变速/变载条件下板料冲压成形性能及其变形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天、汽车等工业领域轻量化要求的不断提高,促进了轻质、高强度材料的应用。但是,由于这些材料的成形性能差、回弹不易控制等问题,导致冲压成形难度大。采用控制压边力大小、优化拉深筋形状、改善润滑条件、补偿模具型面等方法,通常需要长时间的试模和修模才能获得成功,导致模具质量降低、成本上升。而一旦调试不成功,就会造成极大的经济损失。实际上,在冲压成形过程中,成形速度及成形载荷能够有效地改善材料的受力状态和变形行为,从而在无需改变模具的情况下,即可降低材料的成形回弹,提高材料的成形性能,有效降低冲压成本。因此,深入研究变速/变载对冲压成形的影响规律,探讨相关机理,对完善冲压成形技术,提高冲压件的质量具有重要的意义。本文将重点围绕成形速度及成形载荷对板料成形极限和回弹的影响规律,采用塑性理论、有限元数值模拟和实验研究相结合的方法,进行系统深入的研究。
     首先,基于塑性力学的基本理论,建立拉深成形过程的虚功率方程,从变形功的角度,探讨成形速度与成形载荷提高材料成形性能的可行性。在此基础上,进一步采用有限元数值模拟方法,研究了成形速度对主变形区等效应力和等效应变速率的影响。模拟结果表明,通过成形速度的变化,可以改变主变形区的总变形功率,从而能够有效地提高材料的成形性能。
     在冲压成形过程中,速度对成形过程的影响主要通过摩擦来实现。为此,针对拉深成形,分别采用平板滑动摩擦实验和拉弯摩擦实验,研究了变速/变载条件下板料在法兰处和凹模圆角处的摩擦行为。实验结果表明:随法向载荷的增大,滑动摩擦系数减小;而随速度的增大,滑动摩擦系数增大,在运动稳定阶段,滑动摩擦系数与速度成线性关系;速度对法兰处摩擦的影响远大于对圆角处摩擦的影响,且速度对圆角处摩擦的影响不显著;另外,通过合理设置变速成形方式,能有效地降低初始摩擦力和摩擦力随速度变化的幅值。在上述实验结果基础上,为了进一步研究速度对摩擦影响的机理,采用分形理论,建立了基于板料表面形貌的弹塑性接触模型,研究了板料和模具间实际接触面积和法向载荷之间的定量关系,并首次建立了考虑成形速度、法向载荷、材料力学性能和板料表面形貌的摩擦模型,该模型能够定量计算法兰处的滑动摩擦系数,对于进一步揭示冲压成形过程中的摩擦行为,以及提高成形过程数值模拟精度都具有重要的意义。
     针对影响冲压成形质量的弯曲回弹,分别采用V形和U形弯曲实验,研究了速度、载荷、凸模行程和弯曲次数等参数对回弹的影响。实验结果表明,成形速度对回弹的影响较小,而成形载荷、凸模的行程和弯曲成形次数对回弹有较大影响,尤其是通过成形载荷的变化能有效地控制回弹。为此,在考虑应力-应变分布、受力边界条件、弹塑性材料模型和Hill屈服准则的基础上,建立了成形载荷控制下的弯曲回弹预测模型,该模型与实验结果相吻合,克服了传统经验公式仅能预测自由弯曲回弹的不足,可用于指导难成形材料的校正弯曲成形工艺设计。
     在上述研究成果基础上,采用圆筒件拉深工艺实验进一步研究了速度影响拉深成形性能的规律。实验研究发现,采用不同的拉深速度,筒形件的拉深深度及壁厚均匀性都存在较大的差异。这表明速度是影响拉深成形性能和质量的一个重要因素。当采用阶段变化的速度模式成形时,速度的转变应在板料完全进入圆角区之后进行,还需使拉深初始速度小于材料的极限成形速度。这些现象主要是由于成形过程中的摩擦随速度变化而引起的。为此,采用塑性力学理论和前面提出的摩擦模型,以及拉深实验结论,首次建立了变速/变载条件下,材料的极限拉深系数与材料性能参数和拉深速度之间的关系式,该表达式能够判断变速/变载成形工艺的可行性,并指导变速变载条件下的拉深成形工艺参数的设计。
     综上所述,采用变速变载的方法,能够有效地提高材料的成形性能,改善冲压成形质量。本文的研究成果为今后采用变速变载方法,解决难成形材料和复杂零件的成形奠定了初步的理论基础。
Due to a strong effort for light-weight stamped parts in automotive and aerospace industry, materials with the characteristics of light weight and high strength show their widely application foregrounds. However, the stamping process is faced with a particular challenge because of poor formability and more springback for difficult-to-deform materials. Some trial-and-error efforts for dies and moulds are used to deal with problems by controlling blank-holder force, optimizing the design of draw-bead, reducing friction and correcting springback-related problems, but these methods are costly and time consuming. Actually, during the stamping process, variable forming speed and forming loading are able to effectively improve formability and reduce springback and cost for light-weight alloys and high-strength steel on the conditions of no-modifying the dies and moulds. So further research on the forming laws and forming mechanism during variable forming speed/forming loading stamping process is significant to improve servo pressure forming technology and advance the forming quality. In this dissertation, a systematical and thorough investigation on variable forming speed/forming loading influencing forming limits and springback of sheet metals has been carried out by using the method combining plasticity theory, finite element numerical simulation and experimental study.
