电致塑性轧制AZ31镁合金的变形机制及其组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致塑性效应是在金属变形过程中同时施加脉冲电流,使其变形抗力急剧下降的同时塑性大幅度提高的一种现象。与传统加工成形工艺相比,电致塑性成形工艺能在较低成形温度下有效地降低加工金属的成形抗力,提高成形件的力学性能及其表面质量,并且具有耗能低、加工效率高等优点,尤其适合于难变形金属的加工成形。但由于电致塑性机制尚不完善,并且在工艺、组织与性能的相互关联上的系统性研究匮乏,使得电致塑性成形工艺的研究和应用受到很大的限制。镁合金的密排六方结构及其非基面滑移系的激活能高,使其在室温或小于200°C的条件下难以加工变形。现行采用热轧和温轧成形镁合金板材,但该轧制工艺复杂(比如多道次、小压下量、道次间退火、轧辊保持在150~200°C之间等)、耗能大并且反复的高温加工和处理使得成形件力学性能降低。本论文旨在完善电致塑性机制并探索开发一种电致塑性板带材轧制成形工艺,实现在室温条件下镁合金板带材的单道次大压下量、大应变速率的轧制成形。
     本论文的主要研究内容包括:(1)利用织构分析,研究了脉冲电流处理对冷轧态AZ31镁合金的微观组织演变及其力学性能的影响。基于晶界迁移理论,完善了脉冲电流对微观结构演变的影响机制。为了论证脉冲电流引起的副效应-焦耳热效应对总效应的贡献,通过快速加热处理模拟电脉冲引起的焦耳热效应,研究了焦耳热效应对冷轧态镁合金的微观组织演变的影响;(2)研究了电致塑性轧制AZ31镁合金的变形机制及其组织与性能。结果表明:在冷辊条件下,调整电参数控制试样入辊温度低于200°C时,实现了单道次31%压下量的电致塑性轧制AZ31镁合金。并得出:脉冲电流引起的热与非热效应是促进在变形带和孪晶处发生低温动态再结晶的原因,从而使得在室温条件下的大应变得以协调。(3)为了模拟多道次电致塑性轧制,研究了脉冲电流处理对电致塑性轧制态镁合金的微观组织演变和力学性能的影响。电脉冲处理电致塑性轧制态试样能细化晶粒并形成倾转基面织构,从而提高了镁合金板带材的室温延伸率和抗拉强度。对于多道次电致塑性轧制镁合金薄板带,采用高轧制速率、大压下量和200°C入辊温度的轧制工艺,可获得高力学性能的薄板带。
When electrical pulses are applied to metals undergoing deformation, the deformation resistance reduces dramatically and plasticity increases significantly at the same time. This influence of the electric current pulses on the plastic flow is called the electroplastic effect or EPE. Traditional manufacturing processes rely on the use of heat to reduce the forces associated with fabricated parts. Relative to the negative implications associated with hot working, EP manufacturing is an efficient energy conserving means. However, the lackness of theoretical and experimental researches gives rise to the limited application of EP manufacturing processes. On account of the hcp structure and inactiveness of the non-basal slip systems, it is difficult to process magnesium alloys at room temperature or low temperature (< 200°C). Magnesium alloy sheets are usually fabricated by hot or warm rolling. During this process, a multiple-pass operation incorporating small rolling reduction, intermediate annealing, and maintaining rolls at 150~200°C is employed to suppress edge cracks and fracture of the alloys and to maintain the workability. The complex process and high energy consumption lead to a high production cost, thereby hampering commercial applications of magnesium alloys. Here, a new fabricating process, electroplastic manufacturing processing for magnesium alloy sheets is one of the most effective ways to simplify the manufacturing processes while enhancing the properties of the final products.
     The objectives of the research work described in this thesis are: (1) to analyze the mechanism of the microstructural evolution in cold rolled AZ31 magnesium alloy during electropulsing treatment by texture analysis. The mechanism of the microstuctural evolution during electropulsing is discussed from the point of view of grain boundary motion. Subsequently, we simulate the Joule heating effect by rapid thermal annealing and investigate the microstructural evolution; (2) to investigate the microstructure and texture development during electroplastic rolling. Single large pass draught rolling by electroplastic rolling is conducted on AZ31 magnesium alloy sheets below 200°C without heating rolls. The synergistic thermal and athermal effects during EPR are responsible for the low temperature dynamic recrystallization within twins and shear bands; (3) to explore the microstructure and texture evolution in EPR AZ31 magnesium alloy sheets during EPT and correlate with the mechanical properties. Excellent mechanical properties of thin magnesium alloys sheets can be obtained by employing the EPT-EPR processings of high rolling speed, large rolling reduction and the rolling temperature of 200°C.
