基于ICPF驱动的微型机器人巡迹及目标跟踪方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着微细加工技术、微机电技术以及医疗事业的发展,在国际上对各种微型管道机器人和医用微型机器人的研究十分活跃。微型机器人由于具有惯性小,谐振频率高,响应时间短等特点,使其在生物医学、航空航天、军事等方面显示出广阔的应用前景。
     本文首先介绍了水下微型机器人的研究背景,详细介绍了国内外微型机器人的发展现状以及微型机器人研究的关键技术和难点。并给出了本课题的研究意义和研究内容。
     然后提出了一种基于离子导电聚合物薄膜(ICPF)驱动的仿生微型机器人,分析了该微型机器人的驱动机理和基本游动特性,对微型机器人进行了运动学和动力学分析,并建立了理论研究模型。
     针对该微型机器人总体结构和驱动原理等特点,提出了两种相关的运动控制方法,即基于光电传感器的自动巡迹运动的实现方法和静态场景下基于图像处理的目标识别与跟踪的实现方法。其中详细介绍了CamShift算法和跟踪算法的原理。
     最后对整个课题和论文的工作进行了总结和展望。
With the development of micro-fabrication, micro electro-mechanical system and medical treatment, the study of micro pipeline robots and medical micro-robots is very active. Now, the microrobots have shown broad prospect in the application of biomedicine, aeronautics and astronautics, and military affairs, as they have low inertia, high resonance, short response time and etc.
     Firstly the research background is introduced, and the internal and external study situation of underwater micro-robots and the key technologies and difficulties of micro-robots are analyzed in detail. The significance and contents of studying are presented.
     Then this paper presents a new type of underwater biomimetic micro-robot driven by ionic conducting polymer films (ICPF). The propelling principle and basic swimming characteristics of the micro-robot are analyzed. Through the analysis of the kinematics and dynamics of the microrobot, the theoretical model is build up.
     Two correlative motion control method are introduced. They are automatic navigation based on photo sensor and target identification and track based on image manipulation under static state. The theory of Camshift algorithm and tracing algorithm are explained in detail.
     Finally, the summary and prospects of the whole research work are presented.
引文
[1] 李栓庆,付士萍.微电子机械系统.半导体技术.2001,26(8):1-5页
    [2] 张秀丽,郑浩峻,陈恳等.机器人仿生学综述.机器人.2002,24(2):188-192页
    [3] 李明东,马培荪,马建旭等.形状记忆合金驱动器驱动方式研究.机械设计与研究.1999,3:29-29页
    [4] 魏中国,彭红樱,杨大智.形状记忆合金传感驱动器件及其在机器人中的应用.机器人.1994,16(4):244-249页
    [5] 鲍芳,李继容,王春茹.磁致伸缩器件及其应用研究.传感技术.2001,20(8):1-3页
    [6] 张秀丽.磁致伸缩薄膜和微驱动器光机电信息.1996,13(4):21-24页
    [7] 张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程.1998,6(5):26-32页
    [8] 叶至碧.压电陶瓷驱动.电子元件与材料.1989,8(4):1-6页
    [9] 姚燕生,沈健,吕召全.微机电系统在当代医学上的应用.医疗设备信息.2002,No.2:28-31页
    [10] 陈寅,林良明,高立明等.微机电系统在医疗领域中的应用.医疗卫生设备.1999,No.1:16-17页
    [11] 陈寅,林良明,高立明等.微型电子机械系统应用于微型外科手术的研究.中国医疗器械杂志.2000,24(5):283-286页
    [12] 程良伦,杨宜民.微型管道机器人.机器人技术与应用.1998,No.4:16-17页
    [13] 张永顺.微型管内机器人的发展现状及展望.制造业自动化.2000,22(12):48-52页
    [14] T. Honda. Swimming Properties of a Bending-Type Magnetic Micro-Machine. J. Magn. Soc. Jpnvol. 25. 2001:1175-1178P
    [15] Hideo saotome. Takashi Okubo, and Yutaka Ikeda. A Novel Actuator With Nd-Fe-B MagnetsSwimming in Parallel to the Magnetic Field. IEEE Transactions on Magnetics .vo138. No. 5. September 2002: 3009-3011P
    [16] Mei tao, Yong Chen, Guoqiang Fu D. K .Wireless Dirve and Cont-rol of a Swimming Microrobot. Proceedings of the 2002 IEEE International Conference on Robotics&Automation. VPashington dc. May 2002:1131-1136P
    [17] T. Fukuda, A. Kawamoto, F. Arai et Mechanism and Swimming Experiment of Micro Robot in Water. Proceedings of the 1994 IEEE Conference on Robotics and Automation. 1994:814-819P
    [18] T. Fukuda, A. Kawamoto, F. Arai, H. Matsuura. Steering Mechanism of Underwater Micro Mobile Robot. Proceedings of the 1995 IEEE Conference on Robotics and Automation. 1995:363-368P
    [19] Borgen, M, G. N. Washington, and G. Kinzel, Introducing the Carangithopter:A SmallPiezoelectrically Actuated Swimming Vehicle, Adaptive Structures and Material Systems Symposium, ASME International Congress and Exposition, 2000