     A virtual power equation of deep-drawing of sheet metals is established based on plastic mechanics theory. On this foundation, the study on formability affected by forming speed and forming loading is made according to the change of total deformation power. And then the influences of forming speed on the equivalent stress and equivalent stain rate in the deformation zone are studied by finite element simulation. It is found that reasonable variable forming speed can change the total deformation power so as to improve the formability of sheet metals effectively.
     During the stamping process, friction shows its importance on forming speed influencing forming process. The friction behaviors in the flanges area and die corner radius area during the variable forming speed/forming loading stamping process are studied by flat plate friction test and stretch bending friction test. It is found that, the friction coefficient decreases with the increase of the normal pressure, while increases with the increase of the forming speed and especially friction coefficient is linear increasing with forming speed at the stable stage. The effects of forming speed on friction in die corner radius area are smaller than the one in the flanges area, and initial friction force and fluctuation amplitude of friction force are reduced by reasonably setting the variable forming speed. The above conclusions provide an important guide for the design of variable forming speed/forming loading process. So on the basis of above experimental results, a elastic-plastic contact model between sheet metal and die surface is established based on the surface topography of sheet metals, and the relationships between real contact area and normal contact loading are quantitatively obtained to improve the calculation accuracy of shear friction force. An advanced friction model considering forming speed, normal loading, materials properties and surface topography of sheet metals is developed based on elastic-plastic contact model and results of friction experiments, which quantitatively predicts the friction coefficient in the flanges area. The friction model clearly shows its potential of studying the friction behaviors and improving FE simulations during the stamping process of sheet metals.
     To study the effects of forming speed, forming loading, displacement and multiple-hits bending times on springback, the experiments of V-bending and U-bending are performed. It is found that, the effects of forming speed on springback are small, and springback could be reduced greatly by increasing the punch displacement or multiple-hits bending times, especially the effects of forming loading on the springback could make it effectively. Based on a general analysis of stress-strain state, loading boundary conditions, a elastic-plastic materials model and Hill's yield criterion, a springback prediction model is established, which agrees with experiments. The model confirms the quantitative relationship of forming loading and springback, and overcomes the disadvantages of traditional empirical formula only predicting springback for free bending.