引文
[1] Troitskii O A, Likhtman V I. Anisotropy of action of gamma-electronic emission and gamma rays on deformation of single zinc crystals in the brittle state. Kokl Akad Nauk S.S.S.R., 1963, 148(2): 332-334.
    [2] Troitskii O A. Electro-mchanical effect in the brittle state. JETP Letters-USSR, 1969, 10(1): 11-13.
    [3] Troitskii O A, Rozno A G. Electroplastic effects in metals. Fiz. Tverd. Tela, 1970, 12(1): 161-166.
    [4] Troitskii O A: Rate and temperature dependence of the electroplastic effect. Fiz. Metall. Metalloved., 1971, 32(2): 178-183.
    [5] Troitskii O A. Simulation of the thermal and pinch effects of pulsed current on the plastic deformation of a metal. Prob Proch, 1975, 7(1): 14-17.
    [6] Spitsyn V I, Troitskii O A. Modeling of thermal effect and pinch effect of pulse current on metal plastic deformation. Dokl Akad Nauk S.S.S.R., 1975, 220(5): 1070-1073.
    [7] Troitskii O A. The effect of an electric current on the relaxation of stresses in crystals of Zn, Cd and Pb crystals. Phys Stat Sol A, 1977, 13(1): 46-49.
    [8] Troitskii O A, Spitsyn V I, Stashenko V I. Effect of electric current on relaxation of stresses in crystals of Zine. Dokl. Akad. Nauk. S.S.S.R., 1978, 241(2): 349-352.
    [9] Troitskii O A, Stashenko V I. Stress relaxation investigation of the electroplastic deformation of a metal. Fiz. Metall. Metalloved, 1979, 47(1): 180-187.
    [10] O.A. Troitskii, V.I. Stashenko, Kalymbetov P U. Electroplastic effect on direct and opposite pulses. Dokl Akad Nauk S.S.S.R., 1980, 253(1): 96-100.
    [11] Troitskii O A, Kalymbetov P V. Determination of the mechanical stresses induced by current. Fiziko Metall, 1981, 51(2): 219-222.
    [12] Troitskii O A, Stashenko V I. Dependence of the electroplastic effect in Zinc on individual pulse lengths. Fiziko Metall, 1981, 51(5): 1056-1059.
    [13] Stashenko V I, Troitskii O A. Influence of pulsating current frequencies and external mechanical stress on the creep rate of crystals. Fiz. Metall. Metalloved, 1982, 53(1): 180-183.
    [14] Stashenko V I, Troitskii O A, Spitsyn V I. Action of current pulses on Zinc single crystals during creep. Phys Stat Sol A, 1983, 79(2): 549-552.
    [15] Zuev L B, Gromov V Ve, Kurilov V F, et al. Mobility of dislocations in zine single crystals under effect of current pulses. Dokl Akad Nauk S.S.S.R., 1978, 239(1): 84-86.
    [16] Boyko Yu I, Geguzin Ya Ye, Klinchuk Yu I. Experimental discovery of entrainment of dislocation by an electron wind in metals, Zh. Eskp. Teor. Fiz., 1979, 30(1): 154-156.
    [17] Spitsyn V I, O.A. Troitskii O A, Glazunzov P Ya. Electroplastic deformation of a metal before its brittle destruction. Dokl Akad Nauk S.S.S.R., 1971, 199(4): 810-813.
    [18] Troitskii O A, Skobtsov I L, Menshikh A V. Electroplatic deformation of metal before brittle rupture. Fiziko Metall, 1972, 33(2): 392-395.
    [19] Finkel V M, Golovin Y I, Sletkov A A. Possibility of fast propagating crack suppression by current pulses. Dokl Akad Nauk S.S.S.R., 1976, 227(4): 848-851.
    [20] Karpenko G V, Kuzin O A, Tkachev V I, Rudenko V P. Effect of electric-current on low-cycle fatigue of steel. Dokl Akad Nauk S.S.S.R., 1976, 227(1): 85-88.
