超稠油油藏三元复合吞吐技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前胜利油田原油粘度超过10×10~4mPa·s的超稠油储量5159×10~4t,占未动用稠油储量的38%,是胜利油田主要的未动用资源之一,粘度大、埋藏深、储层薄的特点是导致这类油藏难以动用的主要原因。胜利油田通过开展油溶性降粘剂、CO_2、蒸汽三元复合吞吐技术在深薄层超稠油开采方面取得了一定的突破。深入研究三元复合吞吐单体及协同作用对超稠油物理化学性质的作用机理,完善三元复合吞吐技术,对更加高效的开发深薄层超稠油油藏具有重要意义。
     论文从研究胜利油田超稠油性质出发,实验测量了超稠油的密度、粘度、沥青质分子形态,四组分含量及分子量。根据胜利油田超稠油特性研制了超稠油油溶性复合降粘剂。针对降粘率在描述超稠油降粘效果方面的不足提出了新的评价参数-降粘倍率。室内实验表明超稠油油溶性复合降粘剂在低含水和中高含水条件下均能实现降粘,降粘效果随温度和含水升高而增强。推导了CO_2立方型状态方程,与PR和RSK状态方程相比,该方程计算结果稳定,精确度高。通过PVT仪和落球粘度计进行了CO_2对超稠油的溶胀、降粘实验。研究结果表明CO_2能够溶解于超稠油且使其体积膨胀,油包水乳状液含水越高溶解CO_2的能力越弱,溶解CO_2后膨胀能力越差,超稠油溶解CO_2后粘度急剧降低,且原油含水越高CO_2降粘效果越好。降粘剂、CO_2、加热三个元素两两之间的协同作用改善超稠油流变性能实验表明协同效果优于各个元素单独作用的效果。通过高温高压釜反应和回采油样分析研究了三元复合吞吐技术对超稠油化学性质的影响,实验结果表明三元复合吞吐技术能够实现超稠油大分子的解聚,使超稠油饱和分、芳香分含量增加和胶质、沥青质含量减小,使超稠油沥青质分子量明显减小。根据胜利油田郑411超稠油油藏地质特征、多组分流体相态拟合生成的流体组分数据,结合超稠油油溶性复合降粘剂解聚和降低界面张力的作用,建立了三元复合吞吐数值模型。研究了高效降粘剂、CO_2、蒸汽对开发效果的影响,并对三元复合吞吐注入参数进行了优化。三元复合吞吐技术在胜利油田得到成功运用,文中阐述了该技术的应用效果和应用前景。
About 5159×10~4t reserve of ultra-heavy oil with viscosity larger than 10×10~4 mPa·s hasn’t been developed because of large viscosity, deep and thin layer, which shares 38% of undeveloped heavy oil reserve and is one of the major undeveloped resources, since the ternary combination huff and puff technique composed of oil-soluble viscosity reducer, CO_2, steam is invented and applied successfully in Shengli Oilfield. Research on the mechanism of separate or cooperative effect of oil-soluble, CO_2 and steam to ultra-heavy oil and improving the ternary combination huff and puff technique is quite necessary for developed this kind of reservoir efficiently.
