一些酰胺化合物的合成和它们的刺激—响应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刺激响应材料能够在受到外界刺激时产生自身性质的改变。多种刺激手段可以用来控制刺激响应材料的性能,包括电压、光、pH、温度、化学添加剂和外力作用等等。我们知道酰胺基团作为天然肽和蛋白的骨干结构而普遍存在于自然界中。由于其是良好的氢键给受体以及N上孤对电子的离域导致的部分双键性质,其在制备刺激响应材料中有独特的优势。在本文中,我们设计合成了一些酰胺化合物,并用其制备了刺激响应的单层膜、溶液、胶束和凝胶。取得的研究结果包括以下三个方面:
     (1)我们设计合成了含有N,N-双取代酰胺结构的硫辛酸衍生物脯氨醇硫辛酰胺(1a),并用其在金表面制备自组装单分子膜(SAMs),得到了溶剂响应性的SAM-1a,其在用乙醇和环己烷交替处理过后表面接触角呈现在约40°和59°往复变化;我们用核磁研究了1a的模型分子脯氨醇戊酰胺(1b)在乙醇和环己烷中的构象变化,这从构象上解释了SAM-1a在用乙醇和环己烷分别处理以后表面水接触角的变化。我们分别合成了具有N-单取代酰胺结构的N-羟乙基硫辛酰胺(2a)和具有N,N-双取代酰胺结构的N-甲基-N-羟乙基硫辛酰胺(2b),用它们分别制备了自组装单分子膜SAM-2a和SAM-2b,并对比了它们表面的溶剂响应性;结果说明,N,N-双取代是制备溶剂响应性酰胺表面的基本条件。另外合成了不同长度烷基链的N,N-双取代酰胺硫辛酸衍生物,用它们制备得到的SAMs表现出不同的水接触角响应范围。
     (2)参照热响应聚合物的结构,我们设计合成了具有热响应性质的酰胺小分子N-正丙基丙酰胺(nPPAm)、N-仲丁基丙酰胺(sBPAm)和N-甲基-N-正丁基丙酰胺(MBPAm),它们的水溶液在环境温度超过其浊点时发生相分离。我们绘制了酰胺-水体系的相图。其中nPPAm和MBPAm的低临界溶解温度(LCST)分别为19.7°C和33.9°C。通过引入手性基团,我们得到了具有温敏性质的手性酰胺小分子N-甲基-N-(S)-仲丁基丙酰胺(M(S)sBPAm)、脯氨醇戊酰胺((S)PPAm)、N-丁酰基-(S)-脯氨酸甲酯(B(S)PME)、N-((R)-1-羟甲基丙基)戊酰胺((R)HMPPtAm)和N-((R)-1-(甲氧基甲基)丙基)丁酰胺((R)MMPBAm),并绘制了它们和水二元体系的相图;其中,M(S)sBPAm、(S)PPAm和B(S)PME的LCST分别为49.7°C、62.4°C和75.7°C。
     (3)我们设计合成了一系列含有寡聚(N-甲基甘氨酸)结构的两亲性分子N-十二烷基-N-甲基-2-(N-甲基-2-(N-甲基乙酰胺基)乙酰胺基)乙酰胺(C12A3)、N-十四烷基-N-甲基-2-(N-甲基-2-(N-甲基乙酰胺基)乙酰胺基)乙酰胺(C14A3)、N-十六烷基-N-甲基-2-(N-甲基-2-(N-甲基乙酰胺基)乙酰胺基)乙酰胺(C16A3)、N-十八烷基-N-甲基-2-(N-甲基-2-(N-甲基乙酰胺基)乙酰胺基)乙酰胺(C18A3)。其中,C12A3和C14A3在水溶液中自组装形成胶束,临界胶束浓度(CMC)分别为0.15mM和0.01mM;并且,该胶束具有热响应性质,当温度升高到胶束溶液的浊点,溶液出现浑浊,我们用紫外光谱仪表征了出现浑浊时的温度即浊点,它们水溶液的LCST分别为79.5°C和61.2°C。我们研究了C12A3的热响应胶束的在浊点萃取上的应用,在胶束水溶液中加入污染物尼罗红后,将溶液升温使其相分离,可以明显的看到尼罗红被富集到富胶束相;通过荧光光谱可以看到稀相中的荧光强度明显下降,而浓相中的荧光强度大幅度上升。C16A3和C18A3分子则显示热响应的凝胶性质,它们的水溶液具有双温度响应性,可实现“凝胶溶胶‐乳浊液”三态之间的可逆转换,在浓度为50mM时,C16A3水溶液的凝胶温度(Tgel)和浊点(TCP)分别为22.6°C和51.0°C,而C18A3水溶液的Tgel和TCP分别为38.0°C和39.9°C。
Stimuli-responsive materials can alter their properties in response to changes inthe environment or an external stimulus. Currently, a lot of stimuli are utilized tocontrol properties including electrical potential, light, pH, temperature, chemicals, andmechanical forces. We know that amide bond is widespread in nature as the backboneof peptides and proteins. Amide group is a good hydrogen bond donor and accepter,and significant delocalisation of the lone pair of electrons on the nitrogen atom givesthe group a partial double bond character, which make it a good choice for preparationof stimuli-responsive materials. In this paper, we designed and synthesized severalamide compounds, and investigated their stimuli-responsiveness. Some creativeresults are described in the following paragraphs.
     (1) We have designed and synthesized a dithiooctanoic acid derivative bearingN,N-disubstituted amide groups, DL-N-(6,8-dithiooctanoyl)-L-prolinol (1a), and usedit to fabricate self-assembled monolayers (SAMs) on gold surface, resulting in asolvent-responsive surface SAM-1a. The film showed reversible changes inwettability, which was indicated by surface contact angle switching between40°and59°upon alternating treatments with ethanol and cyclohexane. NMR experimentalresults of a model molecule, N-pentanoyl-L-prolinol (1b), suggests that thesolvent-responsive wettability of the SAMs could be related with the changes in therelative populations of two stereoisomers of amide. Then, we synthesized aN-monosubstituted amide, N-hydroxyethyl-6,8-dithiooctanamide (2a), and aN,N-disubstituted amide, N-hydroxyethyl-N-methyl-6,8-dithiooctanamide (2b), andused them to fabricated SAM-2a and SAM-2b, respectively. Comparison of theirsolvent-responsiveness confirmed that N,N-disubstitution was essential to obtain a stimuli-responsive surface. Further, we synthesized N,N-disubstituted dithiooctanoicacid derivatives with different alkyl chain lengths, and the SAMs fabricated fromthem performed different response ranges of the contact angle.
     (2) According to the structure of thermo-responsive amide polymers, wedesigned and synthesized three amide-based thermo-responsive molecules,N-propylpropionamide (nPPAm), N-sec-butylpropionamide (sBPAm) andN-butyl-N-methylpropionamide (MBPAm). Their aqueous solutions undergo phaseseparation when the ambient temperature exceeds their cloud points. We draw theirphase diagrams of amide/water systems, in which the lower critical solutiontemperature (LCST) of nPPAm and MBPAm were indicated as19.7°C and33.9°C,respectively. By introducing chiral groups, several chiral amide molecules, withthermo-responsive character, were obtained, including (S)-N-sec-butyl-N-methylpropionamide (M(S)sBPAm), N-pentanoyl-L-prolinol ((S)PPAm), N-pentanoyl-(S)-proline methyl ester (B(S)PME), N-((R)-1-hydroxypropyl)pentanamide((R)HMPPtAm), and N-((R)-1-(methoxymethyl)propyl)butyramide ((R)MMPBAm).Their phase diagrams were drawn, and the LCSTs of M(S)sBPAm,(S)PPAm andB(S)PME were49.7°C,62.4°C and75.7°C, respectively.