    [21] Spitsyn V I, Troitskii O A. Effect of electic current and pulsed magnetic field on metal creep rate. Dokl Akad Nauk S.S.S.R., 1974, 216(6): 1266-1269.
    [22] Spitsyn V I, Troitskii O A. Electroplastic effect in metals, Vest Akad Nauk S.S.S.R., 1974, 11(1): 10-15.
    [23] Klimov K M, Shnyrev G D, Novikov I I. Elelctroplasticity of metals. Dokl Akad Nauk S.S.S.R., 1974, 219(2): 323-324.
    [24] Spitsyn V I, Troitskii O A, Ryzhkov V G, Kozyrev A S. Singl-die electroplastic drawing of very fine copper wires. Dokl. Akad. Nauk. S.S.S.R., 1976, 231(2): 402-404. (1976).
    [25] Spitsyn V I, Kopiev A V, Ryzhkov V G, Sokilov N V, Troitskii O A. Flatting mill for finest tungsten spring band using ultrasound and electroplastic effect. Dokl Akad Nauk S.S.S.R., 1977, 236(4): 861-862.
    [26] Troitskii O A, Spitsyn V I, Sokolov N V, Ryzhkov V G. Electroplastic drawing of stainless-steels. Dokl Akad Nauk S.S.S.R., 1977, 237(5): 1082-1085.
    [27] Troitskii O A, Spitsyn V I, Ryzhkov V G. Electroplastic drawing of steel, copper, and tungsten. Dokl Akad Nauk S.S.S.R., 1978, 243(2): 330-333.
    [28] Klimov K M, Novikov I I. Effects of temperature gradient and a high-density electric-current on the plastic-deformation of wire. Russian Metall, 1978, 6: 127-129.
    [29] Zaretskii A V, Osipyan Y A, Petrenko V F. Mechanism of electroplastic effect in zinc, Fiz Tverd Tela, 1978, 20(5): 1442-1450.
    [30] Klimov K M, Novikov I I. Effect of current pulses on the tensile strain of thin metal wires. Russian Metall, 1983, 3: 141-144.
    [31] Boyko Yu I, Geguzin Ya Ye, Klinchuk Yu I. Experimental discovery of entrainment of dislocations by an electron wind in metals. Zh Eskp Teor Fiz, 1979, 30(1): 154-156.
    [32] Klimov K M, Burkhanov Y S, Novikov I I. Effect of a high-density electric-current on the plastic-deformation of Aluminum. Strength of Materials, 1985, 17(6): 782-786.
    [33] Okazaki K, Kagawa M, Conrad H. Study of the electroplastic effect in metals. Scripta metal, 1978, 12(11): 1063-1068.
    [34] Okazaki K, Kagawa M, Conrad H. Additional results on the electroplastic effect in metals, Scripta metal, 1979, 13(4): 277-280.
    [35] Okazaki K, Kagawa M, Conrad H. Effects of strain rate, temperature and interstitial content on the electroplastic effect in Titanium. Scripta metal, 1979, 13(6): 473-477.
    [36] Okazaki K, Kagawa M, Conrad H. An evaluation of the contribution of skin, pinch and heating effects to the electroplastic effect in Titanium. Mater Sci Eng, 1980, 45(2): 109-116.
    [37] Okazaki K, Kagawa M, Conrad H. The electro-plastic effect in Titanium, in Titanium’80 Sci. Technol. T.M.S.-A.I.M.E., 1980: 763-766.
    [38] Sprecher A F, Mannan S L, Conrad H. On the temperature rise associated with the electroplastic effect in Titanium, Scripta Metal, 1983, 17(6): 769-772.
    [39] Conrad H, Sprecher A F, Mannan S L. Pro. Int. Symp. Mechanics of Dislocation (edited by E.C.Aifantis and J.P. Hirth), Am. Soc. Metals, Metals Park, Ohio, 1985: 225-245.
    [40] Cao W D, Sprecher A F, Conrad H. Measurement of the electroplastic effect in Nb. Scripta Metall, 1989, 22(12): 1026-1034.
    [41] Cao W D, Sprecher A F, Conrad H. Effect of strain rate on the electroplastic effect in Nb. Scripta Metall, 1989, 23(1): 151-155.