    [20] Xiangqiang Tan, Yinchun Zhong, Yimin Yang. Design and Experiment of Micro Mobile Robot in Liquid. Proceeding of the 4th World congress on Intelligent Control and Automation 2002:1223-1225P
    [21] 杨凯,奉承林.新型SMA驱动技术.机械,2000,27(6):1-3页
    [22] Sugar T G, Kumar V. Control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation, 2002, 18(1):94-103P
    [23] 魏中国,彭红樱,杨大智等形状记忆合金传感驱动器件及其在机器人中的应用.机器人,1994,16(4):244-249页
    [24] Rediniotis Othon K., Lagoudas Dimistris C., Mashio Tomoka, el at. Theoretical and experimental investigations of an active hydrofoil with SMA actuators. Proceedings of The Society of Photo-Optical Instrumentation Engineers (spie), 1997: 277-289P
    [25] Webb G., Wilson L., Lagoudas D., Rediniotis O, et al. Adaptive control of shape memory alloy actuators for underwater biomimetic applications. AIAA Journal, 2000, 38 (2):325-334P
    [26] L. J. Garner, L.N. Wilson, D. C. Lagoudas, et al. Development of a shape memory alloy actuated biomimetic vehicle. Smart Mater Struct, 2000, 9: 673-683P
    [27] 穆晓枫,顾大强,陈柏et a1.血管微型机器人无损伤体内驱动方法.浙江大学学报.2005,39,(5):618-622页
    [28] 童秉纲,庄礼贤,程健宇.鱼类波状摆动推进的流体力学研究.力学实践,1991,13(3):12-15页
    [29] 童秉纲.鱼类波状泳动的推进机理。力学实践。2000,23(5):69-74页
    [30] 刘军考.水下机器人新型仿鱼鳍推进器.机器人。2000,22(5):427-432页
    [31] Mark Fashing, Carlio Tomasi. Mean Shift is a Bound Optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3):471-474P
    [32] Yizhong Cheng. Mean Shift, Mode Seeking, and Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8): 790-799P
    [33] Peter Meer. Real-Time Tracking of Non-Rigid Objects using Mean Shift[C]. IEEE Conference on Computer Vision and Patter Recognition, 2000,2(0):142-149P
    [34] McFarlane, N.J.B. and C.P Schofield, Machine Vision and Applications, 1995 Segmentation and tracking of piglets in images. 8: 187-193P
    [35] Mojarrad M, Shahinpoor M, biomimetic robotic propulsion using polymeric artificial muscles Robotics and Automation, 1997. Proceedings, 1997 IEEE International Conference on, 1997, 3:2152-2157P
    [36] Dario P., Carroza M. C., Bennenutio A., et al. Micro-systems in biomedical applications. J. Micromech. Microeng, 2000, No. 10: 235-244P
    [37] Idogaki T. Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine. Proc of MHS'95, Nagoya, Japan, 1995
    [38] Zhou YS et al.,A new medical microrohotfor minimal invasive surgery. Proceedingsof the institution of mechanical engineers Part H-Journal of Engineering in Medicine. 2001, Vol: 215-220P
    [39] Zhou YS et al., Noninvasive method to drive medical micro-robot, Chinese Science Bulletin, 2000, Vol. 45 (5): 617-620P
    [40] 贾宇辉,谭久彬,张杰超.磁致伸缩微位移驱动器的研究.微细加工技术.2000,No.2:70-74页
    [41] 张秀丽.磁致伸缩薄膜和驱动器.光机电信息.1996,13(4):21-24页
    [42] Claeyssen Frank, Lhermet Nicolas, Grosso Gilles. Giant magnetostrictive alloyactuators. Journal of Applied Electromagnetics in Materials, 1994,5(1):67-73P
    [43] 李文卓,赵万生,詹涵蓄,吴湘.压电/电致伸缩材料及驱动器的新技术与应用.压电与声光.2001,28(4):260-264页
    [44] 张永顺,贾振元,丁凡等.外磁场驱动无缆微型机器人行走特性的分析.机械工程学报.2003,9(6):135-139页
    [45] 杨凯,奉承林.新型SMA驱动技术.机械.2000,27(6):1-3页
    [46] 贾云德.机器视觉[M].北京:科学出版社,2005
    [47] 王宏等译.计算机视觉:一种现代方法[M].北京:电子工业出版社,2004
    [48] Liu, J.S. and R. Chen, Sequential Monte J, Amer, Statist. Assoc., methods for dynamical systems. 1998
    [49] 吴晓娟,崔海亭,王磊,许立群.一种改进的CAMSHIFT手势跟踪算法[J].山东大学学报(工学版),2004,12(6):121-124页
    [50] Haiting Zhai, Xiaojuan Wu, Hui Algorithm[C]. IEEE International. Han Research of a Real-time Hand Tracking Conference on Neural Networks and Brains. 2005,2(0):1233-1235P