热轧带钢组织性能预报模型开发及超快冷工艺的初步探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以热轧带钢的物理冶金模型和超快冷工艺为研究对象。修正和完善了热轧带钢组织性能预报系统的核心计算模型,拓宽了可预报钢种和工艺范围,提高了预报精度。利用热轧带钢组织性能预报系统和ANSYS软件,进行了超快冷过程中的热力耦合数值模拟和超快冷条件下铁素体相变和碳氮化物析出的数值计算,在实验室进行了超快冷对相变和析出影响的试验模拟,在中试线轧机上进行了应用超快冷热轧带钢的中试试验研究,数值分析和试验模拟结果为超快冷工艺的工业化应用提供了理论基础和试验依据。
     通过建立、修正或完善某些物理冶金模型或分析方法,在热轧带钢组织性能预报系统开发方面取得进展:根据熔点时压缩应力极小的状态,提出了一种简单实用的修正温变对单道次热压缩应力应变曲线影响的方法;基于热压缩过程变形储存能的演变规律,提出了一种从应力应变曲线计算动态再结晶分数、临界应变和道次间软化率的方法以及流变应力模型的建立方法;根据大量Ae3的数据,修正了相变热力学计算的超组元模型,并通过某一合金元素对另一合金元素Zener两参数的影响考虑了合金元素间的交互作用;采用类似小角度晶界比界面能的计算方法,对奥氏体铁素体界面的比界面能进行了计算,并建立了不同形核位置和核坯形状的经典形核方程;提出了一种计算Fe-Nb-V-Ti-A1-C-N合金系碳氮化物析出动力学和粒度分布的方法。
     基于ANSYS平台,建立了热轧带钢超快冷过程热力耦合有限元分析的二维模型,分析了初始温度、表面换热系数、板厚和碳含量等参数对超快冷条件下钢板厚度上温度和热应力分布的影响,并对CSP流程机架间超快冷装置的布置进行了讨论。
     利用完善后的组织性能预报系统进行超快冷工艺的数值模拟,并在实验室进行试验模拟和验证,以及对应用超快冷热轧带钢的组织和性能进行分析。结果表明:应用前置式超快冷,并随后缓冷的冷却方式有助于提高铁素体转变量和碳氮化物的析出量,并且析出相小尺寸粒子大幅增加,而应用后置式超快冷,对析出行为的影响不大。采用高温轧制并随后交替式超快冷工艺时,能得到细小的铁素体晶粒。并在减轻轧机负荷的同时增大了带钢强度尤其是抗拉强度,同时强塑积有所提高,屈强比降低,冲击吸收功增大。该工艺有助于实现热轧带钢的减量化生产。
The physical metallurgy model and ultra fast cooling (UFC) in hot strip rolling have been studied in this paper. The core computational models in the microstructure evolution and property prediction system for hot rolled steel strip were developed, modified and improved, thus the scope of predictable steel grades and processing conditions of the microstructure evolution and property prediction system was extended and the prediction precision was improved. The ferrite phase transformation and carbonitride precipitation in the UFC process were numerically simulated by the microstructure and property prediction system for hot rolled strip steel. And the thermo-mechanical coupled modeling on UFC was conducted by using ANSYS FEM software. Then influences of UFC on phase transformation and precipitation were investigated by experimental simulation in the laboratory and the pilot trials of hot rolled strip using UFC technology was implemented in the pilot plant. The numerical simulation and experimental simulation results provide the theoretical basis and experimental evidence for industrial application of UFC process.