    [42] Cao W D, Conrad H. Effect of stacking fault energy and temperature on the electroplastic effect in FCC metals, Micromechanics of Advanced Materials-A symposium in honor of professor James C.M. Li’s 70th birthday, 1995: 225-230.
    [43] Varma S K, Cornwell L R. Comments on the electroplastic effect in aluminum-reply, Scr. Metall, 1980, 14(9): 1035-1036.
    [44] Goldman P D, Motowidlo L R, Galligan G M. The absence of an electroplastic effect in lead at 4.2K. Scripta Metall, 1981, 15(4): 353-356.
    [45] Varma S K, Cornwell L R. Electroplastic effect in Aluminum. Scripta Metall, 1979, 13(8): 733-738.
    [46] Varma S K, Cornwell L R. Comments on the electroplastic effect in Aluminum-reply. Scripta Metall, 1980, 14(9): 1035-1036.
    [47] Troitskii O A. Radiation-Induced Changes in the strength and Plasticity of Zinc single crystals [In Russian]. Moscow, 1968.
    [48] Heigel J C, Andrawes J S, Roth J T, et al. Viability of electrically treating 6061 T6511 Aluminum for use in manufacturing processes. Trans NAMRI/SME, 2005, 33: 145-152.
    [49] Ross C, Roth J T. The effects of DC current on the tensile properties of metals. Proceedings of the ASME, Materials Division Roth, 2005, 100: 363-372.
    [50] Zhu Y H, To S, Lee W B, Liu X M, et al. Effects of dynamic electropulsing on microstructure and elongation of a Zn-Al alloy. Mater Sci Eng A, 2009, 501(1): 125-132.
    [51] Troitskii O A, Nikitenko Yu V, Moiseev M M. Electro-plastic deformation process for metals-stopping blank deformation at stress level between 1.5 times yield point of metal and 0.9 times its ultimate strength, Patent SU1687349-A1, 1991.
    [52] Troitskii O A, Troitskii V O. Method for plastic working of metals involves applying current pulses, rolling, drawing, flattening frequency to multiple frequency of ultrasonic oscillations by ultrasound generator in predetermined range thus improve efficiency, Patent RU2321468-C2, 2008.
    [53] Klimov K M, Novikov I I. Effects of temperature gradient and a high-density electric current on the plastic deformation of wire. Russian Metal, 1978, 6: 127-130.
    [54] Spitsyn V I, Troitskii O A, Gusev E V, Kurdiukov V DK. Electroplastic deformation of stainless (18-9) steel. Russian Metal, 1974, 2: 74-76.
    [55] Spitsyn V I, Troitskii O A,. Gaviish A A, et al. X-ray diffraction and mechanical investigation of copper after electroplastic drawing. Russian Metal, 1978, 4:88-90.
    [56] Troitskii O A, Spitsyn V O, Sokolov N V, et al. Electroplastic drawing of magnetically hard steel wire. Russian Metal, 1979, 2:92-93.
    [57] Troitskii O A, Stashenko V I, Sokolov N V, Ryzhkov V G. Elelctroplastic drawing of stainless steel. DAN S.S.S.R., 1977, 237(5): 1082-1085.
    [58] Troitskii O A, Stashenko V I, Ryzhkov V G. Electroplastic drawing of steel, copper and tungsten, DAN S.S.S.R., 1978, 243(2): 330-333.
    [59] Bazaykin V I, Gromov V E, Kuznetsov V A, Peretyatho V N. Mechanics of electrostimulated wire drawing, International Journal of Solids and Structure, 1991, 27(13): 1639-1643.
    [60] Klimov K M. Alternative methods of producing bars and wire, Metallurgist, 2007, 51(9): 511-515.
    [61] Klimov K M, Shnyrev G. D, Novikov I I, Isaev A V. Electroplastic rolling of tungsten and tungsten-rhenium wire into strip of micro thickness, Russian Metall, 1975, 4: 107-108.
    [62] Spitsyn V I, Kopiev A V, Ryzhkov V G, et al. Flatting mill for finest tungsten spring band using ultrasound and electroplastic effect, Dokl. Akad. Nauk. S.S.S.R., 1977, 236(4): 861-862.
    [63] Klimov K M, Mordukhovich A M, Glezer A M, Molotilov B V. Rolling of iron-cobalt alloys which are different to pressure-form, using a high density electric current. Russian Metal, 1981, 6: 69-71.