     The density, viscosity, asphaltene structure, four fractions mass fraction and molecular weight of ultra-heavy oil were systematically researched by laboratory experiment. Oil-soluble combined viscosity reducer for ultra-heavy oil was developed based on the properties of ultra-heavy oil, which is powerful for decreasing viscosity under the conditions of low water cut, high water cut and high temperature. As rate of viscosity reduction has the shortage on describing viscosity reduction ability for ultra-heavy oil, multiplying factor of viscosity reduction was employed. A new equation of state for CO_2 is conducted which is better than PR and RSK equation of state on predicting CO_2 state. CO_2 solubility in ultra- heavy oil or emulsion with different water cut, swelling factor, density, viscosity of ultra-heavy oil dissolved CO_2 was systematically researched by laboratory experiments. The results show that CO_2 can dissolve in, swell ultra-heavy oil and considerably reduce the viscosity of ultra-heavy oil. Water cut has negative effects for CO_2 dissolving in and swelling ultra- heavy oil emulsion, but has positive effects on reducing viscosity. The experiment results show that the cooperation of two of Viscosity reducer, CO_2 and heating is more efficient on improving rheological properties of ultra-heavy oil than single. The ternary combination huff and puff technique has ability on disaggregation of big molecule in ultra-heavy oil, decreasing the rate and the molecular weight of resin and asphaltene, increasing the rate of saturate and aromatic. The simulation model of ternary combination huff and puff was created according the basic geological data, property data of compositions, disaggregation data and IFT reduction data of viscosity reducer. The effect on improving recovery of ultra-heavy oil reservoir and injected parameters of viscosity reducer, CO_2 and steam were studied by the simulation model of ternary combination huff and puff. The ternary combination huff and puff technique was evaluated by production data of ultra-heavy oil reservoirs in Shengli Oilfield which have successfully applied this technique.
引文
[1]张琪,万仁溥.采油工程方案设计[M].北京:石油工业出版社,2002.
    [2]单玄龙,车长波,李剑,等.国内外油砂资源研究现状[J].世界地质,2007,26(4):459-464.
    [3]吴光焕,李献民,张紫军,等.单家寺油田单6东超稠油开采技术[J].油气地质与采收率,2002,9(3):73-76.
    [4]田家湖,阮树先,吴海林.郑411块超稠油试油试采工艺技术应用[J].油气井测试,2005,14(6):59-75.
    [5]谢文彦,李小光,陈振岩,等.辽河油区稠油及高凝油勘探开发技术综述[J].石油学报,2007,28(4):145-150.
    [6]朱志宏,杜敏,韩红雁.克拉玛依油田浅层超稠油开发新技术[J].石油天然气学报,2007,29(3):441-443.
    [7]石国新,陈振琦,马鸿.风城浅层超稠油油藏水平井注蒸汽开发试验效果分析[J].石油勘探与开发,1997,24(5):89-91.
    [8]高永荣,刘尚奇,沈德煌等.超稠油氮气、溶剂辅助蒸汽吞吐开采技术研究[J].石油勘探与开发,2003,30(2):73-75.
    [9]尉小明,郭学立.辽河油田超稠油水基降粘剂的研制[J].精细石油化工进展,2005,6(10):12-14.
    [10]程秀莲,王娉.辽河油田超稠原油表面活性剂降粘的研究[J].沈阳理工大学学报,2006,25(1):59-61.
    [11]宋斗贵,朱桂林.SK-6型高效稠油降粘剂性能评价及现场应用[J].油气地质与采收率,2003,10(2):58-59.
    [12]王世虎,孙克己,曹嫣镔等.用化学方法改进稠油开采效果的技术[J].油田化学,2002,19(3):210-213.
    [13]赵庆辉,刘其成,刘志惠等.超稠油耐高温乳化降粘剂优选实验研究[J].特种油气藏,,2001,8(3):89-92.
    [14]钱建华,刘琳,张连红.高稠原油乳化降粘剂的研制[J].抚顺石油学院学报,2001,21(1):17-19.
    [15]马济飞.稠油的活性组分分离及乳化性特性剖析[D].东营:中国石油大学(华东),2006.
    [16]赵玉玲.油溶性稠油降粘剂的分子设计与合成研究[D].北京:中国石油大学(北京),2006.
    [17] Miller J. S., Jones R. A. A laboratory study of determine physical characteristics of heavy oil after CO_2 saturation. SPE/DOE 9789.
    [18] Rojas G. A., Farouq Ali S. M. Dynamics of subcritical CO_2/brine floods for heavy oil recovery. SPE 13598.
    [19]沈德煌,张义堂,张霞,等.稠油油藏蒸汽吞吐后转注CO_2吞吐开采研究[J].石油学报,2005,26(1):83-86.