     (3) We designed and synthesized a number of oligo(N-methylglycine))-bearingamphiphilic molecules, N-dodecyl-N-methyl-2-(N-methyl-2-(N-methylacetamido)acetamido)acetamide (C12A3), N-tetradecyl-N-methyl-2-(N-methyl-2-(N-methyl-acetamido)acetamido)acetamide (C14A3), N-hexadecyl-N-methyl-2-(N-methyl-2-(N-methylacetamido)acetamido)acetamide (C16A3), N-octadecyl-N-methyl-2-(N-methyl-2-(N-methylacetamido)acetamido)acetamide(C18A3). C12A3and C14A3canself-assemble into micelle in water, with critical micelle concentration (CMC) of0.15mM and0.01mM, respectively. When environment temperature rises to someextent, the micellar solution becomes turbid, which is characterized by UV-visspectrometer. The LCSTs for C12A3and C14A3are79.5°C and61.2°C, respectively.We studied the application of thermo-responsive micelles of C12A3in cloud pointextraction. After adding Nile Red as pollutants, the micelle solution separated into two phases at the temperature above the cloud point. It can be seen clearly that the Nilered is enriched into the micelle-rich phase, which is also confirmed by a decrease offluorescence intensity for micelle-lean phase and a significant increase offluorescence intensity for micelle-rich phase. C16A3and C18A3can formthermo-responsive hydrogel, which have dual temperature-response, and a reversiblesol-gel-emulsion transition can be achieved. At the concentration of50mM, the geltemperature (Tgel) and cloud point (TCP) for C16A3was22.6°C and51.0°C,respectively; and the Tgeland TCPfor C18A3were38.0°C and39.9°C.
引文
[1] ROY DEBASHISH, CAMBRE JENNIFER N, SUMERLIN BRENT S. Futureperspectives and recent advances in stimuli-responsive materials [J]. Progress inPolymer Science,2010,35(1):278-301.
    [2] SCHILD HG. Poly (N-isopropylacrylamide): experiment, theory and application[J]. Progress in polymer science,1992,17(2):163-249.
    [3] NAGASE KENICHI, KOBAYASHI JUN, OKANO TERUO.Temperature-responsive intelligent interfaces for biomolecular separation andcell sheet engineering [J]. Journal of The Royal Society Interface,2009,6(Suppl3):S293-S309.
    [4] DAI HONGJUN, LI XIAOFENG, LONG YUHUA, et al. Multi-membranehydrogel fabricated by facile dynamic self-assembly [J]. Soft Matter,2009,5(10):1987-1989.
    [5] CRESPY DANIEL, ROSSI REN M. Temperature‐responsive polymers withLCST in the physiological range and their applications in textiles [J]. PolymerInternational,2007,56(12):1461-1468.
    [6] VOLLMER MARTIN S, CLARK THOMAS D, STEINEM CLAUDIA, et al.Photoswitchable hydrogen‐bonding in self‐organized cylindrical peptidesystems [J]. Angewandte Chemie International Edition,1999,38(11):1598-1601.
    [7] JOCHUM FLORIAN D, ZUR BORG LISA, ROTH PETER J, et al. Thermo-andlight-responsive polymers containing photoswitchable azobenzene end groups[J]. Macromolecules,2009,42(20):7854-7862.
    [8] JIANG JINQIANG, TONG XIA, ZHAO YUE. A new design for light-breakablepolymer micelles [J]. Journal of the American Chemical Society,2005,127(23):8290-8291.
    [9] SCHMALJOHANN DIRK. Thermo-and pH-responsive polymers in drug delivery[J]. Advanced drug delivery reviews,2006,58(15):1655-1670.
    [10] RODR GUEZ-HERN NDEZ JUAN, LECOMMANDOUX S BASTIEN.Reversible inside-out micellization of pH-responsive and water-soluble vesiclesbased on polypeptide diblock copolymers [J]. Journal of the American ChemicalSociety,2005,127(7):2026-2027.
    [11] LACKEY CHANTAL A, PRESS OLIVER W, HOFFMAN ALLAN S, et al. Abiomimetic pH-responsive polymer directs endosomal release and intracellulardelivery of an endocytosed antibody complex [J]. Bioconjugate chemistry,2002,13(5):996-1001.
    [12] DAI SHENG, RAVI PALANISWAMY, TAM KAM CHIU. pH-Responsivepolymers: synthesis, properties and applications [J]. Soft Matter,2008,4(3):435-449.
    [13] B T N V, LIU S, WEAVER JVM, et al. A brief review of ‘schizophrenic’blockcopolymers [J]. Reactive and Functional Polymers,2006,66(1):157-165.
    [14] BLACK ASHLEY L, LENHARDT JEREMY M, CRAIG STEPHEN L. Frommolecular mechanochemistry to stress-responsive materials [J]. Journal ofMaterials Chemistry,2011,21(6):1655-1663.
    [15] TANAKA TOYOICHI, NISHIO IZUMI, SUN SHAO-TANG, et al. Collapse ofgels in an electric field [J]. Science,1982,218(4571):467-469.
    [16] RAMANATHAN SRINIVASAN, BLOCK LAWRENCE H. The use of chitosangels as matrices for electrically-modulated drug delivery [J]. Journal ofcontrolled release,2001,70(1):109-123.
    [17] FILIPCSEI G, FEHER J, ZR NYI M. Electric field sensitive neutral polymergels [J]. Journal of Molecular Structure,2000,554(1):109-117.
    [18] LAHANN JOERG, MITRAGOTRI SAMIR, TRAN THANH-NGA, et al. AReversibly Switching Surface [J]. Science,2003,299(5605):371-374.
    [19] TH VENOT JULIE, OLIVEIRA HUGO, SANDRE OLIVIER, et al. Magneticresponsive polymer composite materials [J]. Chemical Society Reviews,2013,42(17):7099-7116.
    [20] REINICKE STEFAN, D HLER STEFAN, TEA SANDRINE, et al.Magneto-responsive hydrogels based on maghemite/triblock terpolymer hybridmicelles [J]. Soft Matter,2010,6(12):2760-2773.
    [21] CZAUN MIKLOS, HEVESI L SZL, TAKAFUJI MAKOTO, et al.Magneto-Responsive Organogels Prepared Through Surface-Initiated AtomTransfer Radical Polymerization on Iron Nanoparticles [J]. Journal ofnanoscience and nanotechnology,2009,9(1):123-131.
    [22] CZAUN MIKL S, HEVESI L SZL, TAKAFUJI MAKOTO, et al. A novelapproach to magneto-responsive polymeric gels assisted by iron nanoparticlesas nano cross-linkers [J]. Chemical Communications,2008(18):2124-2126.