    [64] Klimov K M, Novikov I I. Absence of strain hardening upon electrostimlated rolling of metals under cold conditions. Dokl Physics, 2007, 52(7): 359-360.
    [65] Mal’tsev I M. Electroplastic rolling of metals with a high-density current. Russian Journal of Non-Ferrous Metals, 2009, 49(3): 175-180.
    [66] Tang G Y, Zheng M X, Zhu Y H, et al. The application of the electro-plastic technique in the cold-drawing of steel wires. J Mater Process Technol, 1998, 84(1): 268-270.
    [67] Tang G Y, Zhang J, Zheng M X, et al. Experimental study of electroplastic effect on stainless steel wire 304L, Mater. Sci. Eng. A, 2000, 281(1): 263-267.
    [68] Tang G Y, Zhang J, Yan Y J, et al. The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire. J Mater Process Technol, 2003, 137(1): 96-99.
    [69]田昊洋,唐国翌,丁飞.高能电脉冲处理对镁合金丝材性能的影响.有色金属, 2008, 60(4): 1-4.
    [70] Xu Z H, Tang G Y, Tian S Q, et al. Research of electroplastic rolling of AZ31 Mg alloy strip. J Mater Process Technol, 2007,182(1): 128-133.
    [71] Xu Z H, Tang G Y, Tian S Q, et al. Electroplastic rolling method and apparatus for deformable magnesium alloy sheet, band and wire rod, Patent CN1891363-A, 2007.
    [72]王少楠.电流脉冲对AZ31镁合金的拉伸性能及其腐蚀性能的影响[硕士学位论文].北京:清华大学材料科学与工程系, 2009.
    [73] Gromov V E, Kozlov E V, Zuev L B, et al. Defect structure of ferrite and austenite steels developed under electrostimulated plastic deformation, Int. Congr. Bioceram. Hum Body, 1994, 2: 46-51.
    [74] Spitsyn V I, Troitskii O A, Levin L V. Drawing of electrically conductive wire - by connection of draw current source pole to deformation zone to facilitate drawing at high rates based on electro-plastic effect, Patent SU584934-A, 1977.
    [75] Spitsyn V I, Stashenko V I, Troitskii O A. Metal foil pressure treatment - with specified pulse rate of current passing through blank to speed up process, Patent SU829241-B, 1981.
    [76] Stolyarov V V. Nanostructured shape memory TiNi alloy processed by severe electroplastic deformation. Mater Sci Forum, 2008, 584-586:127-132.
    [77] Stolyarov V V. Deformability and nanostructuring of TiNi shape-memory alloys during electroplastic rolling. Mater Sci Eng A, 2009, 503(1): 18-20.
    [78] Sergeeva A E, Stolyarov V V, in: Yu. Baranov, V. Gromov, G. Tang (Ed.), Electromagnetic fields effect on the structure and characteristics of materials (Book of the International seminar articles, 19-21 May 2009, Institute for Machines Science of the Russian Academy of Sciences Moscow), Novokuznetskii Polygraphic Center, Novokuznetsk, 2009: 317-319.
    [79] Stolyarov V V, Ugurchiev U Kh, Gurtovaya I B, et al. Increase in the deformability of coarse-grained TiNi alloy rolled with superimposition of pulse current. Metal Sci Heat Treatment, 2008, 50(1): 132-135.
    [80] Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena, Pergamon Press, Oxford, 1995.
    [81] Troitskii O A. Pressure shaping by the application of a high energy. Mater Sci Eng, 1985, 75(1): 37-50.
    [82] Sprecher A F, Mannan S L, Conrad H. On the mechanisms for the electroplastic effect in metals, Acta Metall., 1986, 34(7): 1145-1162.
    [83] Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A, 2000, 287(2): 276-287.
    [84] Conrad H. Effects of electric current on solid state phase transformation in metals. Mater Sci Eng A, 2000, 287(2): 227-237.
    [85] Goldman P D, Motowidlo L R, Galligan J M. Resistive heating in Lead, at 4.2K, while in the normal state. Scripta Metall, 1981, 15(10):1105-1106.
    [86] Timsit R S. Remarks on recent experimental observations of electroplastic effect. Scripta Metall, 1981, 15(3): 461-464.
    [87] Conrad H, Sprecher A F, in: F.R.N. Nabarro (Ed.), Dislocation in Solids, Elsevier, 320 Amsterdam, 1989: 497-541.