     Based on the above experimental results, a forming scheme is designed to study the effects of forming speed on formability of sheet metals during the deep drawing process. It is found that, according to forming limit analysis and thickness distribution of formed parts, variable forming speed/forming loading technical scheme for improving the formability is obtained, so forming speed shows its importance on the effects of formability and forming equality during the deep drawing process. When forming speed is designed for different phases, the turning point of forming speed variations should be lied on the place after where the sheet metals have completely turned into the fillet areas, and initial forming speed is not larger due to friction varying with forming speed during the deep drawing process. Therefore, based on plastic theory, friction model and experimental results of deep drawing, the quantitative relationships among critical drawing ratio of sheet metals, materials parameters and forming speed are obtained on conditions of variable forming speed/forming loading of deep drawing. The equation could be used to verify the feasibility of the variable forming speed/forming loading process and to provide a theoretical guide for parameters design of deep drawing.
     In a word, the processing technology of sheet metals for variable forming speed/forming loading not only improves the formability of sheet metals, but also advances the forming equality of stamping parts, so the results could provide a theory basis for stamping production of poor formability material and complex features of parts.
引文
[1]李春峰.板材成形新技术及发展趋势[J].机械工人,2005,7:4-9.
    [2]李湘吉.基于多点成形与渐进成形的板料复合成形技术研究[D].吉林大学,2009.
    [3]王利,朱晓东,张王军,等.汽车轻量化与先进的高强度钢板[J].宝钢技术,2003,5:53-58.
    [4]朱铮,汽车用高强度钢板的开发应用和发展前景[J],钢铁,2000,35(1):66-70.
    [5]康永林,国内外汽车板的现状、需求和发展趋势[J],中国冶金,2003,67(6):18-23.
    [6]钟志华.薄板件冲压成形过程的计算机仿真[M].北京:北京理下大学出版社,1997.
    [7]Swift H W.Plastic instability under plane stress[J]. Journal of the Mechanics and Physics of Solids,1952,1(1):1-18.
    [8]Hill R.On discontinuous plastic state with special reference to localized necking in thin sheets[J]. Journal of the Mechanics and Physics of Solids,1952,1:19-30
    [9]Keeler S P.Plastic instability and fracture in sheets stretched over rigid punches[J].Trans. ASM,1963,56(1):105-110.
    [10]Lee D, Backofen W.An experimental determination of the yield locus for titanium and titanium alloy sheet[J].Trans.Met.Soc.AIME.1966,34:456-468.
    [11]Gorton M. Application of strain analysis to sheet metal forming problems in the press shop[J]. Goodwin-Chrysler Corp, SAE.Report680093,1968.
    [12]Hofman A, Vollertsen F, Deep drawing of locally heat treated blank[J], Laser Assisted Net Shape Engineering,1997,2:719-732.
    [13]El-Sebaie M G, Mellor P B, Plastic instability conditions in the deep drawing of a circular blank of sheet metal [J], International Journal of Mechanical Sciences,1972,14:535-542.
    [14]Nakamura K, Nakagawa T, Hydraulic contour-pressure deep drawing assisted by radial pressure, in:Proceedings of the First ICTP Conference on Advanced Technology of Plasticity, Tokyo,1984,2:775-781.
    [15]Chung S Y, Swift H W. Cup Drawing from a Flat Blank[J].Proc.Instn.Mech.Engrs,1951,165:199-228.
    [16]Siegert K, Ziegler M, Wagner S. Closed loop control of the friction force deep drawing process[J].Materials Processing Technology,1997,71:126-133.
    [17]Mustafa A, Ahmetoglu, Gary Kinzel, et al.Forming of aluminum alloys-application of computer simulations and blank holding force control[J].Materials Processing Technology,1997,71:147-151.
    [18]李良福(编译).在拉伸盒形件时控制压边力的研究[J].模具技术,1997,5:19-21.
    [19]胡成武.圆筒形金属容器拉深成形时压边力的确定[J].包装工程,1997,18(4):28-31.
    [20]Hofman A. Deep drawing of locally optimized aluminum blanks, in:Proceedings of the Sixth International Conference on Advanced Technology of Plasticity,1999,2:1043—1450.
    [21]Siegert K. CNC hydraulic multipoint blank-holder system for sheet metal forming presses[J], Ann. CIRP,1993,42(1):319-322.
    [22]Vedat Savas, Omer Secgin. A new type of deep drawing die design and experimental results[J]. Materials and Design,2007,28:1330-1333.
