265-272.
    [178]Pertea G, Huang X, Liang F, et al. TIGR Gene Indices clustering tools (TGICL):a software system for fast clustering of large EST datasets. Bioinformatics,2003,19 (5) 651-652.
    [179]Iseli C, Jongeneel CV, Bucher P. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences, F,1999.
    [180]Conesa A, Gotz S, Garcia-Gomez JM, et al. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21 (18).-3674-3676.
    [181]Ye J, Fang L, Zheng H, et al. WEGO:a web tool for plotting GO annotations. Nucleic acids research,2006,34 (supp12):W293-W297.
    [182]Audic S, Claverie JM. The significance of digital gene expression profiles. Genome research,1997.7 (10):986-995.
    [183]Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annals of statistics,2001:1165-1188.
    [184]Ernst J, Bar-Joseph Z. STEM:a tool for the analysis of short time series gene expression data. BMC bioinformatics,2006,7 (1):191.
    [185]Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST(?)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research,2002,30 (9):e36-e36.
    [186]Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis. Plant and cell physiology,2009,50 (7):1232-1248.
    [187]Kaur N, Gupta AK. Signal transduction pathways under abiotic stresses in plants. Current Science,2005,88 (11):1771-1780.
    [188]Hwang EW, Kim KA, Park SC, et al. Expression profiles of hot pepper(Capsicum annuum) genes under cold stress conditions. Journal of Biosciences,2005,30 (5) 657-667.
    [189]Thomashow MF. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology,1999,50 (1):571-599.
    [190]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Biology,1996,47 (1):377-403.
    [191]王静英,李永春,王潇等.小麦TaLEA4基因的克隆和表达.麦类作物学报,2008,28(2):183-186.
    [192]Sharma S, Verslues PE. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant, Cell & Environment,2010,33 (11):1838-1851.
    [193]Verdoy D, Coba De La Pena T, Redondo F, et al. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant, Cell & Environment,2006,29 (10):1913-1923.
    [194]Crowe JH. Trehalose and anhydrobiosis:The early work of JS Clegg. Journal of Experimental Biology,2008,211 (18):2899-2900.
    [195]Li HW, Zang BS, Deng XW, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta,2011:1-12.
    [196]Wu G, Robertson AJ, Liu X, et al. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). Journal of Plant Physiology,2004,161 (4):449-458.
    [197]Vignols F, Wigger M, Garci'a-Garrido JM, et al. Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene,1997, 195 (2):177-186.
    [198]Gonorazky AG, Regente MC, De La Canal L. Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds. Journal of Plant Physiology,2005,162 (6):618-624.
    [199]Liu KH, Lin TY. Cloning and characterization of two novel lipid transfer protein I genes in Vigna radiata. Mitochondrial DNA,2003,14 (6):420-426.
    [200]Choi AM, Lee SB, Cho SH, et al. Isolation and characterization of multiple abundant lipid transfer protein isoforms in developing sesame (Sesamum indicum L.) seeds. Plant Physiology and Biochemistry,2008,46 (2):127-139.
    [201]Jung HW, Kim KD, Hwang BK. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta,2005,221 (3):361-373.
    [201]Hollenbach B, Schreiber L, Hartung W, et al. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley:implications for the involvement of lipid transfer proteins in wax assembly. Planta,1997,203 (1):9-19.
    [203]Tang D, Qian H, Yu S, et al. cDNA cloning and characterization of a new stress-responsive gene BoRS1 from Brassica oleracea var. acephala. Physiologia plantarum, 2004,121 (4):578-585.
    [204]Xiong L, Ishitani M, Lee H, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression. The Plant Cell,2001,13 (9):2063-2083.
    [205]Huang W, Ma X, Wang Q, et al. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). Plant molecular biology,2008,68 (4):451-463.
    [206]Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agiiero JA, et al. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry,2008,46 (1):82-92.
    [207]Hu X, Jiang M, Zhang J, et al. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytologist,2007,173 (1) 27-38.
    [208]Ueno O. Induction of Kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. The Plant Cell,1998,10 (4):571-584.
    [209]Yubero-Serrano EM, Moyano E, Medina-Escobar N, et al. Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. Journal of Experimental Botany,2003,54 (389):1865-1877.
    [210]Federico M L, Kaeppler H F, Skadsen R W. The complex developmental expression of a novel stress-responsive barley Ltp gene is determined by a shortened promoter sequence. Plant molecular biology,2005,57 (1):35-51.
    [211]Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences,2000,97 (21):11632.
    [212]Vannini C, Locatelli F, Bracale M, et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal, 2004,37 (1):115-127.
    [213]Gubler F, Watts RJ, Kalla R, et al. Cloning of a rice cDNA encoding a transcription factor homologous to barley GAMyb. Plant and cell physiology,1997,38 (3):362.
    [214]Chen S, Peng S, Huang G, et al. Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant molecular biology,2003,51 (1):51-58.