    [88] Yang D, Conrad H. Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl. Intermetallics, 2001, 9(5): 943-947.
    [89] Conrad H. Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A, 2002, 322(1): 100-107.
    [90] Antolovich S D, Conrad H. The effects of electric currents and flieds on deformation in metals, ceramics, and ionic materials: an interpretive survey. Mater Manu Pro, 2004, 19(3): 587-610.
    [91] Molotskii M, Fleurov V. Magnetic effects in electroplasticity of metals. Phys Rev B, 1995, 52(22): 15829-15834.
    [92] Gupta R P, Serruys G, Brebec G, Adda Y. Calculation of the effective valence for electromigration in niobium. Phys Rev B, 1983, 27(2): 672-677.
    [93] Schumann S, Friedrich H. Current and future use of magnesium in the automobile industry. Materials Science Forum,2003, 419-422: 51-56.
    [94] Avedesian M M, Baker H (Eds.), Magnesium and Magnesium Alloys, ASM Speciality Handbook. ASM International, Metals Park, OH, 1999.
    [95] Roberts C S. The deformation of magnesium. Magnesium and Its Alloys. Wiley, New York, 1964.
    [96] Wonsiewicz B C, Backofen W A. Plasticity of magnesium crystals. Trans TMS-AIME, 1967, 239(9): 1422-1431.
    [97] Taylor G I. Plastic strain in metals. J Inst Met, 1938, 62(2): 307-324.
    [98] Ward P F, Mote J, Dorn J E. On the thermally activated mechanism of prismatic slip in magnesium single crystals. Trans TMS-AIME, 1961, 221(6): 1148-1154.
    [99] Quimby R M, Mote J D, Dorn J E. Yield point phenomena in magnesium–lithium single crystals. Trans. ASM, 1962, 55(1): 149-157.
    [100] Reed-Hill R E, Robertson W D. Deformation of magnesium single crystals by nonbasal slip. Trans TMS-AIME, 1957, 220(5): 496-502.
    [101] Reed-Hill R E, Robertson W D. Pyramidal slip in magnesium. Trans TMS-AIME, 1958, 221(3): 256-259.
    [102] Yoshinaga Ft, Horiuchi R. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to the hexagonal axis. Trans JIM, 1963, 4: 1-4.
    [103] Stohr J F, Poirier J P. Electron microscope study of pyramidal slip {112? 2}< 11?23> in magnesium. Philos Mag, 1972, 25(6): 1313-1315.
    [104] Obara T, Yoshinga H, Morozumi S. {112? 2}< 11?23> Slip sytem in magnesium, Acta Metall, 1973, 21(7): 845-853.
    [105] Edelin G, Poirier J P. Study of dislocation climb by means of diffusional creep experiments in magnesium. Philos Mag, 1973, 28(6): 1203-1210.
    [106] Kocks U F, Westlake D G. Importance of twinning for the ductility of CPH poly/crystals. Trans TMS-AIME, 1967, 239(7): 1107-1110.
    [107] Yoo M H. Slip, twinning, and fracture in hexagonal close packed metals. Metall Trans A, 1978, 12(3): 409-418.
    [108] Schmid E, Boas W. Kristallplastizitat. Julius Springer, Berlin, 1935: 64-65.
    [109] Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scripta Mater. 2004, 51(9):881-885.
    [110] Yim C D, Seo Y M, You B S. Effect of the reduction ratio per pass on the microstructure of a hot-rolled AZ31 magnesium alloy sheet. Met Mater Int, 2009, 15(4): 683-688.
    [111] Essadiqi E, Shehata M T, Javaid A, et al. Microstructure and Temperature Monitoring during the Hot Rolling of AZ31, Magnesium Sheet Processing, 2009, 61(1): 25-28.
    [112] Liang S J, Sun H F, Liu Z Y, Wang E D. Mechanical properties and texture evolution during rolling process of an AZ31 Mg alloy. J Alloys Compd, 2009, 472(1): 127-132.
    [113] Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31, sheet. Mater Sci Eng A, 2008, 486(1): 545-555.
    [114] Roberts C S. Magnesium and Its Alloys, New York and London: John Wiley, 1960.
    [115] Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater, 2001, 49(20): 4277-4289.
    [116] Styczynski A, Hartig C, Bohlen J, et al. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Mater, 2004, 50(7): 943-947.