    [23] SHIRAKI TOMOHIRO, DAWN ARNAB, TSUCHIYA YOUICHI, et al.Thermo-and Solvent-Responsive Polymer Complex Created fromSupramolecular Complexation between a Helix-Forming Polysaccharide and aCationic Polythiophene [J]. Journal of the American Chemical Society,2010,132(39):13928-13935.
    [24] KIM HYUN SUK, CROSBY ALFRED J. Solvent‐Responsive Surface viaWrinkling Instability [J]. Advanced Materials,2011,23(36):4188-4192.
    [25] KIM EUNJU, LEE JIYEONG, KIM DONGWOO, et al. Solvent-responsivepolymer nanocapsules with controlled permeability: encapsulation and releaseof a fluorescent dye by swelling and deswelling [J]. Chemical Communications,2009(12):1472-1474.
    [26] HOOGENBOOM RICHARD, THIJS HANNEKE ML, WOUTERS DAAN, et al.Solvent responsive micelles based on block and gradient copoly (2-oxazoline) s[J]. Macromolecules,2008,41(5):1581-1583.
    [27] XIN BINGWEI, HAO JINGCHENG. Reversibly Switchable Wettability [J].Chemical Society Reviews,2010,39(2):769-782.
    [28] ROSS AFTIN M., NANDIVADA HIMABINDU, LAHANN JOERG, SwitchableSurface Approaches, in Handbook of Stimuli-Responsive Materials.2011,Wiley-VCH Verlag GmbH&Co. KGaA. p.139-163.
    [29] LIU Y., MU L., LIU B. H., et al. Controlled Switchable Surface [J]. Chemistry-aEuropean Journal,2005,11(9):2622-2631.
    [30] KUROKI HIDENORI, TOKAREV IHOR, MINKO SERGIY. ResponsiveSurfaces for Life Science Applications [J]. Annual Review of MaterialsResearch,2012,42(1):343-372.
    [31] ZHU MING-QIANG, WANG LI-QIONG, EXARHOS GREGORY J., et al.Thermosensitive Gold Nanoparticles [J]. Journal of the American ChemicalSociety,2004,126(9):2656-2657.
    [32] ZHAO B., BRITTAIN W. J., ZHOU W. S., et al. Nanopattern formation fromtethered PS-b-PMMA brushes upon treatment with selective solvents [J].Journal of the American Chemical Society,2000,122(10):2407-2408.
    [33] XUE LONGJIAN, HAN YANCHUN. Autophobic Dewetting of a Poly(methylmethacrylate) Thin Film on a Silicon Wafer Treated in Good Solvent Vapor [J].Langmuir,2009,25(9):5135-5140.
    [34] XU C., WU T., DRAIN C. M., et al. Effect of block length on solvent responseof block copolymer brushes: Combinatorial study with block copolymer brushgradients [J]. Macromolecules,2006,39(9):3359-3364.
    [35] UHLMANN P., MERLITZ H., SOMMER J. U., et al. Polymer Brushes forSurface Tuning [J]. Macromolecular Rapid Communications,2009,30(9-10):732-740.
    [36] RUSSELL T. P. Surface-Responsive Materials [J]. Science,2002,297(5583):964-967.
    [37] MINKO SERGIY, M LLER MARCUS, MOTORNOV MICHAIL, et al.Two-Level Structured Self-Adaptive Surfaces with Reversibly TunableProperties [J]. Journal of the American Chemical Society,2003,125(13):3896-3900.
    [38] MILNER S. T. Polymer Brushes [J]. Science,1991,251(4996):905-914.
    [39] LUZINOV I., MINKO S., TSUKRUK V. V. Responsive Brush Layers: fromTailored Gradients to Reversibly Assembled Nanoparticles [J]. Soft Matter,2008,4(4):714-725.
    [40] EDWARDS E. W., CHANANA M., WANG D., et al. Stimuli-ResponsiveReversible Transport of Nanoparticles across Water/Oil Interfaces [J]. AngewChem Int Ed Engl,2008,47(2):320-323.
    [41] CUI LIANG, XUAN YU, LI XUE, et al. Polymer Surfaces with ReversiblySwitchable Ordered Morphology [J]. Langmuir,2005,21(25):11696-11703.
    [42] CHEN TAO, FERRIS ROBERT, ZHANG JIANMING, et al.Stimulus-Responsive Polymer Brushes on Surfaces: Transduction Mechanismsand Applications [J]. Progress in Polymer Science,2010,35(1-2):94-112.
    [43] CHEN LI, LIU MINGJIE, BAI HAO, et al. Antiplatelet and ThermallyResponsive Poly(N-isopropylacrylamide) Surface with Nanoscale Topography[J]. Journal of the American Chemical Society,2009,131(30):10467-10472.
    [44] WANG RONG, HASHIMOTO KAZUHITO, FUJISHIMA AKIRA, et al.Light-Induced Amphiphilic Surfaces [J]. Nature,1997,388(6641):431-432.
    [45] LIM HO SUN, KWAK DONGHOON, LEE DONG YUN, et al. UV-DrivenReversible Switching of a Roselike Vanadium Oxide Film betweenSuperhydrophobicity and Superhydrophilicity [J]. Journal of the AmericanChemical Society,2007,129(14):4128-4129.
    [46] FENG XINJIAN, ZHAI JIN, JIANG LEI. The Fabrication and SwitchableSuperhydrophobicity of TiO2Nanorod Films [J]. Angewandte ChemieInternational Edition,2005,44(32):5115-5118.
    [47] MIYAUCHI MASAHIRO, NAKAJIMA AKIRA, WATANABE TOSHIYA, et al.Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide ThinFilms [J]. Chemistry of Materials,2002,14(6):2812-2816.
    [48] FENG XINJIAN, FENG LIN, JIN MEIHUA, et al. ReversibleSuper-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnONanorod Films [J]. Journal of the American Chemical Society,2003,126(1):62-63.
    [49] ZAREIE H. M., BOYER C., BULMUS V., et al. Temperature-ResponsiveSelf-Assembled Monolayers of Oligo(ethylene glycol): Control of BiomolecularRecognition [J]. ACS Nano,2008,2(4):757-765.
    [50] WAN PENGBO, JIANG YUGUI, WANG YAPEI, et al. Tuning SurfaceWettability through Photocontrolled Reversible Molecular Shuttle [J]. ChemicalCommunications,2008(44):5710-5712.
    [51] KATZ EUGENII, LIOUBASHEVSKY OLEG, WILLNER ITAMAR.Electromechanics of a Redox-Active Rotaxane in a Monolayer Assembly on anElectrode [J]. Journal of the American Chemical Society,2004,126(47):15520-15532.
    [52] JIANG Y. G., WANG Z. Q., YU X., et al. Self-Assembled Monolayers ofDendron Thiols for Electrodeposition of Gold Nanostructures: TowardFabrication of Superhydrophobic/Superhydrophilic Surfaces andpH-Responsive Surfaces [J]. Langmuir,2005,21(5):1986-1990.
    [53] DELORME N., BARDEAU J. F., BULOU A., et al. Azobenzene-ContainingMonolayer with Photoswitchable Wettability [J]. Langmuir,2005,21(26):12278-12282.
    [54] CHEN X., GAO J., SONG B., et al. Stimuli-Responsive Wettability ofNonplanar Substrates: pH-Controlled Floatation and Supporting Force [J].Langmuir,2010,26(1):104-108.