     By establishing, modifying or improving some physical metallurgy models and anslysis methods, progresses were made in the microstructure and property prediction of hot rolled strip steel. On the basis of the suppose of minor force when deformated at melting temperature, a simple and practical way to correcte the errors in flow stress of single-hit hot compression test caused by thermal effect was proposed. On the basis of the evolution rule of deformation stored energy in thermal compression process, methods for calculating fraction and critical strain of dynamic recrystallization and softening fraction between passes and modeling flow stress from the measured stress-strain curves were achieved. According to large amounts of data of Ae3, a modified superelement model to calculate thermodynamics of phase transformation for Fe-ΣXi-C alloy systems were developed by the modification of Zener's two-parameter for substitutional elements, and the interactions between alloying elements have been taken into account. Using the similar way to calculate unit interfacial energy of small-angle grain boundaries, the unit interfacial energy of austenite ferrite interface was computed and the classical nucleation equations of different nucleation sites and nucleation shapes were constructed. A method calculated precipitation kinetics and particle size distribution of microalloyed carbonitride in Fe-Nb-V-Ti-Al-C-N system was stated.
     A two-dimensional model of thermo-mechanical coupling simulation on UFC for hot rolled steel plate was established and the distribution of temperature and thermal stress in thickness direction was calculated by ANSYS FEM software. The effect of initial temperature, thinkness, carbon content and surface heat transfer coefficient on the plate temperature and thermal stress were analyzed. And the layout of inter-stand UFC device that can be used in CSP process was discussed.
     Through the numerical simulation of UFC process by the further improvement of microstructure and property prediction system and laboratory simulation and verification of UFC process by test, as well as the result analysis of microstructure and properties of hot rolled strip in the UFC condition, it shows that the cooling way of front UFC and subsequent slow cooling is helpful to enhance the amount of ferrite transition and carbonitride precipitation, and increase significantly the small size precipitation particles, but back UFC only has litte effect on precipitation behavior. It also indicates that when using high temperature rolling and subsequent alternating UFC process, refined ferrite grain can be got. It reduces the mill load and improves strip strength, especially tensile strength, and at the same time increases product of tensile strength and ductility, reduces yield ratio, and increases impact absorbed energy. Generally, the UFC process can help to realize "Resources Reducing" production of strip steel.
引文
[1]董瀚.先进钢铁材料[M].北京:科学出版社,2007.
    [2]干勇,田志凌,董瀚,等.中国材料工程大典(第3卷)钢铁材料工程(下)[M].北京:化学工业出版社,2006.
    [3]王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程[J].东北大学学报(自然科学版),2009,30(7):913-922.
    [4]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M].沈阳:东北大学出版社,2004.
    [5]刘正东,董瀚,干勇.热连轧过程中组织性能预报系统的应用[J].钢铁,2003,38(2):68-71.
    [6]唐广波.热轧带钢热轧区物理冶金过程数值模拟及应用研究[D].北京:北京科技大学博士论文,2005.
    [7]Sellars C M. Computer modeling of hot-working processes[J]. Materials Science and Technology,1985,1(14):325-332.
    [8]Esaka K, Wakita J, Takahashi M, et al. The development of the precise model predicting and controlling mechanical properties [J]. Seitetsu-Kenkyu,1986,32(321): 92-104.
    [9]Yada H. Prediction of microstructural changes and mechanical properties in hot strip rolling[A]. In:Ruddle G E, Crawley A F, (eds.). Proc. of international symposium accelerated cooling of rolled steel[C]. Canada:Winnipeg,1987,105-120.
    [10]Kwon O. A technology for the prediction and control of microstructural changes and mechanical properties in steel[J]. ISLJ Interational,1992,32(3):350-358.
    [11]Jonas J J. Dynamic recrystallization-scientific curiosity or industrial tool[J]. Materials Science and Engineering A,1994,184:156-165.
    [12]Hodgson P D. Microstructure modelling for property prediction and control[J]. Journal of Materials Processing Technology,1996,60:27-33.
    [13]Medina S F. Static recrystallization modelling of hot deformed steels containing severl alloying elements[J]. ISIJ Interational,1996,36(8):1070-1076.
    [14]Kaufman L, Radclife S V, Cohen M. In:Zackay V F and Aaronson H I, (eds.). Decomposition of austenite by diffusional processes[M]. New York:Interscience, 1962,313-332.
    [15]Fowler R H, Guggenheim E A. Strtistical thermodynamics[M]. New York: Cambrige University Press,1939.