    [117] Yukutake E, Kaneko J, Sugamata M. Anisotropy and non-uniformity in plastic behavior of AZ31 Magnesium alloy plates. Mater Trans, 2003, 44(4): 452-457.
    [118] McDonald J C. Grain orientation in rolled magnesium alloys. Phys Rev, 1937, 52(8): 886-887.
    [119] Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, International Journal of Plasticity, 2005, 21(6): 1161-1193.
    [120] Avery D H, Hosford W F, Backofen W A. Plastic anisotropy in magnesium alloy sheets, Trans Metal Society of AIME, 1965, 233(1): 71-73.
    [121] Kaiser F, Bohlen J, Letzig D, et al. Influence of rolling conditions on the microstructure and mechanical properties of magnesium sheet AZ31. Adv Eng Mater, 2003, 5(12): 891-896.
    [122] Mackenzie L W F, Pekguleryuz M. The influences of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys. Mater Sci Eng A, 2008, 480(1): 189-197.
    [123] Agnew S R, Horton J A, Lillo T M, Brown D W. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scripta Mater., 2004, 50(4): 377-381.
    [124] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena (second edition), Pergamon, Oxford, UK, 1999.
    [125] Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater, 1998, 46(1): 69-80.
    [126] Srinivasan A, Chowdhury S G, Srivastava V C, et al. Microstructural and textural evolution during large strain hot rolling (LSR) of Mg-Al (AZ31) alloy. Mater Sci Tech, 2007, 23(11): 1313-1320.
    [127] Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater Sci Eng A, 2003, 339(1): 124-132.
    [128] Mwembela A, Konopleva E B, McQueen H J. Microstructural development in Mg alloy AZ31 during hot working. Scripta Mater, 1997, 37(11): 1789-1795.
    [129] Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Twinning, dynamic recovery and recrystallization in hot worked Mg–Al–Zn alloy. Mater Sci Eng A, 2002, 337(1): 121-133.
    [130] Sitdikov O, Aizawa T, Higashi K, Kamado S. Dynamic recrystallization based on twinning in coarse-grained Mg. Magnesium Alloys 2003: 521-526.
    [131] Ion S E, Humphrey F J, While S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium. Acta Mater. 1982, 30(10): 1909-1919.
    [132] Galiyev A, Kaibyshev R. Microstructural evolution in ZK60 magnesium alloy during severe plastic deformation. Mater. Tran., 2001, 42(7): 1190-1199.
    [133] Del-Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-stain hot rolling of the Mg AZ61 alloy. Mater Sci Eng A, 2003, 355(1): 68-78.
    [134] Sitikov O, Kaibyshev R, Sakai T. Dynamic recrystallization based on twinning in coarsed-grained Mg. Materials Science Forum, 2003, 419-422:521-526.
    [135] Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn. Mater. Sci. Eng. A, 2003, 337(1): 121-133.
    [136] Yin D L, Zhang K F, Wang G F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy. Mater Sci Eng A, 2005, 392(2): 320-325.
    [137] Barnett M R, Nave M D, Bettles C J. Deformation microstructures and textures of some cold rolled Mg alloys. Mater Sci Eng A, 2004, 386(2): 205-211.
    [138] Galiyev A, Kaibyshev R, Sakai T. Contunuous dynamic recrystallization in magnesium alloy. Mater Sci Eng A, 2003, 521(3): 419-422.
    [139] McQueen H J. Development of dynamic recrystallization theory. Mater Sci Eng A, 2004, 387(2): 203-208.
    [140] Yang X Y, Hiromi M, Taku S. Dynamic evolution of new grains in magnesium alloy AZ31during hot deformation. Mater Trans, 2003, 44(1): 197-203.
    [141] Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloy crystals. Trans. AIME, 1968, 242(1): 5-9.
    [142] Wang Z J, Song H. Effect of high-density electropulsing on microstructure and mechanical properties of cold-rolled TA15 titanium alloy sheet. J Alloy Compd, 2009, 470(1): 522-530.
    [143] Xu Z H, Tang G Y, Ding F, et al. The effect of multiple treatment on the recrystallization behavior of Mg-3Al-1Zn alloy strip. Appl. Phys. A, 2007, 88(2): 429-433.