    [55] BALAMURUGAN SUBRAMANIAN, ISTA LINNEA K., YAN JUCHAO, et al.Reversible Protein Adsorption and Bioadhesion on Monolayers Terminated withMixtures of Oligo(ethylene glycol) and Methyl Groups [J]. Journal of theAmerican Chemical Society,2005,127(42):14548-14549.
    [56] ABBOTT SCOTT, RALSTON JOHN, REYNOLDS GEOFFREY, et al.Reversible Wettability of Photoresponsive Pyrimidine-Coated Surfaces [J].Langmuir,1999,15(26):8923-8928.
    [57] ABBOTT NICHOLAS L., GORMAN CHRISTOPHER B., WHITESIDESGEORGE M. Active Control of Wetting Using Applied Electrical Potentials andSelf-Assembled Monolayers [J]. Langmuir,1995,11(1):16-18.
    [58] WILSON MARK D., WHITESIDES GEORGE M. The anthranilate amide of"polyethylene carboxylic acid" shows an exceptionally large change with pH inits wettability by water [J]. Journal of the American Chemical Society,1988,110(26):8718-8719.
    [59] XIA F., GE H., HOU Y., et al. Multiresponsive Surfaces Change BetweenSuperhydrophilicity and Superhydrophobicity [J]. Advanced Materials,2007,19(18):2520-2524.
    [60] RAPHAEL E., DE GENNES P. G. Rubber-rubber adhesion with connectormolecules [J]. The Journal of Physical Chemistry,1992,96(10):4002-4007.
    [61] RUTHS MARINA, JOHANNSMANN DIETHELM, R HE J RGEN, et al.Repulsive Forces and Relaxation on Compression of Entangled, PolydispersePolystyrene Brushes [J]. Macromolecules,2000,33(10):3860-3870.
    [62] KLEIN JACOB, KUMACHEVA EUGENIA, MAHALU DIANA, et al.Reduction of frictional forces between solid surfaces bearing polymer brushes[J]. Nature,1994,370(6491):634-636.
    [63] BERMAN ALAN, STEINBERG SUZI, CAMPBELL SAMUEL, et al.Controlled microtribology of a metal oxide surface [J]. Tribology Letters,1998,4(1):43-48.
    [64] SCHWENDEL DIRK, DAHINT REINER, HERRWERTH SASCHA, et al.Temperature Dependence of the Protein Resistance of Poly-and Oligo(ethyleneglycol)-Terminated Alkanethiolate Monolayers [J]. Langmuir,2001,17(19):5717-5720.
    [65] HIKITA MASAYA, TANAKA KEIJI, NAKAMURA TETSUYA, et al.Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica NanoparticlesCovered with Fluoroalkyl Groups [J]. Langmuir,2005,21(16):7299-7302.
    [66] HAN JOONG TARK, XU, CHO KILWON. Diverse Access to ArtificialSuperhydrophobic Surfaces Using Block Copolymers [J]. Langmuir,2005,21(15):6662-6665.
    [67] HAN JOONG TARK, LEE DAE HO, RYU CHANG YEOL, et al. Fabrication ofSuperhydrophobic Surface from a Supramolecular Organosilane with QuadrupleHydrogen Bonding [J]. Journal of the American Chemical Society,2004,126(15):4796-4797.
    [68] PENG DAVID K., YU SANDY T., ALBERTS DAVID J., et al. Switching theElectrochemical Impedance of Low-Density Self-Assembled Monolayers [J].Langmuir,2006,23(1):297-304.
    [69] LOKUGE ISHIKA, WANG XUEJUN, BOHN PAUL W. Temperature-ControlledFlow Switching in Nanocapillary Array Membranes Mediated byPoly(N-isopropylacrylamide) Polymer Brushes Grafted by Atom TransferRadical Polymerization [J]. Langmuir,2006,23(1):305-311.
    [70] IONOV L., HOUBENOV N., SIDORENKO A., et al. Smart MicrofluidicChannels [J]. Advanced Functional Materials,2006,16(9):1153-1160.
    [71] TOKAREVA IRYNA, MINKO SERGIY, FENDLER JANOS H., et al.Nanosensors Based on Responsive Polymer Brushes and Gold NanoparticleEnhanced Transmission Surface Plasmon Resonance Spectroscopy [J]. Journalof the American Chemical Society,2004,126(49):15950-15951.
    [72] MITSUISHI MASAYA, KOISHIKAWA YASUSHI, TANAKA HIROYUKI, et al.Nanoscale Actuation of Thermoreversible Polymer Brushes Coupled withLocalized Surface Plasmon Resonance of Gold Nanoparticles [J]. Langmuir,2007,23(14):7472-7474.
    [73] ZHANG ZHENG, CHEN SHENGFU, JIANG SHAOYI. Dual-FunctionalBiomimetic Materials: Nonfouling Poly(carboxybetaine) with ActiveFunctional Groups for Protein Immobilization [J]. Biomacromolecules,2006,7(12):3311-3315.
    [74] KUSUMO A., BOMBALSKI L., LIN Q., et al. High capacity, charge-selectiveprotein uptake by polyelectrolyte brushes [J]. Langmuir,2007,23(8):4448-4454.
    [75] TUGULU STEFANO, HARMS MARC, FRICKE MARC, et al. PolymerBrushes as Ionotropic Matrices for the Directed Fabrication of MicrostructuredCalcite Thin Films [J]. Angewandte Chemie International Edition,2006,45(44):7458-7461.
    [76] SCHRINNER MARC, PROCH SEBASTIAN, MEI YU, et al. Stable BimetallicGold–Platinum Nanoparticles Immobilized on Spherical PolyelectrolyteBrushes: Synthesis, Characterization, and Application for the Oxidation ofAlcohols [J]. Advanced Materials,2008,20(10):1928-1933.
    [77] CHANANA MUNISH, JAHN SABRINA, GEORGIEVA RADOSTINA, et al.Fabrication of Colloidal Stable, Thermosensitive, and Biocompatible MagnetiteNanoparticles and Study of Their Reversible Agglomeration in Aqueous Milieu[J]. Chemistry of Materials,2009,21(9):1906-1914.
    [78] ZHUANG JIAMING, GORDON MALLORY R., VENTURA JUDY, et al.Multi-stimuli responsive macromolecules and their assemblies [J]. ChemicalSociety Reviews,2013,42(17):7421-7435.
    [79] GRUBBS ROBERT B., SUN ZHE. Shape-changing polymer assemblies [J].Chemical Society Reviews,2013,42(17):7436-7445.
    [80] WANG YAPEI, XU HUAPING, ZHANG XI. Tuning the Amphiphilicity ofBuilding Blocks: Controlled Self-Assembly and Disassembly for FunctionalSupramolecular Materials [J]. Advanced Materials,2009,21(28):2849-2864.
    [81] HESKINS M., GUILLET J. E. Solution Properties ofPoly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science: Part A-Chemistry,1968,2(8):1441-1455.
    [82] ASEYEV VLADIMIR, TENHU HEIKKI, WINNIK FRAN OISEM, Non-ionicThermoresponsive Polymers in Water, in Self Organized Nanostructures ofAmphiphilic Block Copolymers II, A.H.E. Müller and O. Borisov, Editors.2011,Springer Berlin Heidelberg. p.29-89.