    [23]Park D H, Kang S S, Park S B. A Study on the improvement of formability for elliptical deep drawing process[J].Journal of Materials Processing Technology,2001,113:662-665.
    [24]Tisza M.Deep drawing experiments in ultrasonically vibrating tools[J], Kohaszat,1983,116(3):104-109.
    [25]Thirvarudchelvan S, Lewis W.The redrawing of cups at redraw ratio of3using an annular urethane pad [J]. Journal of Materials Processing Technology,1999,87(3):128-130.
    [26]Maslennikov N A.Russian developed punchless drawing[J]. Metalwork.Prod,1957,16:1417-1420.
    [27]Hassan M A, Takakura N, Yamaguchi K, Fiction aided deep drawing using polyurethane ring and metal punch, Part1:experimental observations on the deep drawing of aluminum thin sheets and foils[J]. International Journal of Machine Tools manufacture,2002,42(5):625-631.
    [28]Hassan M A,Takakura N, Yamaguchi K.Fiction aided deep drawing using polyurethane ring and metal punch, Part2:analysis of drawing mechanism and process parameters[J],International Journal of Machine Tools manufacture,2002,42(5):633-642.
    [29]Hassan M A, Takakura N, Yamaguchi K. A novel technique of friction aided deep drawing using a blank-holder divided into four segments[J], Journal of Materials Processing Technology,2003,139(1-3):408-413.
    [30]Hassan M A, Takakura N, Yamaguchi K. Friction aided deep drawing using newly developed blank-holder divided into eight segments[J], International Journal of Machine Tools manufacture,2003,43(6):637-646.
    [31]Hassan M A, Suenaga R, Takakura N, et al. A novel process on friction aided deep drawing using tapered blank holder divided into four segments[J]. Journal of Materials Processing Technology,2005,159:418-425.
    [32]Fukuda M, Yamaguchi K, Nishikoji T. Deep drawing of circularsheet metals with rubber rings (3rd report, on the drawing mechanism), Bull. Jpn. Soc. Mech. Eng.1974,113(17):1513—1521.
    [33]李赞,董湘怀,李志刚.优化板料成形状态新技术[J].中国机械工程.2002,13(23):2007-2010.
    [34]李赞,董湘怀,李志刚.复杂油底壳一次拉深成形新工艺的数值模拟[J].中国机械工程,2004,15(5):458-461.
    [35]常素萍,李赞.带凸缘高圆筒形件一次拉深成形新工艺的数值分析[J],机械科学与技术.2005,24(1):19-21.
    [36]胡世光.板料冷压成形原理[M].北京:国防工业出版社,1979.
    [37]Yanagimoto J, Oyamada K, Nakagawa T. Springback of high-strength steel after hot and warm sheet formings[J]. CIRP Annsls-Manufacturing Technology,2005,54(1):213-216.
    [38]Yanagimoto J, Oyamada K. Mechanism of springback-free bending of high-strength steel sheets under warm forming conditions[J]. Annals of the CIRP,2007,56(1):265-268.
    [39]Neugebauer R, Altan T, Geiger M. Sheet metal forming at elevated temperatures[J]. Annals of the CIRP,2006,55(2):793-816.
    [40]Yanagimoto J, Oyamada K. Springback-free isothermal forming of high-strength steel sheets and aluminum alloy sheets under warm and hot forming conditions[J]. ISIJ International,2006,46(9):1324-1328.
    [41]Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. Annals of the CIRP,2005,54(1):209-212.
    [42]Gisario A, Barletta M, Conti C.et al. Springback control in sheet metal bending by laser-assisted bending:Experimental analysis, empirical and neural network modeling[J]. Optics and Lasers in Engineering,2011,49:1372-1383.
    [43]Fu Z M, Mo J H, Zhang W X. Study on multiple-step incremental air-bending forming of sheet metal with springback model and FEM simulation[J]. Journal of Advanced Manufacture and Technology,2009,45:448-458.