    [20]罗瑞兰,程林松,李春兰,等.稠油油藏注CO_2吞吐适应性研究[J].西安石油大学学报(自然科学版),2005,20(1):43-46.
    [21]杨胜来,郎兆新.影响CO_2吞吐采油效果的若干因素研究[J].西安石油学院学报(自然科学版),2002,17(1):32-34.
    [22]梁玲,程林松,李春兰.利用CO_2改善韦5稠油油藏开采效果[J].新疆石油地质,2003,24(2):155-157.
    [23]罗瑞兰,程林松.稠油油藏多轮次蒸汽吞吐后注CO_2的可行性[J].新疆石油地质,2004,25(2):182-184.
    [24]张小波.蒸汽-二氧化碳-助剂吞吐开采技术研究[J].石油学报,2006,27(2):80-84.
    [25]王史文.乐安稠油油藏热/化学吞吐开采技术的研究[D].北京:西南石油学院,2004.
    [26] Kaleli M. K., Farouq Ali S. M. Controlling mobility ahead of a viscous oil bank[C]. Petroleum Society of CIM (Canada), Paper No. 87-38-64.
    [27] Whelan W. J. New technology for Cold Lake[J]. The Journal of Canadian Petroleum, Paper No. 84-05-10.
    [28]王宗贤.渣油悬浮床加氢裂化生焦及抑焦机制[D].东营:中国石油大学(华东),1999.
    [29] Dickie J. P. and Yen T F. Macrostructures of the asphaltic fractions by various instrumental method[J]. Anal. Chem., 1967, 39(14): 1847-1857.
    [30]朱战军,林壬子,汪双清.稠油主要族组分对其粘度的影响[J].新疆石油地质,2004,25(5):512-513.
    [31]秦匡宗,郭绍辉.石油沥青质[M].北京:石油工业出版社,2002:24-75.
    [32]程亮,杨林,罗陶涛,等.稠油分散体系中黏度与化学组成的灰熵关系分析[J].西安石油大学学报(自然科学版),2007,22(3):92-95.
    [33] Rogel E. Simulmion of interactions in asphahene aggregates[J]. Energy & Fuels, 2000, 14(3): 566-574.
    [34]顿铁军,吕建辉,刘谦,等.辽河稠油研究进展[M].西安:西安地图出版社,2000:4-8.
    [35]张锐.稠油热采技术[M].北京:石油工业出版社,2000.
    [36] Beggs H. D., Robinson J. R. Estimating the viscosity of crude oil systems[J]. SPE Reservoir Engineering, 1975, 27(9): 1140-1141.
    [37] Howard B. Bradley. Petroleum Engineering Handbook[M]. Richardson, Texas, USA: Society of Petroleum Engineers, 1987.
    [38]孟江,向阳,魏小林,等.高内相稠油油包水乳状液流变性研究[J].西南石油大学学报,2007,29(2):122-124.
    [39]喻高明.超特稠油流变性综合研究[J].河南石油,2004,18(3):40-43.
    [40]童宪章,沈平平,胡乃人,等(译).布雷德利(著).石油工程手册[M].北京:石油工业出版社,1996.
    [41] Pacheco-Sanchez J. H., Zaragoga I. P., Martine-Magadan J. M. Asphaltene aggregation under vacuum at different temperatures by molecular dynamics[J]. Energy & Fuels, 2003, 17(5): 1346-1355.
    [42] Pacheco-Sanchez J. H., Alvarez-Ramirez F., Martinez-Magadan J. M. Morphology of aggregated asphaltene structural models[J]. Energy & Fuels, 18(6): 1676-1686.
    [43] Wattana P., Fogler H. S. Characterization of polarity-based asphaltene subfractions[J]. Energy & Fuels, 2005, 19(1): 101-110.
    [44] Juan M., JoséA. A., Otto P. S. Molecular Recognition in Aggregates Formed by Asphaltene and Resin Molecules from the Athabasca Oil Sand[J]. Energy & Fue1s, 1999, 13(2): 278-286.