    [83] ZHAO YU, GUO KAI, WANG CHUNYU, et al. Effect of InclusionComplexation with Cyclodextrin on the Cloud Point ofPoly(2-(dimethylamino)ethyl methacrylate) Solution [J]. Langmuir,2010,26(11):8966-8970.
    [84] KELLEY ELIZABETH G., ALBERT JULIE N. L., SULLIVAN MILLICENT O.,et al. Stimuli-responsive copolymer solution and surface assemblies forbiomedical applications [J]. Chemical Society Reviews,2013,42(17):7057-7071.
    [85] WAN XUEJUAN, LIU SHIYONG. Fluorescent water-soluble responsivepolymers site-specifically labeled with FRET dyes possessing pH-andthermo-modulated multicolor fluorescence emissions as dual ratiometric probes[J]. Journal of Materials Chemistry,2011,21(28):10321-10329.
    [86] JIN QIAO, LUY CHRISTOPH, JI JIAN, et al. Design and proof of reversiblemicelle-to-vesicle multistimuli-responsive morphological regulations [J].Journal of Polymer Science Part A: Polymer Chemistry,2012,50(3):451-457.
    [87] CHU ZONGLIN, DREISS CECILE A., FENG YUJUN. Smart wormlikemicelles [J]. Chemical Society Reviews,2013,42(17):7174-7203.
    [88] TSUCHIYA KOJI, ORIHARA YOICHI, KONDO YUKISHIGE, et al. Control ofViscoelasticity Using Redox Reaction [J]. Journal of the American ChemicalSociety,2004,126(39):12282-12283.
    [89] ZHANG XI, WANG CHAO. Supramolecular amphiphiles [J]. Chemical SocietyReviews,2011,40(1):94-101.
    [90] WANG CHAO, GUO YINSHENG, WANG YAPEI, et al. SupramolecularAmphiphiles Based on a Water-Soluble Charge-Transfer Complex: Fabricationof Ultralong Nanofibers with Tunable Straightness [J]. Angewandte ChemieInternational Edition,2009,48(47):8962-8965.
    [91] ZHANG H., AN W., LIU Z., et al. Redox-responsive vesicles prepared fromsupramolecular cyclodextrin amphiphiles [J]. Carbohydr Res,2010,345(1):87-96.
    [92] WANG CHAO, GUO YINSHENG, WANG YAPEI, et al. Redox responsivesupramolecular amphiphiles based on reversible charge transfer interactions [J].Chemical Communications,2009(36):5380-5382.
    [93] WANG CHAO, CHEN QISHUI, XU HUAPING, et al. PhotoresponsiveSupramolecular Amphiphiles for Controlled Self-Assembly of Nanofibers andVesicles [J]. Advanced Materials,2010,22(23):2553-2555.
    [94] WANG YAPEI, HAN PENG, XU HUAPING, et al. PhotocontrolledSelf-Assembly and Disassembly of Block Ionomer Complex Vesicles: A FacileApproach toward Supramolecular Polymer Nanocontainers [J]. Langmuir,2009,26(2):709-715.
    [95] YANG XINGYUAN, ZHANG GUANXIN, ZHANG DEQING. Stimuliresponsive gels based on low molecular weight gelators [J]. Journal of MaterialsChemistry,2012,22(1):38-50.
    [96] SEGARRA-MASET MARIA DOLORES, NEBOT VICENT J., MIRAVETJUAN F., et al. Control of molecular gelation by chemical stimuli [J]. ChemicalSociety Reviews,2013,42(17):7086-7098.
    [97] KUKSENOK OLGA, DAYAL PRATYUSH, BHATTACHARYA AMITABH, etal. Chemo-responsive, self-oscillating gels that undergo biomimeticcommunication [J]. Chemical Society Reviews,2013,42(17):7257-7277.
    [98] KLOXIN CHRISTOPHER J., BOWMAN CHRISTOPHER N. Covalentadaptable networks: smart, reconfigurable and responsive network systems [J].Chemical Society Reviews,2013,42(17):7161-7173.
    [99] AHN SUK-KYUN, KASI RAJESWARI M, KIM SEONG-CHEOL, et al.Stimuli-responsive polymer gels [J]. Soft Matter,2008,4(6):1151-1157.
    [100] LUO QUANZHOU, MUTLU SENOL, GIANCHANDANI YOGESH B., et al.Monolithic valves for microfluidic chips based on thermoresponsive polymergels [J]. ELECTROPHORESIS,2003,24(21):3694-3702.
    [101] LIN YIYANG, QIAO YAN, YAN YUN, et al. Thermo-responsive viscoelasticwormlike micelle to elastic hydrogel transition in dual-component systems [J].Soft Matter,2009,5(16):3047-3053.
    [102] GEORGE MATHEW, WEISS RICHARD G. Chemically ReversibleOrganogels: Aliphatic Amines as “Latent” Gelators with Carbon Dioxide [J].Journal of the American Chemical Society,2001,123(42):10393-10394.
    [103] CHEN JING, WU WEIWEI, MCNEIL ANNE J. Detecting a peroxide-basedexplosive via molecular gelation [J]. Chemical Communications,2012,48(58):7310-7312.
    [104] CHEN QUN, ZHANG DEQING, ZHANG GUANXIN, et al. NewCholesterol-Based Gelators with Maleimide Unit and the Relevant MichaelAdducts: Chemoresponsive Organogels [J]. Langmuir,2009,25(19):11436-11441.
    [105] QI ZHENHUI, MALO DE MOLINA PAULA, JIANG WEI, et al. Systemschemistry: logic gates based on the stimuli-responsive gel-sol transition of acrown ether-functionalized bis(urea) gelator [J]. Chemical Science,2012,3(6):2073-2082.
    [106] JIANG YUGUI, WAN PENGBO, XU HUAPING, et al. Facile ReversibleUV-Controlled and Fast Transition from Emulsion to Gel by Using aPhotoresponsive Polymer with a Malachite Green Group [J]. Langmuir,2009,25(17):10134-10138.
    [107] PENG FEI, LI GUANGZHAO, LIU XINXING, et al. Redox-ResponsiveGel Sol/Sol Gel Transition in Poly(acrylic acid) Aqueous Solution ContainingFe(III) Ions Switched by Light [J]. Journal of the American Chemical Society,2008,130(48):16166-16167.
    [108] NITSCHKE M., GRAMM S., GOTZE T., et al. Thermo-responsivepoly(NiPAAm-co-DEGMA) substrates for gentle harvest of human cornealendothelial cell sheets [J]. J Biomed Mater Res A,2007,80(4):1003-1010.
    [109] MA YINGHUA, TANG YIQING, BILLINGHAM NORMAN C., et al.Synthesis of Biocompatible, Stimuli-Responsive, Physical Gels Based on ABATriblock Copolymers [J]. Biomacromolecules,2003,4(4):864-868.
    [110] FERRER MARIA L., YUSTE LUIS, ROJO FERNANDO, et al. BiocompatibleSol Gel Route for Encapsulation of Living Bacteria in Organically ModifiedSilica Matrixes [J]. Chemistry of Materials,2003,15(19):3614-3618.