    [16]McLellan R B, Dunn W W. A quasi-chemical treatment of interstitial solid solutions: Its application to carbon austenite[J]. Journal of Physics and Chemistry of Solids, 1969,30(11):2631-2637.
    [17]Aaronson H I, Domain H A, Pound G M. Thermodynamics of the austenite→proeuctoid ferrite transformation I, Fe-C-X alloys[J]. Transactions of the Metallurgical Society of AIME,1966,236(5):753-767.
    [18]Shiflet G J, Bradley J B, Aaronson H I. A re-examination of the thermodynamics of the proeutectoid ferrite transformation in Fe-C alloys[J]. Metallurgical and Materials Transactions A,1978,9(7):999-1008.
    [19]徐祖耀.相变原理[M].北京:科学出版社,2000.
    [20]Hillert M, Staffanson L I. Regular-solution model for stoichiometric phases[J]. Acta Chemica Scandinavica,1970,24(10):3618-3626.
    [21]Chou K, Wei S. A new generation solution model for predicting thermodynamic properties of a multicomponent system binaries [J]. Metallurgical and Materials Transactions B,1997,28(3):439-445.
    [22]Bichara C, Bergman C, Mathieu J C. Monte Calo calculations of thermodynamic properties of alloys in the case of the surrounded atom model [J]. Acta Metallurgica, 1985,33(1):91-95.
    [23]Simonen E P, Aaronson H I, Trivedi R. Lengthening kinetics of feaaite and bainite sideplates[J]. Metallurgical and Materials Transactions A,1972,4(5):1239-1245.
    [24]Aaronson H I, Domain H A, Pound G M. Thermodynamics of the austenite→proeuctoid ferrite transformation Ⅱ, Fe-C-X alloys[J]. Transactions of the Metallurgical Society of AIME,1966,236(5):768-781.
    [25]朱洪涛.多元钢先共析铁素体析出及珠光体转变热力学研究[R].上海:上海交通大学博士后报告,2002.
    [26]周国治.新一代的溶液几何模型及其今后的展望[J].金属学报,1997,33(2):126-132.
    [27]徐瑞,荆天辅.材料热力学与动力学[M].黑龙江:哈尔滨工业大学出版社,2003.
    [28]许云波.基于物理冶金和人工智能的热轧钢材组织-性能预测与控制[D].沈阳:东北大学博士论文,2003.
    [29]张斌,张鸿冰,阮雪榆.热变形奥氏体先共析铁素体的热力学计算[J].上海交通大学学报,2003,37(10):25-29.
    [30]Cahn J W. The kinetics of grain boundary nucleated reactions[J]. Acta Metallurgica, 1956,4:449-459.
    [31]Kirkaldy J S. Prediction of alloy hardenability from thermodynamic and kinetic data[J]. Metallurgical Transactions,1973,4:2327-2333.
    [32]Umemoto M, Guo Z H, Tamura I. Effect of cooling rate on grain size of ferrite in a carbon steel[J]. Materials Science and Technology,1987,3:249-255.
    [33]Zener C. Theory of growth of spherical precipitations from solid solution[J]. Journal of Applied Physics,1949,20:950-953.
    [34]Krielaart G P, Sietsma J, Zwaag S V D. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions [J]. Materials Science and Engineering A,1997,237(2):216-223.
    [35]Velthuis S G E, Dijk N H V, Rekveldt M T, et al. A three-dimensional model for the development of the microstructure in steel during slow cooling[J]. Materials Science and Engineering A,2000,277(1-2):218-228.
    [36]Tong M M, Li D Z, Li Y Y, et al. Modeling the austenite-feerrite isothermal transformation in an Fe-C binary system and experimental verification [J]. Materials Science and Engineering A,2002,33:3111-3115.
    [37]兰勇军.低碳钢奥氏体-铁素体相变介观模拟计算[D].中国科学院金属研究所博士论文,2005.
    [38]Pariser G, Schaffnit P, Steinbach I, et al. Simuation of the y-a-transformation using the phase-field method[J]. Steel Research,2001,72:354-359.