    [45]程亮,邹长军,杨林,等.稠油化学组成对去粘度影响的灰熵分析[J].石油化工高等学校学报,2006,19(3):6-10.
    [46]王继乾.添加物对渣油热反应生焦的影响及作用机理研究[D].东营:中国石油大学(华东),2006.
    [47]苏铁军,郑延成.稠油族组成与粘度关联研究[J].长江大学学报(自科版)理工卷,2007,4(1):60-62.
    [48]范洪富,刘永建,钟立国.油层矿物对蒸汽作用下稠油组成与粘度变化的影响[J].油田化学,2001,18(4):299-301.
    [49] Toshimasa Takanohashi, Shinya Sato, Ikuo Saito, et al. Molecular Dynamics Simulation of the Heat-Induced Relaxation of Asphaltene Aggregates[J]. Energy & Fue1s, 2003, 17(1): 135-139.
    [50] Barbour R. V., Petersen J. C. Molecular interaction of asphalt: An infrared study of the hydrogen-bonding basicity of asphalt[J]. Anal. Chem., 1974, 46(2): 273-277.
    [51] Murgich J., Abanero A. and Strausz O. P. Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand[J]. Energy&Fuels, 1999, 13(2): 278-286.
    [52]唐黎平,杨志琼.重质原油及各组份数均分子量的测定及地球化学意义[J].石油实验地质,1989,11(3):255-263.
    [53]李传.渣油胶体流变性的研究[D].东营:中国石油大学(华东),2007.
    [54]高尚芳.影响超稠油开发因素分析及对策研究[J].石油地质与工程,2008,22(5):73-75.
    [55]盖玉磊,刘伟,吴平.坨826井超稠油油藏试油工艺技术[J].石油天然气学报,2008,30(2):505-507.
    [56] Bertero L,Dilullo A,Lentini A, et al.An Innovative Way To Produce and Transport Heavy Oil Through Dispersion in Water:Laboratory Study and Field Test Results[C]. SPE 28543.
    [57] Sharma K., Saxena V. K., Kumar A., et al. Pipeline Transportation of Heavy/Viscous Crude oil as water continuous Emulsion in North Cambay Basin (India)[C]. SPE 39537.
    [58]谢慧青,刘淑霞.稠油开采用耐高温乳化降粘剂[J].精细石油化工,1994,3:32-35.
    [59]范维玉,胡德燕.GL系列特稠油降粘剂及其O/W乳状液流变性研究[J].石油大学学报,1998,22(2):48~50.
    [60]陈秋芬,王大喜,刘然冰.油溶性稠油降粘剂研究进展[J].石油钻采工艺,2004,26(2):45-49.
    [61] Wilburn B. E. Methacryhte pour point depressants and compositions[P]. US 4956111, 1990.
    [62] Mishra M. K., Saxton R. G. Novel pour point depressants via anionic polymerization of(meth) acrylicmonomers [P]. US 5834408, 1998.
    [63]张凤英,李建波,诸林,等.稠油油溶性降粘剂研究进展[J].特种油气藏,2006,13(2):1-4.
    [64]周风山,吴瑾光.稠油化学降粘技术研究进展[J].油田化学,2001,18(3):268-272.
    [65]常运兴,张新军.稠油油溶性降粘剂降粘机理研究[J].油气田地面工程,2006,25(4):8-9.
    [66]陈尔跃,刘永建,闻守斌.甲苯在强化辽河油田稠油催化降黏中的作用[J].大庆石油学院学报,2005,29(6):38-39.
    [67]吴本芳,杨允明,沈本贤,等.SL的合成及降粘性能研究[J].油田化学,2003,20(1):78-82.
    [68]陶磊,王勇,李兆敏,等.CO_2 /降粘剂改进超稠油物性研究[J].陕西科技大学学报,2008,26(6):25-29.
    [69]陶磊,李兆敏,张继国,等.超稠油FDCS高效开采技术研究[J].高含水期油藏提高采收率方法国际研讨会论文集,青岛,2007.