    [111] EBRON VON HOWARD, YANG ZHIWEI, SEYER DANIEL J., et al.Fuel-Powered Artificial Muscles [J]. Science,2006,311(5767):1580-1583.
    [112] Wikipedia contributors."Amide." Wikipedia, The Free Encyclopedia.2014.
    [113] DIXON DAVID A, DOBBS KERWIN D, VALENTINI JAMES J. Amide-waterand amide-amide hydrogen bond strengths [J]. The Journal of PhysicalChemistry,1994,98(51):13435-13439.
    [114] EBERHARDT ERIC S, RAINES RONALD T. Amide-amide and amide-waterhydrogen bonds: implications for protein folding and stability [J]. Journal of theAmerican Chemical Society,1994,116(5):2149-2150.
    [115] KEMNITZ CARL R., LOEWEN MARK J.“Amide Resonance” Correlateswith a Breadth of C N Rotation Barriers [J]. Journal of the American ChemicalSociety,2007,129(9):2521-2528.
    [116] STEWART WILLIAM ESLEY, SIDDALL THOMAS H. Nuclear MagneticResonance Studies of Amides [J]. Chemical Reviews,1970,70(5):517-551.
    [117] HALLAM H. E., JONES CHRISTINE M. Conformational isomerism of theamide group-a review of the IR and NMR spectroscopic evidence [J]. Journalof Molecular Structure,1970,5(1–2):1-19.
    [118] PUGH JAMES K., STREITWIESER ANDREW. The C N Rotation Barrier ofthe Lithium Enolate of Acetamide: An ab Initio and Density Functional TheoryInvestigation [J]. The Journal of Organic Chemistry,2001,66(4):1334-1338.
    [119] OLSON LEIF P., LI YI, HOUK K. N., et al. Theoretical Analysis of SecondaryKinetic Isotope Effects in C-N Rotation of Amides [J]. Journal of the AmericanChemical Society,1995,117(11):2992-2997.
    [120] DEETZ MARTIN J., FORBES CHRISTOPHER C., JONAS MARCO, et al.Unusually Low Barrier to Carbamate C N Rotation [J]. The Journal of OrganicChemistry,2002,67(11):3949-3952.
    [121] MANTZ YVES A, BRANDUARDI DAVIDE, BUSSI GIOVANNI, et al.Ensemble of Transition State Structures for the Cis Trans Isomerization ofN-Methylacetamide [J]. The Journal of Physical Chemistry B,2009,113(37):12521-12529.
    [122] AVALOS MART N, BABIANO REYES, BARNETO JOS L, et al. Can wepredict the conformational preference of amides?[J]. The Journal of organicchemistry,2001,66(22):7275-7282.
    [123] OKAMOTO IWAO, TAKAHASHI YUSUKE, SAWAMURA MIKA, et al.Redox-responsive conformational alteration of aromatic amides bearingN-quinonyl system [J]. Tetrahedron,2012,68(27):5346-5355.
    [124] OKAMOTO IWAO, NABETA MAYUMI, HAYAKAWA YASUKO, et al.Acid-induced molecular folding and unfolding of N-methyl aromatic amidebearing2,6-disubstituted pyridines [J]. Journal of the American ChemicalSociety,2007,129(7):1892-1893.
    [125] RODER HEINRICH, W THRICH KURT. Protein folding kinetics by combineduse of rapid mixing techniques and NMR observation of individual amideprotons [J]. Proteins: Structure, Function, and Bioinformatics,1986,1(1):34-42.
    [126] GELLMAN SAMUEL H, ADAMS BRUCE R, DADO GREGORY P.Temperature-dependent changes in the folding pattern of a simple triamide [J].Journal of the American Chemical Society,1990,112(1):460-461.
    [127] BANDEKAR JAGDEESH. Amide modes and protein conformation [J].Biochimica et Biophysica Acta (BBA)-Protein Structure and MolecularEnzymology,1992,1120(2):123-143.
    [128] HESKINS MICHAEL, GUILLET JAMES E. Solution properties of poly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science—Chemistry,1968,2(8):1441-1455.
    [129] WARD MARK A, GEORGIOU THEONI K. Thermoresponsive polymers forbiomedical applications [J]. Polymers,2011,3(3):1215-1242.
    [130] TAN IRENE, ROOHI FARNOOSH, TITIRICI MARIA-MAGDALENA.Thermoresponsive polymers in liquid chromatography [J]. Analytical Methods,2012,4(1):34-43.
    [131] MAHARJAN PANKAJ, WOONTON BRAD W, BENNETT LOUISE E, et al.Novel chromatographic separation—The potential of smart polymers [J].Innovative food science&emerging technologies,2008,9(2):232-242.
    [132] BAJPAI AK, SHUKLA SANDEEP K, BHANU SMITHA, et al. Responsivepolymers in controlled drug delivery [J]. Progress in Polymer Science,2008,33(11):1088-1118.
    [133] GALAEV IGOR, MATTIASSON BO. Smart polymers for bioseparation andbioprocessing [M]. CRC Press.2008.
    [134] ROY DEBASHISH, BROOKS WILLIAM L. A., SUMERLIN BRENT S. Newdirections in thermoresponsive polymers [J]. Chemical Society Reviews,2013,42(17):7214-7243.
    [135] DIJK MAARTEN VAN. New Biodegradable Peptide-based Polymer Constructs[J].2009.
    [136] ASEYEV VLADIMIR, TENHU HEIKKI, WINNIK FRAN OISE M, Non-ionicthermoresponsive polymers in water, in Self Organized Nanostructures ofAmphiphilic Block Copolymers II.2011, Springer. p.29-89.
    [137]袁港.环糊精等添加物对几个中性热敏均聚物浊点的影响[D].吉林大学博士学位论文,2013.
    [138] LAI HENGJIE, WU PEIYI. A infrared spectroscopic study on the mechanismof temperature-induced phase transition of concentrated aqueous solutions ofpoly (N-isopropylacrylamide) and N-isopropylpropionamide [J]. Polymer,2010,51(6):1404-1412.
    [139] GEUKENS BARBARA, MEERSMAN FILIP, NIES ERIK. Phase behavior ofN-(isopropyl) propionamide in aqueous solution and changes in hydrationobserved by FTIR Spectroscopy [J]. The Journal of Physical Chemistry B,2008,112(15):4474-4477.
    [140] ONO YOUSUKE, SHIKATA TOSHIYUKI. Contrary hydration behavior ofN-isopropylacrylamide to its polymer, P (NIPAm), with a lower critical solutiontemperature [J]. The Journal of Physical Chemistry B,2007,111(7):1511-1513.
    [141] KITSUNAI MAKOTO, MIYAJIMA KENTARO, MIKAMI YUZURU, et al.Phase-separable aqueous amide solutions as a thermal history indicator [J].Bioscience, biotechnology, and biochemistry,2008,72(12):3314-3317.
    [142] BALZANI VINCENZO, CREDI ALBERTO, VENTURI MARGHERITA.Molecular devices and machines [J]. Nano Today,2007,2(2):18-25.
    [143] BERN JOS, BOTTARI GIOVANNI, LEIGH DAVID A, et al. Amide-basedmolecular shuttles (2001-2006)[J]. Pure and applied chemistry,2007,79(1):39-54.
    [144] KAY EUAN R, LEIGH DAVID A, Hydrogen bond-assembled syntheticmolecular motors and machines, in Molecular Machines.2005, Springer. p.133-177.