    [44]林忠钦,刘罡,李淑慧,等.应用正交试验设计提高U形件的成形精度[J].机械工程学报,2002.38:83-89.
    [45]Liu Y C. Springback reduce in U-channel"Double-Bending"technique[J]. Applied Metal Working,1984,3(2):87-90.
    [46]Mori K, Akita K. Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press[J]. International Journal of Machine Tools&Manufacture,2007,47:321-325.
    [47]朱东波,孙馄,李涤尘,等.板料成形回弹问题研究新进展[J].塑性工程学报,2000,7(1):11-17.
    [48]张立力,齐恬,戴映荣.数值模拟参数和工艺参数对板材成形回弹影响的研究[J].锻压技术,2002,6:18-21.
    [49]Chu C C. The effect of restraining force on springback[J]. International Journal of Solids and Structures,1991,27(8):1035-1046.
    [50]Wang Chaotao, Gary L Kinzel, Taylan Altan. Process simulation and springback control in Plane strain sheet bending. SAE1993TRANSACTIONS,930280.
    [51]W Johnson, Yu T X. Springback after the biaxial elastic-plastic pure bending of a rectangular plate [J]. International Journal of Meehanieal Seiences,1981,23(10):619-630.
    [52]Makinouchi A,Nakamachi E,Onate E,et al.NUMISHEET'93-Proc.of2nd Int.Conf.:Nuber.Simul.of3-D Sheet Metal Forming Processes-Verification of Simulations with Experiments,Isehara,Japan,1993.
    [53]Gelin J C and Picart P(eds.),NUMISHEET'99-Proc.of4th Int.Conf.and Workshop on Nuber.Simul.of3-D Sheet Metal Forming Processes,Besancon,France,1999.
    [54]Cao J, Smith L M, Pourboghrat F,et al.NUMISHEET2005-6th International Conference and Workshop on Numerical Simulation of3-D Sheet Metal Forming Processes, Detroit, Michigan, USA,2005.
    [55]Oliveira M C, Alvesb J L, Chaparro B M. Study on the influence of work-hardening modeling in springback prediction[J]. International Journal of Plasticity,2007,23(3):516-543.
    [56]Meinders T, Burchitz I A, Bonte M H A. Numerical product design:Springback prediction, compensation and optimization[J]. International Journal of Machine Tools and Manufacture,2008,48(5)499-514.
    [57]Recep Kazan, Mehmet Firat, Aysun Egrisogut Tiryaki. Prediction of springback in wipe-bending process of sheet metal using neural network[J].Material&Design,2009,30(2):418-423.
    [58]Wei Gan, Wagoner R H. Die design method for sheet springback[J]. International Journal of Mechanical Science,2004,46(7):1097-1113.
    [59]Laurent H, Greze R, Manach P Y. Influence of constitutive model in springback prediction using the split-ring test[J]. International Journal of Mechanical Science,2004,46(7):1097-1113.
    [60]Peng Chen, Muammer Koc. Simulation of springback variation in forming of advanced high strength steels[J]. Journal of Materials Processing Technology,2007,190(1-3):189-198.
    [61]Woedlhorpe J, Pearce R. Effect of R and N opinion on the forming limit diagrams of sheet steel[J]. Sheet Meatl Ind,1969,46(121:1061-1067.
    [62]Barlat F, Lian J. Plastic behavior and stretch ability of sheet metals Part L:a yield function for orthotropic sheets under plane stress conditions[J].International Journal of Plasticity,1989,5:51-66.
    [63]Prager W. A new method to analyzing stresses and strains in work-hardening plastic solids [J]. ASME Journal of Applied Mechanics,1956,78:493.
    [64]Abdel K M,Ohno N. Kinematic hardening model suitable for ratcheting with stead-state[J]. International Journal of Plasticity,2000,16:225-240.
    [65]Chaboche J L. Constitutive equations for plasticity and cyclic visco-plasticity[J]. International Journal of Plasticity,1989,5:247-302.
    [66]Jiang Y, Kurath E. Characteristics of the Armstrong-Frederick type plasticity models[J].International Journal of Plasticity,1996,12:387-415.