    [39]Shrma R C, Lakshmanan V K, Kirkaldy J S. Solubility of niobium carbide and niobium carbonitride in alloyed austenite and ferrite[J]. Metallurgical Transactions A,1984,15:545-553.
    [40]Okaguchi S, Hashimoto T. Computer model for prediction of carbonitride precipitation during hot working in Nb-Ti bearing HSLA steels[J]. ISIJ Interational, 1992,32:283-290.
    [41]Inoue K, Ishikawa N, Ohtani H, et al. Calculation of phase equilibria between austenite and (Nb,Ti,V)(C,N) in microalloyed steels[J]. ISIJ Interational,2001,41: 175-182.
    [42]Adrian H. Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminum[J]. Materials Science and Technology,1992,8(5):406-420.
    [43]Rios P R. Method for the determination of mole fraction and composition of a multicomponent fee carbonitride[J]. Materials Science and Engineering A,1991, 1421:87-94.
    [44]雍歧龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [45]Dutta B, Sellars C M. Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite[J]. Materials Science and Technology,1987,3:197-206.
    [46]Liu W J, Jonas J J. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures [J]. Metallurgical Transaction A,1988,19(6):1403-1413.
    [47]Lee H M, Allen S M, Grujicic M. Coarsening resistance of M2C carbides in secondary hardening steels. I. Theoretical model for multicomponent coarsening kinetics[J]. Metallurgical and Materials Transaction A,1991,22(12):2863-2869.
    [48]Okamoto R, Suehiro M. A mathematical model for Nb(C, N) precipitation kinetics in austenite controlled both by chemical and interfacial energy [J]. Tetsu to Hagane, 1998,84(9):650-657.
    [49]Fujita N, Bhadeshia H K D H. Modelling precipitation of niobium carbide in austenite:multicomponent diffusion, capillarity and coarsening[J]. Materials Science and Technology,2001,17(4):403-408.
    [50]Wagner R, Kampmann R. In:Cahn R, Haasen P, Kramer E J, (Eds.). Material science and technology, Vol.5, phase transformations in materials[M]. Weinheim: VCH,1991,213-303.
    [51]Robson J D. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium [J]. Acta Materialia,2004,52(6): 1409-1421.
    [52]Robson J D. Modelling the overlap of nucleation, growth and coarsening during precipitation [J]. Acta Materialia,2004,52(15):4669-4676.
    [53]Khan I N, Starink M J, Yan J L A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys[J]. Materials and Engineering A,2008,472(1-2):66-74.
    [54]Pickering F B. Physical metallurgy and the design of steels[M]. London:Applied Science Publishers,1978.
    [55]Choquet P, Fabregue P, Giusti J, et al. Modeling of forces, structure and final properties during the hot rolling process on the hot strip mill[A]. In:Yue S. Proc. of international symposium on mathematical modeling of hot rolling of steels[C]. Quebec:CIMM,1990,34-43.
    [56]彭良贵,刘相华,王国栋.超快冷却技术的发展[J].轧钢,2004,21:1-3.
    [57]何浩.热轧带钢超快速冷却技术及应用[A].第七届(2009)中国钢铁年会论文集[C].成都:中国金属学会.2009,190-193.
    [58]Simon P, Fishbach J P, Riche P. Ultra-fast cooling on the run-out table of the hot strip mill[J]. Revue de Metallurgie,1996,93(3):409-415.
    [59]叶晓瑜,左军,张开华.热轧超快冷技术发展概况及应用探讨[A].2010年全国轧钢生产技术会议文集[C].赤峰:中国金属学会,2010,149-153.
    [60]Buzzichelli G, Anelli E. Present status and perspectives of european research in the field of advanced structure steels[J]. ISIJ Interational,2002,42(12):1354-1363.
    [61]王国栋,姚圣杰.超快速冷却工艺及其工业化实践[J].鞍钢技术,2009,360:1-5.