    [145] BROUWER ALBERT M, FROCHOT C LINE, GATTI FRANCESCO G, et al.Photoinduction of fast, reversible translational motion in a hydrogen-bondedmolecular shuttle [J]. Science,2001,291(5511):2124-2128.
    [146] FIORAVANTI GIULIA, HARASZKIEWICZ NATALIA, KAY EUAN R, et al.Three state redox-active molecular shuttle that switches in solution and on asurface [J]. Journal of the American Chemical Society,2008,130(8):2593-2601.
    [147] KEAVENEY CLAIRE M, LEIGH DAVID A. Shuttling through anionrecognition [J]. Angewandte Chemie International Edition,2004,43(10):1222-1224.
    [148] DA ROS TATIANA, GULDI DIRK M, MORALES ANGELES FARRAN, et al.Hydrogen bond-assembled fullerene molecular shuttle [J]. Organic letters,2003,5(5):689-691.
    [149] BOTTARI GIOVANNI, DEHEZ FRANCOIS, LEIGH DAVID A, et al.Entropy‐Driven Translational Isomerism: A Tristable Molecular Shuttle [J].Angewandte Chemie,2003,115(47):6066-6069.
    [150] ALTIERI ANDREA, BOTTARI GIOVANNI, DEHEZ FRANCOIS, et al.Remarkable Positional Discrimination in Bistable Light‐and Heat‐SwitchableHydrogen‐Bonded Molecular Shuttles [J]. Angewandte Chemie,2003,115(20):2398-2402.
    [151] BERNA JOSE, LEIGH DAVID A, LUBOMSKA MONIKA, et al. Macroscopictransport by synthetic molecular machines [J]. Nature materials,2005,4(9):704-710.
    [152] OKAMOTO IWAO, YAMASAKI RYU, SAWAMURA MIKA, et al.Redox-Induced Conformational Alteration of N, N-Diarylamides [J]. Organicletters,2007,9(26):5545-5547.
    [153] PAPAGEORGIOU CHRISTOS, AKYEL KAYHAN, BORER XAVER, et al.3‐Hydroxy‐2‐cyanoalk‐2‐enamides, and2‐Cyano‐2‐(tetrahydrofuran‐2‐ylidene)‐and2‐Cyano‐2‐(tetrahydropyran‐2‐ylidene) acetamides: Synthesis, structure, andsolvent‐dependent (Z)/(E)‐isomerism [J]. Helvetica chimica acta,1998,81(5‐8):1319-1328.
    [154] OKAMOTO IWAO, NABETA MAYUMI, YAMAMOTO MISAKI, et al.Solvent-Dependent Conformational Switching of the Aromatic N-MethylAmides Depending upon the Acceptor Properties of Solvents [J]. TetrahedronLetters,2006,47(40):7143-7146.
    [155] LEWIS FREDERICK D, BURCH ERIC L, STERN CHARLOTTE L. Foldedconformations of N‐(aminoalkyl)‐9‐phenanthrenecarboxamides in the crystaland solution [J]. Journal of physical organic chemistry,1997,10(7):525-530.
    [1] XIN BINGWEI, HAO JINGCHENG. Reversibly Switchable Wettability [J].Chemical Society Reviews,2010,39(2):769-782.
    [2] ROSS AFTIN M., NANDIVADA HIMABINDU, LAHANN JOERG, SwitchableSurface Approaches, in Handbook of Stimuli-Responsive Materials.2011,Wiley-VCH Verlag GmbH&Co. KGaA. p.139-163.
    [3] LIU Y., MU L., LIU B. H., et al. Controlled Switchable Surface [J]. Chemistry-aEuropean Journal,2005,11(9):2622-2631.
    [4] KUROKI HIDENORI, TOKAREV IHOR, MINKO SERGIY. ResponsiveSurfaces for Life Science Applications [J]. Annual Review of Materials Research,2012,42(1):343-372.
    [5] JIANG Y. G., WANG Z. Q., YU X., et al. Self-Assembled Monolayers ofDendron Thiols for Electrodeposition of Gold Nanostructures: TowardFabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-ResponsiveSurfaces [J]. Langmuir,2005,21(5):1986-1990.
    [6] STEWART WILLIAM ESLEY, SIDDALL THOMAS H. Nuclear MagneticResonance Studies of Amides [J]. Chemical Reviews,1970,70(5):517-551.
    [7] HALLAM H. E., JONES CHRISTINE M. Conformational isomerism of theamide group-a review of the IR and NMR spectroscopic evidence [J]. Journal ofMolecular Structure,1970,5(1–2):1-19.
    [8] LAPLANCHE LAURINE A., ROGERS MAX T. cis and trans Configurations ofthe Peptide Bond in N-Monosubstituted Amides by Nuclear Magnetic Resonance[J]. Journal of the American Chemical Society,1964,86(3):337-341.
    [9] OKAMOTO IWAO, NABETA MAYUMI, YAMAMOTO MISAKI, et al.Solvent-Dependent Conformational Switching of the Aromatic N-Methyl AmidesDepending upon the Acceptor Properties of Solvents [J]. Tetrahedron Letters,2006,47(40):7143-7146.
    [10] LEWIS FREDERICK D, BURCH ERIC L, STERN CHARLOTTE L. Foldedconformations of N‐(aminoalkyl)‐9‐phenanthrenecarboxamides in thecrystal and solution [J]. Journal of physical organic chemistry,1997,10(7):525-530.
    [11] OKAMOTO IWAO, NABETA MAYUMI, HAYAKAWA YASUKO, et al.Acid-induced molecular folding and unfolding of N-methyl aromatic amidebearing2,6-disubstituted pyridines [J]. Journal of the American ChemicalSociety,2007,129(7):1892-1893.
    [12] YADAV V. K., BABU K. G. Reactions on a Solid Surface. A Simple,Economical, and Efficient Acylation of Alcohols and Amines over Al2O3[J].Journal of Organic Chemistry,2004,69(2):577-580.
    [1] HESKINS M., GUILLET J. E. Solution Properties of Poly(N-isopropylacrylamide)[J]. Journal of Macromolecular Science: Part A-Chemistry,1968,2(8):1441-1455.
    [2] YOSHIDA MASARU, ASANO MASAHARU, OMICHI HIDEKI, et al.Dependence of volume phase transition temperature of poly (acryloyl-L-prolinemethyl ester) gel on hydrophobic tail length of anionic surfactants [J].Macromolecules,1997,30(9):2795-2796.
    [3] ASEYEV VLADIMIR, TENHU HEIKKI, WINNIK FRAN OISEM, Non-ionicThermoresponsive Polymers in Water, in Self Organized Nanostructures ofAmphiphilic Block Copolymers II, A.H.E. Müller and O. Borisov, Editors.2011,Springer Berlin Heidelberg. p.29-89.
    [4] AOKI TAKASHI, MURAMATSU MIKA, TORII TAISUKE, et al.Thermosensitive phase transition of an optically active polymer in aqueous milieu[J]. Macromolecules,2001,34(10):3118-3119.
    [5] YOSHIDA MASARU, SAFRANJ AGNEZA, OMICHI HIDEKI, et al.Polymerization, self-bridging, and degradation of acryloyl-andmethacryloyl-L-proline methyl esters induced by radiation and characteristics ofgel swelling [J]. Macromolecules,1996,29(6):2321-2323.