    [67]Ohno N, Wang J D.Kinematic hardening rules with critical state of dynamic recovery:Part Lformulation and basic features for ratcheting behavior[J]. International Journal of Plasticity,1993,9:373-390.
    [68]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [69]Manabe K, Yoshihara S, Nishimura H, et al. Intelligent design architecture for process control of deep-drawing, in:Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials,1999:571-576.
    [70]Manabe K, Koyama H,Yoshihara S,et al. Development of a Combination Punch Speed and Blank-holder Fuzzy Control System for the Deep-Drawing process[J]. Journal of Materials Processing Technology,2002,125-126(9):440-445.
    [71]Nobuhiro K, Masayoshi A, Kunlachart J. Deep-drawing and ironing of1050aluminum sheets loaded with vibration using NC servo press machine[J]. Light Metals,2007,57(6):240-244.
    [72]莫健华,郑加坤,古闲伸裕,吕言.伺服压力机的发展现状及其应用[J].锻压装备与制造技术,2007,5:19-22.
    [73]Kaya S, Altan T. Warm Forming Aluminum and Magnesium, Part I:Forming a Round Cup[J].Staping,2005,17(12):36.
    [74]孙友松,周先辉.交流伺服压力机及其应用[J].压力加工,2008,2:93-98.
    [75]Kaya S. An Experimental Study on Nonisothermal Deep Drawing Process Using Aluminum and Magnesium Alloys[J]. Journal of Manufacturing Science and Engineering,2008,130(12):1-11.
    [76]Ahmetoglu M, Coremans A, Kinzel G L, et al.Improving draw ability by using variable blank holder force and pressure in deep drawing of round and non-symmetric parts. SAE Trans of Materials&Manufacturing SAE Technical,930287,1993.
    [77]Hirose Y, Hishida Y, Furubayashi T, et al. Research on techniques for controlling body wrinkling by controlling the blank holding force. in:Proceedings of the fourth Symposium of the Japanese society for technology of plasticity,1990.
    [78]Blum el K W, Hartmann G, Heldbuchel P. Computer driven variable blank holder.International Deep Drawing Research Group Woking Group1,Pisa,Italy,1991.
    [79]Miyoshi K. Current Trends in Free Motion Presses, Ishikawa-Pref923-8666[R]. Komatsu City, Japan:Komatsu Industries Corp,2004.
    [80]M. Otsu, Yamagata C, Osakada K, Reduction of blanking noise by controlling press motion, Annals of the CIRP,2003,52(1):245-248.
    [81]孙友松,周先辉,黎勉,等.交流伺服压力机及其关键技[J].锻压技术,2008,33(4):1-8.
    [82]王成元,夏加宽.电机现代控制技术[M].北京:机械工业出版社,2006.
    [83]梁建军,阮锋.伺服压力机数字控制系统的设计[J].锻压技术,2010,36(1):93-97.
    [84]Kozo Osakada. Application of servo presses to metal forming processes.in: Proceedings of the13th International Conference on Metal Forming. Japan:Mori K,2010.
    [85]王成元,夏加宽.电机现代控制技术[M].北京:机械工业出版社,2006.
    [86]吕言,周建国,阮澍,等.最新伺服压力机开发以及今后的动向[J].锻压装备与制造技术,2006,41(1):11-14.
    [87]赵婷婷,王浩,贾明全.伺服压力机方案与设计[J].机床与液压,2010,38(8):1-3.
    [88]Xuan Zhi Wang,S.H.Masood,M.Dingle.Numerical simulation and optimisation of sheet metal forming for auto-body panel using autoform software.Materials Science Forum,2007,561-565:1911-1914.
    [89]周贤宾.塑性加工技术的发展-更精、更省、更净[J].中国机械工程,2003,14(1):85-87.
    [90]H. Naceur, Y,Q, Guo, S. Ben-Elechi, Response surface methodology for design of sheet forming parameters to control springback effects[J]. Computers and Structures,2006,84:1651-1663.