    [70]张群正,蒲春生.马来酸酐/苯乙烯/丙烯酸高碳醇酯共聚物的制备及对稠油的降粘性能[J].油田化学,2004,21(2):128-130.
    [71]张毅,赵明方,周凤山,等.马来酸酐-苯乙烯-丙烯酸高级酯稠油降粘剂MSA的研制.油田化学,2000,17(4):295-298.
    [72]王大喜,陈秋芬,赵玉玲,等.油溶性降粘剂作用机理的密度泛函计算[J].石油学报(石油加工),2005,21(6):40-45.
    [73]顾国兴.单家寺油田单6东超稠油开采配套工艺技术[J].油气地质与采收率,2003,10(4):73-74,77.
    [74]张凤英,李建波,诸林,等.稠油油溶性降粘剂MASM的合成及室内评价[J].精细石油化工进展,2005,6(12):5-7,11.
    [75]金发扬,蒲万芬,任兆刚等.SZ36-1稠油油溶性降粘剂JN-1的合成及评价[J].精细石油化工进展,2005,6(11):16-17,20.
    [76]梁文杰.石油化学[M].山东东营:石油大学出版社,2004.
    [77] Ran Qi. Simulation of Geological Carbon Dioxide Storage.Doctor Dissertation, Imperial College, London, 2008.
    [78] Tao L., Li Z. M., Zhang N., et al. CO_2 Capture and for Improving Heavy Oil Recovery[C].IEEE, APPEEC 09, 2009.
    [79] Spivak A., Chima C. M. Mechanisms of immiscible CO_2 Injection in Heavy Oil Reservoirs, Wilmington Field, CA[C]. SPE 12667, 1984.
    [80] Sankur V., Creek J. L., Dijulio S. S., et al. A Laboratory Study of Wilmington Tar Zone CO_2 Injection Project[C]. SPE 12751, 1986.
    [81] Reid T. B. Lick Creek Meakin Sand Unit Immiscible CO_2-Waterflood Project[C]. SPE 9795, 1981.
    [82] Khataniar S., Kamath V. A., Patil S. L. CO_2 and Miscible Gas Injection for Enhanced Recovery of Schrader Bluff Heavy Oil[C]. SPE 54085, 1999.
    [83] DeRuiter, R. A., Nash, L. J., and Singletary M. S. Solubility and Displacement Behavior of a Viscous Crude With CO_2 and Hydrocarbon Gases[C]. SPE 20523, 1990.
    [84] Berge L. I., Stensen J. A., Crapez B., et al. SWAG Injectivity Behavior Based on Siri Field Data[C]. SPE 75126, 2002.
    [85] Al-Quraini A., Sohrabi M., Jamiolahmady M. Heavy Oil Recovery by liquid CO_2/Water Injection[C]. SPE 107163, 2007.
    [86] Bakshi A. K., Oghe D. O., Kamath V. A. Feasibility study of CO_2 Stimulation in the west sak field, Alaska[C]. SPE24038, 1992.
    [87]王守岭,孙宝财,王亮,等.CO_2吞吐增产机理室内研究与应用[J].钻采工艺,2004,27(1):91-94.
    [88]程诗胜,刘松林,朱苏清,等.单井CO_2吞吐增油机理及推广应用[J].油气田地面工程,2003,22(10):16-17.
    [89] Welker J., Dunlop D. D. Physical properties of carbonated oils[J]. JPT, 1963: 873-876.
    [90] Simon R. Generalized Correlations for Predicting Solubility, Swelling and Viscosity Behavior of CO_2-Crude Oil Systems[J]. JPT, 1965:102-107.
    [91] Beeson D. M., Ortloff G. D. Laboratory Investigation of the Water-Driven Carbon Dioxide Process for Oil Recovery[C]. SPE 1100.
    [92] Sankur V., Emanuel A. S. A laboratory study of heavy oil recovery with CO_2 injection[C]. SPE 11692.