    [62]王国栋.轧制技术的新进展[A].2010年全国轧钢生产技术会议论文集[C].赤峰:中国金属学会,2010,1-9.
    [63]王国栋,刘相华,孙丽钢,等.包钢CSP“超快冷”系统及590MPa级C-Mn低 成本热轧双相钢开发[J].钢铁,2008,43(3):49-52.
    [64]赵宪明,吴迪,王国栋,等.一种线材和棒材热轧生产线用超快速冷却装置[P].专利申请号:200510046822.4.东北大学.公开日:2006年1月11日.
    [65]彭良贵,朱伏先,刘相华.柔性生产策略在热轧带钢控冷过程中的应用[J].钢铁研究,2007,35:33-37.
    [66]肖宝亮,许云波,张福生,等.“高温大变形+超快冷”工艺在管线钢生产中的应用[J].钢铁,2010,45(6):49-58.
    [67]刘相华,佘广夫,焦景民,等.超快速冷却装置及其在新品种开发中的应用[J].钢铁,2004,39(8):71-74.
    [68]孙艳坤,吴迪.轴承钢棒材超快速冷却新工艺的应用研究[J].钢铁,2008,43(7):47-50.
    [69]陈礼斌,王维东,耿立唐.薄板坯连铸连轧生产中的铁素体轧制工艺[J].轧钢,2003,20(2):35-36.
    [70]刘相华,王国栋,杜林秀,等.普碳钢产品升级换代的现状与发展前景[A].中国金属学会第7届轧钢年会论文集[C].北京:冶金工业出版社,2002,41 5-420.
    [71]周滨,申昱,陈均,等.高温流变应力曲线修正方法[J].上海交通大学学报,2009,43(5):722-726.
    [72]彭宁琦.Si-Mn系TRIP钢热连轧过程组织演变数值模拟研究[D].云南:昆明理工大学硕士论文,2009.
    [73]魏洁.C-Mn钢热轧过程形变及组织演变的数学模拟及实验研究[D].北京:钢铁研究总院硕士论文,2006.
    [74]梁小凯.薄板坯连铸连轧流程碳素结构钢组织演变规律研究[D].北京:钢铁研究总院博士论文,2006.
    [75]姚俊.GCr15圆棒材热连轧过程的数值模拟[D].北京:钢铁研究总院博士论文,2010.
    [76]熊家强.304奥氏体不锈钢热轧过程物理冶金模型研究[D].云南:昆明理工大学硕士论文,2008.
    [77]Davenport S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modelling of hot rolling[J]. Materials Science and Technology,2000,16(5): 539-546.
    [78]张伟红,张士宏.NiTi合金热压缩实验数据的修正及其本构方程[J].金属学报,2006,42(10):1036-1040.
    [79]Dadras P. A semi-empirical solution to upset forging[J]. Journal of Engineering for Industry,1981,103(33):478-483.
    [80]许树勤,陈志英,张善元.镦粗试验中鼓度与摩擦的相关性研究[J].锻压技术,2004,29(5):46-48.
    [81]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology,2004,152(20):136-143.
    [82]McQueen H J, Yue S, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A,2002,322(1-2):43-46.
    [83]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1982,140-141.
    [84]Cho S H, Kang K B, Jonas J J. The dynamic, static and metadynamic recrystallization of a Nb-microalloyed steel[J]. ISIJ International,2001,41:63-69.
    [85]Stewart G R, Jonas J J, Montheillet F. Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel[J]. ISIJ international, 2004,44:1581-1589.
    [86]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia,1996, 44:127-136.
    [87]Laasraoui A, Jonas J J. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip [J]. ISIJ International,1991,31(1):95-105.
    [88]Zahiri S D, Davies C H G, Hodgson P D. A mechanical approach to quantify dynamic recrystalliza -tion in polycrystalline metals [J]. Scripta Materialia,2005,52 (3):299-304.
    [89]Prasad Y V R K, Seshacharyulu T. Modeling of hot deformation for microstructureal control[J]. International Materials Reviews,1998,43(6):243-257.