    [91]Bahloul R, Ben-Elechi S, Potiron A. Optimisation of springback predicted by experimental and numerical approach by using response surface methodology [J]. Journal of Materials Processing Technology,2006,173:101—110.
    [92]Jung-Han Songa, Hoon Huha, Se-Ho Kimb, A simulation-based design parameter study in the stamping process of an automotive member[J]. Journal of Materials Processing Technology,2003,132:35-41.
    [93]Lars Gunnarsson, Erik Schedin. Improving the proper-ties of exterior body panels in automobiles using variable blank holder force [J].Materials Processing Technology,2001,114:168-173.
    [94]Mark Colgan, John Monaghan.Deep drawing process:analysis and experiment J]. Materials Processing Technology,2003,132:35-41.
    [95]胡世光,陈鹤峥.板料冷压成形的工程解析[M].北京:北京航空航天大学出版社,2004:310-312.
    [96]Chan K C, Gao L. On the susceptibility to localized necking of defect-free metal sheets under biaxial stretching [J], Journal of Materials Processing Technology,1996,58:251-255.
    [97]Thomas B, Stoughton, Jeong Whan Yoon.Sheet metal formability analysis for anisotropic materials under non-proportional loading [J]. International Journal of Mechanical Sciences,2005,47:1972-2002.
    [98]Hill R. A theory of the yielding and plastic flow of anisotropic metals, Roy.Soc.London Proc,1948,193A;281.
    [99]ARMSTRONG P J, FREDERICK C O. A mathematical representation of the multiaxial bauschinger effect[R]. C E G B,1966,Report RD/B/N73.
    [100]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2010.5:62.
    [101]吴青松.温度和应变率对低合金钢力学行为的影响[D].黑龙江:哈尔滨工程大学,2005:1-2.
    [102]赵亚溥.裂纹动态起始问题的研究进展.力学进展[J],1996,26(3):362-376.
    [103]李春雷.2A12铝合金本构关系实验研究[D].黑龙江:哈尔滨工业大学复合材料与结构研究所,2006:5-9.
    [104]Doege E. Prediction of failure in deep drawing.in:Proceedings of the12th Automotive Materials Symposium on Computer Modeling of Sheet Metal Forming Processes, Michigan:The Mineral Metals and Materials Society (TMS),1985,209-224.
    [105]Schey J A. A critical review of the applicability of tribotesters to sheet metal working. in:Proceedings of the Sheet Metal Stamping Symposium on Development Applications,Michigan:Society of Automotive Engineers,1997,SP-1221:113-24.
    [106]Schey J A, Smith MK. Report of NADDRG Friction Committee on Reproducibility of Friction Tests within and between Laboratories. in:Proceedings of the Sheet Metal and Stamping Symposium, Michigan:Society of Automotive Engineers,1993,SP-944:261-267.
    [107]Nine HD. Draw bead forces in sheet metal forming. in:Proceedings of a Symposium on Mechanics of Sheet Metal Forming:Behaviour and Deformation Analysis, Michigan:Plenum Press,1978,179-211.
    [108]Kong Y, Sun Y, Wang X, et al. A study on friction characteristics of coated and non-coated steel sheets in sheet forming. in:Proceedings of the NUMISHEET'96,1996,61-64.
    [109]Andrzej Matuszak. Factors influencing friction in steel sheet forming [J]. Journal of Materials Processing Technology,2000,106:250-253.
    [110]Lanzon J M, Cardew-Hall M J, Hodgson P D. Characterising frictional behaviour in sheet metal forming [J]. Journal of Materials Processing Technology,1998,80-81:251-256.
    [111]Wagner S,Becker D.Reibung von Topocromtext urierten Aluminium blechen, www. werkstattstechnik. de/wt/2003/10/04. htm.
    [112]S. Hao, B.E. Klamecki, S. Ramalingam. Friction measurement apparatus for sheet metal forming [J]. Wear,1999,224:1-7.