    [6]袁港.环糊精等添加物对几个中性热敏均聚物浊点的影响[D].吉林大学博士学位论文,2013.
    [7] LAI HENGJIE, WU PEIYI. A infrared spectroscopic study on the mechanism oftemperature-induced phase transition of concentrated aqueous solutions of poly(N-isopropylacrylamide) and N-isopropylpropionamide [J]. Polymer,2010,51(6):1404-1412.
    [8] GEUKENS BARBARA, MEERSMAN FILIP, NIES ERIK. Phase behavior ofN-(isopropyl) propionamide in aqueous solution and changes in hydrationobserved by FTIR Spectroscopy [J]. The Journal of Physical Chemistry B,2008,112(15):4474-4477.
    [9] ONO YOUSUKE, SHIKATA TOSHIYUKI. Contrary hydration behavior ofN-isopropylacrylamide to its polymer, P (NIPAm), with a lower critical solutiontemperature [J]. The Journal of Physical Chemistry B,2007,111(7):1511-1513.
    [10] YADAV V. K., BABU K. G. Reactions on a Solid Surface. A Simple, Economical,and Efficient Acylation of Alcohols and Amines over Al2O3[J]. Journal ofOrganic Chemistry,2004,69(2):577-580.
    [11] KITSUNAI MAKOTO, MIYAJIMA KENTARO, MIKAMI YUZURU, et al.Phase-separable aqueous amide solutions as a thermal history indicator [J].Bioscience, biotechnology, and biochemistry,2008,72(12):3314-3317.
    [12] ZHANG YANJIE, FURYK STEVEN, SAGLE LAURA B, et al. Effects ofHofmeister anions on the LCST of PNIPAM as a function of molecular weight [J].The Journal of Physical Chemistry C,2007,111(25):8916-8924.
    [13] SCHILD HG. Poly (N-isopropylacrylamide): experiment, theory and application[J]. Progress in polymer science,1992,17(2):163-249.
    [14] SAGLE LAURA B, ZHANG YANJIE, LITOSH VLADISLAV A, et al.Investigating the hydrogen-bonding model of urea denaturation [J]. Journal of theAmerican Chemical Society,2009,131(26):9304-9310.
    [15] REDDY P MADHUSUDHANA, VENKATESU P. Ionic liquid modifies thelower critical solution temperature (LCST) of Poly (N-isopropylacrylamide) inaqueous solution [J]. The Journal of Physical Chemistry B,2011,115(16):4752-4757.
    [16] LEE HAU-NAN, NEWELL NAKISHA, BAI ZHIFENG, et al. Unusual LowerCritical Solution Temperature Phase Behavior of Poly (ethylene oxide) in IonicLiquids [J]. Macromolecules,2012,45(8):3627-3633.
    [17] LUXENHOFER ROBERT, HUBER STEPHAN, HYTRY JULIA, et al. Chiraland water‐soluble poly (2‐oxazoline) s [J]. Journal of Polymer Science Part A:Polymer Chemistry,2013,51(3):732-738.
    [1] DONG RENHAO, HAO JINGCHENG. Complex fluids of poly (oxyethylene)monoalkyl ether nonionic surfactants [J]. Chemical reviews,2010,110(9):4978-5022.
    [2] ZHAO XIAOJUN, ZHANG SHUGUANG. Fabrication of molecular materialsusing peptide construction motifs [J]. Trends in biotechnology,2004,22(9):470-476.
    [3] VELICHKO YURI S, STUPP SAMUEL I, DE LA CRUZ MONICA OLVERA.Molecular simulation study of peptide amphiphile self-assembly [J]. The journalof physical chemistry B,2008,112(8):2326-2334.
    [4] TOVAR JOHN D, CLAUSSEN RANDAL C, STUPP SAMUEL I. Probing theinterior of peptide amphiphile supramolecular aggregates [J]. Journal of theAmerican Chemical Society,2005,127(20):7337-7345.
    [5] SANTOSO STEVE S, VAUTHEY SYLVAIN, ZHANG SHUGUANG. Structures,function and applications of amphiphilic peptides [J]. Current opinion in colloid&interface science,2002,7(5):262-266.
    [6] HARTGERINK JEFFREY D, BENIASH ELIA, STUPP SAMUEL I.Peptide-amphiphile nanofibers: a versatile scaffold for the preparation ofself-assembling materials [J]. Proceedings of the National Academy of Sciences,2002,99(8):5133-5138.
    [7] RECHES MEITAL, GAZIT EHUD. Molecular self-assembly of peptidenanostructures: mechanism of association and potential uses [J]. CurrentNanoscience,2006,2(2):105-111.
    [8] MURUGESAN M, JAYAKUMAR R, DURAI V. Self-assembly of a nonionicpeptide surfactant in aqueous medium [J]. Langmuir,1996,12(7):1760-1764.
    [9] WEBBER MATTHEW J, TONGERS J RN, RENAULT MARIE-ANGE, et al.Development of bioactive peptide amphiphiles for therapeutic cell delivery [J].Acta biomaterialia,2010,6(1):3-11.
    [10] VAUTHEY SYLVAIN, SANTOSO STEVE, GONG HAIYAN, et al. Molecularself-assembly of surfactant-like peptides to form nanotubes and nanovesicles [J].Proceedings of the National Academy of Sciences,2002,99(8):5355-5360.
    [11] STENDAHL JOHN C, RAO MUKTI S, GULER MUSTAFA O, et al.Intermolecular forces in the self‐assembly of peptide amphiphile nanofibers [J].Advanced Functional Materials,2006,16(4):499-508.
    [12] PARAMONOV SERGEY E, JUN HO-WOOK, HARTGERINK JEFFREY D.Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bondingand amphiphilic packing [J]. Journal of the American Chemical Society,2006,128(22):7291-7298.
    [13] KHOE ULUNG, YANG YANLIAN, ZHANG SHUGUANG. Self-Assembly ofNanodonut Structure from a Cone-Shaped Designer Lipid-like PeptideSurfactant [J]. Langmuir,2008,25(7):4111-4114.
    [14] HARTGERINK JEFFREY D, BENIASH ELIA, STUPP SAMUEL I.Self-assembly and mineralization of peptide-amphiphile nanofibers [J]. Science,2001,294(5547):1684-1688.
    [15] GALLER KERSTIN M, CAVENDER ADRIANA, YUWONO VIRANY, et al.Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells[J]. Tissue Engineering Part A,2008,14(12):2051-2058.
    [16] BITTON RONIT, SCHMIDT JUDITH, BIESALSKI MARKUS, et al.Self-assembly of model DNA-binding peptide amphiphiles [J]. Langmuir,2005,21(25):11888-11895.
    [17] YOO BARNEY, KIRSHENBAUM KENT. Peptoid architectures: elaboration,actuation, and application [J]. Current opinion in chemical biology,2008,12(6):714-721.
    [18] BURKOTH TIMOTHY S, BEAUSOLEIL ERIC, KAUR SURINDER, et al.Toward the synthesis of artificial proteins: the discovery of an amphiphilic helicalpeptoid assembly [J]. Chemistry&biology,2002,9(5):647-654.