    [90]王迎新.Mg-Al合金晶粒细化、热变形行为及加工工艺的研究[D].上海:上海交通大学博士论文,2006.
    [91]蔺永诚,陈明松,钟掘.42CrMo钢形变奥氏体的静态再结晶[J].中南大学学报 (自然科学版),2009,40(2):411-416.
    [92]张金旺,王永春,孙蓟泉.Q235钢热轧多道次变形中静态再结晶的研究[A].2007年全国塑性加工理论与新技术学术研讨会[C].沈阳:东北大学.2007,13-19.
    [93]Rao K P, Prasad Y K D V, Hawboly E B. Study of fractional softening in multi-stage hot deformation[J]. Journal of Materials Processing Technology,1998,77(1-3): 166-174.
    [94]Dinsdale A T. SGTE data for pure elements[J]. CALPHAD,1991; 15(4):317-425.
    [95]冶金工业部钢铁研究总院.钢的过冷奥氏体转变曲线图集[M].北京:冶金工业出版社,1979.
    [96]张世中.钢的过冷奥氏体转变曲线图集[M].北京:冶金工业出版社,1993.
    [97]日本钢铁学会.低碳钢连续冷却转变图集[M].东京:日本钢铁学会出版社,1992.
    [98]American Society for Metals. Atlas of isothermal transformation and cooling transformation diagrams[M]. Ohio:American Society for Metals Press,1977.
    [99]由伟,白秉哲,方鸿生,等.用人工神经网络模型预测钢的奥氏体形成温度[J].金属学报,2004,40:1133-1137.
    [100]Aaronson H I, Lee J K. In:Aaronson H I, (eds.). Lectures on the theory of phase transformations[M]. New York, TMS AIME,1975:83-115.
    [101]Lange W F Ⅲ, Enomoto M, Aaronson H I. The kinetics of ferrite nucleation ataustenite grain boundaries in Fe-C alloys[J]. Metallurgical Transactions A,1988, 19(3):427-440.
    [102]Capdevila C, Garcia C. Incubation time of isothermally transformed allotriomorphic ferrite in medium carbon steel[J]. Scripta Materialia,2001,44:129-134.
    [103]Enomoto M, Lange, W F Ⅲ, Aaronson H I. The kinetics of ferrite nucleation at austenite grain edges in Fe-C and Fe-C-X alloys [J]. Metallurgical Transactions A, 1986,17:1399-1407.
    [104]Pham T T, Hawbolt E B, Brimacombe J K. Predicting the onset of transformation under noncontinuous cooling conditions[J]. Metallurgical and Materials Transactions A,1995,26:1987-1992.
    [105]Yeong T P. Measurement and modelling of diffusional transformation of austenite in C-Mn steels[D]. Taibei:National Sun Yat-Sen University,2001.
    [106]Enomoto M, Aaronson H I. On the critical nucleus composition of ferrite in an Fe-C-Mn alloy[J]. Metallurgical Transactions A,1986,17(6):1381-1384.
    [107]Bhadeshia H K D H. Application of frist order quasi-chemical theroy to transformation in steels[J]. Metal Sciance,1982,16(3):159-164.
    [108]Kumar M, Sasikumar R, Nair P K. Competition between nucleation and early growth of ferrite from austenite-sthdies using cellular automaton simulations [J]. Acta Materialia,1998,17:6291-6303.
    [109]Bradley J R, Aaronson H I. Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C-X alloys[J]. Metallurgical and Materials Transactions A,1981,12(10): 1729-1741.
    [110]Martin J W, Doherty R D. Stability of microstructure in metallic system[M]. London: Cambridge University Press,1976.
    [111]Russell K C. Grain boundary nucleation kinetics[J]. Acta Metallurgica,1969,17: 1123-1131.
    [112]唐广波,吴秀月,雍兮,等.复合微合金化高强度低合金钢奥氏体相中碳氮化物析出热力学数值模拟[J].金属热处理,2008,33(8):67-72.