    [93] Doscher T. M., Oyekan R. O., Arabi M. E. A controversial laboratory study of the mechanism of crude oil displacement by carbon dioxide:Part II-Nitrogen vs carbondioxide in dipping models[C]. SPE 11678.
    [94] Rojas G. A., Farouq Ali S. M. Dynamics of subcritical CO_2/brine floods for heavy oil recovery[C]. SPE 13598.
    [95]苏开科(译).亚临界CO_2驱开采稠油[J].国外油气科技,1995(1):92-104.
    [96] Sayegh S G,Krause F F, Fosti J E. Miscible Displacement of Crude Oil by CO_2/SO_2 Mixtures[C]. SPE12707.
    [97] Bank G. C., Riestenberg D., Koperna G. J. CO_2-Enhanced Oil Recovery Potential of the Appalachian Basin[C]. SPE 111282.
    [98] Spivak A., Allan Spivak, Karaoguz D., et al. Simulation of Immiscible CO_2 Injection in a Fractured Carbonate Reservoir[C]. SPE 18765.
    [99] Hammershaimb E. C. Recovery efficiency of enhanced oil recovery methods: A review of significant field tests[C]. SPE 121143.
    [100]李振泉,黄代国.商13-22单元CO_2驱室内实验研究.油气采收率技术[J].油气采收率技术,2000,7(3):9-11.
    [101]张红梅,安九泉,吴国华.深层稠油油藏CO_2吞吐采油工艺试验[J].石油钻采工艺,2002,24(2):53-55.
    [102]粱玲,程林松,李春兰.利用CO_2改善韦5稠油油藏开采效果[J].新疆石油地质,2003,24(2):155-157.
    [103]吕广忠,伍曾贵,栾志安,等.吉林油田CO_2试验区数值模拟和方案设计.石油钻采工艺,2002,24(4):39-41.
    [104]谈士海,张文正.非混相CO_2驱油在油田增产中的应用[J].石油钻采工艺,2001,29(2):58-60.
    [105]刘炳官,吕连海.低渗透复杂小断块轻油油藏CO_2吞吐研究[J].油气采收率技术,1997,4(4):7-13.
    [106]张小波.蒸汽-二氧化碳-助剂吞吐开采技术研究[J].石油学报,2006,27(2):80-84.
    [107]周正平.稠油井CO_2吞吐采油技术[J].海洋石油,2003,23(3):72-76.
    [108]刘涛.茨21-133井CO_2吞吐技术初步试验[J] .特种油气藏,2003,10(3):82-84.
    [109]王守岭,孙宝财,王亮.CO_2吞吐增产机理室内研究与应用[J].钻采工艺,2004,27(1):91-94.
    [110]童景山.化工热力学[M].北京:清华大学出版社,1995.
    [111] Redlich, O., Kwong, J. N. S. An Equation of State: Fugacities of Gaseous Solutions[J]. The Thermodynamics of Solutions V, 1948: 233-244.
    [112] Martin J. J. Cubic Equation of State-Which?[J]. Ind. Eng. Chem. Fundam., 1979, 18(2): 81-97.
    [113] Byung-Lk Lee, Wayne C. Edmister. New Three-Parameter Equation of State[J]. Ind. Eng. Chem. Fundam., 1971, 10(1): 32-35.
    [114] Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27: 1197-1203.
    [115] Peng Ding-Yu, Robinson D. B. A New Two-Constant Equation of State[J]. Ind. Eng. Chem., Fundam., 1976, 15(1): 59-64.
    [116] Guo Tian-Min, Du Lian-Gui, Pedersen K.S., et al. Application of the Du-Guo and SRK Equation of State to Predict the Phase Behavior of Chinese Reservoir Fluids[J]. SPE Reservoir Engineering, 1991, 6(3): 379-388(SPE 20293).
    [117] Jhaverl B. S., Yongren G. K.. Three-Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric Predictions[J]. SPE Reservoir Engineering, 1988, 3(3): 1033-1040(SPE 13118).