    [113]Haluk Darendeliler, Metin Akkok, Can Ali Yiicesoy.Effect of variable friction coefficient on sheet metal drawing [J].Tribology Internationals2002,35:97-104,
    [114]Kudo H, Tanaka S, Imamura K,et al, Investigation of cold forming friction and lubrication with a sheet drawing test [J], Ann. CIRP,1976,25(1):179-184.
    [115]Azushima A, Uda M, Kudo H, An interpretation of the speed dependence of the coefficient of friction under the micro-PHL condition in sheet drawing [J], Ann. CIRP,1991,40(1):227-230.
    [116]何丹农,陶宏之,包向军等.拉深用润滑剂的摩擦系数和压边力的关系研究[J].摩擦学学报,2000,20(3):223-225.
    [117]郑静风,李少平,何丹农.板料拉深成形润滑模式研究[J].金属成形工艺,2002,20(5):29-32.
    [118]郭正华.铝合金板温成形关键技术的研究[D].华中科技大学,2004.
    [119]徐树成,板成形中摩擦系数测定的研究进展[J],塑性工程学报,2000,7(2):40-43.
    [120]姚若浩.金属压力加工中的摩擦与润滑[M],北京:冶金工业出版社,1990.
    [121]戴雄杰.摩擦学原理[M].上海科学技术出版社,1984.
    [122]赵振铎,许洪民,张志红,等.金属板料塑性成形摩擦机理的力学模型探讨[J].塑性工程学报,2003,1(10):52-55.
    [123]Doege E, Kaminsky C, Bagaviev A. A new concept for the description of surface friction phenomena[J]. Journal of Materials Processing Technology,1999,94:189-192.
    [124]Lee B H, Keum Y T, Wagoner R H. Modeling of the friction caused by lubrication and surface roughness in sheet metal forming[J]. Journal of Materials Processing Technology,2002,130-131:60-63.
    [125]Wihlborg A, Crafoord R. Steel sheet surface topography and its influence on friction in a bending under tension friction test [J]. International Journal of Machine Tools&Manufacture,2001,41:1953-1959.
    [126]Sayles R S. Thomas T R. Surface topography as a non-stationary random process [J]. Nature (London),1978,271:431-434.
    [127]葛世荣,朱华,陈国安.摩擦学复杂性动力问题及其分形研究方法[A].全国表面工程及摩擦学学术会议[C],成都,2000;109-113.
    [128]陈海燕,王成国.分形理论及其在摩擦学研究中的应用[J].材料导报,2002,12:6-8.
    [129]董霖.基于分形理论的弹塑性接触及磨合磨损预测模型的研究.成都:四川大学硕士学位论文,2000.
    [130]Mandelbort B B.How Long is the Coast of Britain-Statistical Self-similarity and Fractional Dimendion.Science,1976(155):536-638.
    [131]张伟.铝合金板温成形接触和摩擦问题的研究[D].华中科技大学,2008.
    [132]Majumdar A,Bhushan B. Role of Fractal Gemotry in Roughness Characterization and Contact Mechanics of Surfaees[J].Tribol (ASME),1990,112:205-216.
    [133]Majumdar A,Bhushan B.Fractal Model of Elastic-plastic Contact between Rough Surfaees[J]. Tribol (ASME),1991,113:1-11.
    [134]贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报,1996,16:375-384.
    [135]夏学军,谭庆昌.分形几何及其在磁盘表面形貌分析中的应用[J].2002,32:40-44.
    [136]Mandelbort B B. Stochastic Models for the Earth's Relief, the Shape and the fractal Dimension of the Coastlines and the Number-area rule for Islands. In:Proceeding of the National of the National Academy of Science (USA),1975,72:3825-3828.
    [137]张长军,贺林.具有单向粗糙度表面接触的分形模型[J].西安公路交通大学学报,1998,18:103-107.
    [138]姚若浩.金属压力加工中的摩擦与润滑[M].冶金工业出版社,1990.
    [139]肖景容,姜奎华.冲压工艺学[M],北京:机械工业出版社,1994.5:57.
    [140]钟毓斌.冲压工艺与模具设计[M],北京:机械工业出版社,2000.5:219.