    [113]吴秀月.微合金元素在热连轧过程中的溶解析出数值模拟研究[D].云南:昆明理工大学硕士学位论文,2009.
    [114]Zurob H S, Brechet Y, Purdy G. A model for the competition of precipitation and recrystallization in deformed austenite[J]. Acta Materialia,2001,49:4183-4190.
    [115]Dutta B, Palmiere E J, Sellars C M. Modelling the kinetics of strain induced precipitation in Nb microalloyed steels[J]. Acta Materialia,2001,49:785-794.
    [116]Anan G, Nakajma S, Miyahara M, et al. Model for recovery and recrystallization of hot deformed austenite considering structural heterogeneity[J].ISIJ International, 1992,32(3):261-266.
    [117]Dutta B, valdes E, Sellars C M. Mechanism and kinetics of strain induced precipitation of Nb(C,N) in austenite[J]. Acta Metallurgica et Materialia,1992, 40(4),653-662.
    [118]曹建春,雍岐龙,刘清友,等.含铌钼钢中微合金碳氮化物沉淀析出及其强化机制[J].材料热处理学报,2006,27(5):51-55.
    [119]Gladman T. The physical metallurgy of microalloyed steels[M]. London:Institute of Materials Press,1997.
    [120]袁国,王国栋,刘相华.带钢超快速冷却条件下的换热过程[J].钢铁研究学报,2007,19(5):37-39.
    [121]Buyyichilli G, Anelli E. Present status and perspectives of european research in the field of advanced structural steels[J]. ISIJ International,2002,42(12):1354-1363.
    [122]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [123]郑中.本钢热轧2300mm机组生产线现状及发展[A].2010年全国轧钢生产技术会议文集[C].赤峰:中国金属学会.2010,274-281.
    [124]张国智,胡仁喜,陈继刚,等ANSYS 10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [125]Mikio F, Asao S. Elastic moduli and unternal friction of low carbon and stainless steels as a function of temperature[J]. ISIJ International,1993,33(4):508-512.
    [126]陈水宜.热轧带钢温度建模和数值模拟[D].浙江:浙江大学博士论文,2008.
    [127]Devadas C, Samarasekera I V. Heat transfer during hot strip of steel strip[J]. Ironmaking and Steelmaking,1986,13(6):311-321.
    [128]李权.CSP流程生产含铌HSLA钢组织演变及非均匀性应变的数值模拟[D].北京:钢铁研究总院博士论文,2008.
    [129]刘清友.管线钢研究报告[R].钢铁研究总院内部研究报告,2005.
    [130]许云波,王昭东,刘相华,等.控轧含Nb钢板未再结晶温度Tnr的模拟计算[J].材料科学与工艺,1997,5(4):92-94.
    [131]张凤泉,刘本仁.提高冷轧硅钢片成材率板形质量和横向厚度精度的分析[J].钢铁研究,2005,4:40-44.
    [132]毛新平.薄板坯连铸连轧铁素体轧制工艺[J].钢铁,2004,39(5):71-74.
    [133]Shigenobu N, Mistsum K, Masao S, et al. Prediction of microstructure distribution in the through-thickness direction during and after hot rolling in carbon steel [J]. ISIJ International,1992,32(3):377-386.
    [134]翁宇庆.超细晶钢-钢的组织细化理论与控制技术[M].北京:冶金工业出版社, 2003.
    [135]胡良均,尚成嘉,王学敏,等.弛豫-析出-控制相变技术中冷却速度对组织的影响[J].北京科技大学学报,2004,26(3):260-263.
    [136]董瀚,孙新军,刘清友,等.形变诱导铁素体形变-现象与理论[J].钢铁,2003,38(10):56-68.
    [137]张丽芳,刘永长.冷却速度对Fe-4Cr合金奥氏体-铁素体相变的影响[J].材料热处理学报,2011,32(9):58-62.
    [138]刘宗昌,计云萍,任慧平,等.碳含量对铬钼钢贝氏体组织形貌的影响[J].热处理,2008,23(4):19-25.