    [118] Pedersen K. S., Milter J., S?rensen H. Cubic Equations of State Applied to HT/HP and Highly Aromatic Fluids[J]. SPE Journal, 2004, 9(2): 186-192(SPE 88364).
    [119]郭万奎,廖广志,邵振波,等.注气提高采收率技术[M].北京:石油工业出版社,2003:63-66.
    [120]王利生.对重质原油注二氧化碳减粘的研究[J].石油勘探与开发,1989 (6):72-77.
    [121]杨胜来,李新民,郎兆新,等.稠油注CO_2的方式及其驱油效果的室内实验[J].石油大学学报,2001,25(2):62-64.
    [122]李振泉.油藏条件下溶解CO_2的稀油相特性实验研究[J].石油大学学报,2004,28(3):43-48.
    [123] Chung Frank T. N., Jones Ray A., Nguyen Hai T. Measurements and Correlations of the Physical Properties of CO_2/Heavy-Crude-Oil Mixtures[J]. SPE Reservoir Engineering, 1988, 3(3):822-828.
    [124]李振泉.油藏条件下溶解CO_2的稀油相特性实验研究[J].石油大学学报,2004,28(3):43-48.
    [125]杨胜来,王亮,何建军,等.CO_2吞吐增油机理及矿场应用效果[J].西安石油大学学报,2004,19(6):23-26.
    [126] Vazquez M., Beggs H. D. Correlations for fluid physical property prediction[J]. SPE Reservoir Engineering, 1980, 32(5): 968-970.
    [127]熊钰,孙雷,李士伦,等.辽河稀油区注CO_2提高采收率潜力实验评价[J].西南石油学院学报,2001,4(2):30-32.
    [128] M. A.克林斯(著).程绍进(译).二氧化碳驱油机理及工程设计[M].北京:石油工业出版社,1989:129-132.
    [129]刘一江,刘积松,黄忠桥,等.聚合物和二氧化碳驱油技术[M].北京:中国石化出版社,2001:97-98.
    [130] Zhaowen Li, Mingzhe Dong. Densities and Solubilities for Binary Systems of Dioxide+Water and Carbon Dioxide+Brine at 59℃and Pressures to 29MPa[J]. Chem. Eng. Data, 2004, 49(4): 1026-1031.
    [131] Clark P. D., Hyne J. B., Tyrer J. D. Chemistry of organosulfur compound type occurring in heavy oil sands.1. High temperature hydro-lysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes[J]. Fuel, 1983, 62(5): 959-962.
    [132] Clark P. D., Hyne J. B., Tyrer J. D. Chemistry of organosulfur compound type occuring in heavy oil sands.2. Influence of pH on the high temperature hydrolysis of tetrahydrothiophene and thiophene[J]. Fuel, 1984, 63(1): 125-128.
    [133] Clark P. D., Hyne J. B., Tyrer J. D. Chemistry of organosulfur compound type occurring in heavy oil sands.3. Reaction of thiophene and tetrahydrothiophene with vanadyl and nickel salts[J]. Fuel, 1984, 63(6): 1645-1649.
    [134] Clark P. D., Hyne J. B., Tyrer J. D. Chemistry of organosulfur compound type occurring in heavy oil sands.4. The high temperature reaction of thiophene and tetrahydrothiphene with aqueous solution of aluminum and first row transition-metal cation[J]. Fuel, 1987, 66(5): 1353-1357.
    [135] Clark P. D., Hyne J. B., Tyrer J. D. Chemistry of organosulfur compound type occurring in heavy oil sands.5. Reaction so thiophene and tetrahydrothiophene with aqueous groupⅧB metal species at high temperature[J]. Fuel, 1987, 66(5): 1699-1702.
    [136]刘永建,钟立国,蒋生健,等.水热裂解开采稠油技术研究的进展[J].燃料化学学报,2004,32(1):117-122.
    [137]胡玉峰,明云峰,郭天民,等.高压注气过程中沥青质沉淀机理及规律的实验研究[J].石油大学学报(自然科学版),2003,27(2):74-77.