    [144] Stolyarov V, in: Baranov Yu, Gromov V, Tang G Y (Ed.), Electroplastic effect in metals (Proceeding of China-Russia Symposium 31 May-4 June 2007, Graduate School at Shenzhen, Tsinghua University, China), SibSIU, Novokuznetsk, 2007: 125-139.
    [145] Filipiev R A, Konovalov S V, Danilov V I, et al, in: Baranov Yu, Gromov V, Tang G Y (Ed.), Electromagnetic fields effect on the structure and characteristics of materials (Book of the International seminar articles, 19-21 May 2009, Institute for Machines Science of the Russian Academy of Sciences Moscow), Novokuznetskii Polygraphic Center, Novokuznetsk, 2009: 94-101.
    [146] Conrad H, Karam N, Mannan S. Effect of electric-current pulses on the recrystallization of copper. Scripta Metall, 1983, 17(3): 411-416.
    [147] Conrad H, Karam N, Mannan S. Effect of prior cold work on the influence of electric-current pulses on the recrystallzation of copper. Scripta Metall, 1984, 18(3): 275-280.
    [148] Conrad H, Karam N, Mannan S, Sprecher A F. Effect of electric-current pulses on the recrystallization kinetics of copper. Scripta Metall, 1988, 22(2): 235-238.
    [149] Perez-Prado M T, Ruano O A. Texture evolution during annealing of magnesium AZ31 alloy. Scripta Mater, 2002, 46(1): 149-155.
    [150] Huang X S, Suzuki K, Watazu A, et al. Microstructure and texture of Mg-Al-Zn alloy processed by differential speed rolling. J Alloy Compd, 2008, 457(2): 408-412.
    [151] Ding H L, Liu L F, Kamado S, et al. Study of the microstructure, texture and tensile properties of as-extruded AZ91 magnesium alloy. J Alloy Compd, 2008, 456(2): 400-406.
    [152] Engler O, Randle V. Texture Analysis: Macrostructure, Microstructure and Orientation Mapping, Gordan and Breach, Amsterdam, Holland, 2000.
    [153] Styczynski A, Hartig Ch, Bohlen J, Letzig D. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Mater., 2004, 50(7): 943-947.
    [154]徐卓辉.高能脉冲电流在变形镁合金中的应用基础研究[博士学位论文].北京:清华大学材料科学与工程系, 2007.
    [155] Xu Z H, Tang G Y, Tian S Q, He J C. Research on the engineering application of multiple pulses treatment for recrystallization of fine copper wire. Mater Sci Eng A, 2006, 424(2): 300-306.
    [156] Lucke K, Stuwe H P. Recovery and Recrestallization of Metals. Interscience Publ, Himmel, L. (Ed.), 1963: 171-210.
    [157] Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: a review. Mater Sci Eng A, 1997, 238(2): 219-274.
    [158] Zhu Y H, To S, Lee W B, et al. Effects of dynamic electropulsing on phase transformation of a Zn-Al alloy. Mater Trans, 2009, 50(5): 1105-1112.
    [159] Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall Mater Tran A, 2005, 36(5): 1689-1696.
    [160] Kelly E W, Hosford W F, Backofen W A. Plastic anisotropy in magnesium alloy sheets.Trans TMS-AIME, 1965, 233(1): 71-75.
    [161] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater, 2003, 51(7): 2055 (2003).
    [162] Sitdikov O, Kaibyshev R. Dynamic recrystallization in pure magnesium. Mater Trans, 2001, 42(9): 1928-1937.
    [163] Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Mater Sci Eng A, 2002, 337(1):121-133.
    [164] Barnett MB. Quenched and annealed microstructures of hot working magnesium AZ31. Mater Trans, 2003, 44(4):571-577.
    [165] Yin D L, Zhang K F, Wang G F, Han W B. Warm deformation behavior of hot-rolled AZ31 Mg alloy. Mater Sci Eng A, 2005, 392(2): 320-325.
    [166] Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31 magnesium alloy. Mater Sci Eng A, 2007, 456(1):52-57.
    [167] Al-Samman T, Gottstein G. Dynamic recrytallization during high temperature deformation of magnesium. Mater Sci Eng A, 2008, 490(3): 411-420.
    [168] Maksoud I A, Ahmed H, Rodel J. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy. Mater Sci Eng A, 2009, 504(1):40-48.
    [169] Ginzburg V B, Ballas R. Flat rolling fundamentals. New York, Marcel Dekker, 2000.