纳米二氧化硅的包覆改性及其对膨胀阻燃EVA性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统的研究了聚合物包覆纳米SiO2的制备工艺与方法,采用无皂乳液聚合法和预聚物包覆法分别成功制备了聚甲基丙烯酸甲酯(PMMA)和三聚氰胺-甲醛树脂(MFR)包覆改性纳米SiO2粒子,并采用红外光谱、热分析、扫描电镜、粒度分析等方法对其性能、结构、组成等进行了分析。在此基础上,通过对改性SiO2/IFR/EVA复合材料的力学性能、阻燃性能及热降解行为的分析,考查了包覆改性SiO2在膨胀EVA体系中的作用,重点研究了不同包覆改性SiO2对成炭性能的影响。
     本论文的研究表明:(1)以包覆量结合粒度分析为评价标准时,能够更好评价包覆效果,具有最大包覆量的纳米SiO2的粒径最小,说明在此条件下SiO2的分散情况最好;(2)红外光谱、热分析和扫描电镜的研究表明,成功制备了PMMA、三聚氰胺-甲醛树脂、丁醇改性三聚氰胺-甲醛树脂包覆改性的SiO2粒子,未改性的纳米SiO2在EVA中团聚现象比较严重,改性后的纳米SiO2在EVA中的分散性明显改善;(3)复合体系的热降解过程的研究结果表明,不同包覆改性粒子具有不同的成炭作用,三聚氰胺-甲醛树脂包覆的纳米SiO2更有利于促进体系的热降解成炭过程,其体系表现出较低的热失重速率和较高的成炭量;(4)氧指数和力学性能的测试结果表明,改性纳米SiO2体系力学性能和阻燃性能在很大程度上取决于粒子的分散状态和表面状态。
Modification of nano-silica coated with poly(methyl methacrylate)(PMMA), melamine formaldehyde resin (MFR) and butanol modified melamine formaldehyde resin (BMFR) by emulsion polymerization method and prepolymer coating method was investigated in the dissertation. Composition, structure and properties of modified silica were analyzed by means of Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG), scanning electron microscopy(SEM) and particle size analyzer. Modified silica was used in intumescent flame retardant EVA composites(EVA/IFR) and its effects on tensile properties, flame retardant properties and thermal degradation behaviors were studied. Emphasis was given to effects of modified silica on charring properties of the system.
     The following conclusions could be drawn: (1) Modification degree could be better evaluated by combination of encapsulated mass and particle size. The modified silica with the most encapsulated mass possessed the smallest particle size, which could be interpreted as the better dispersed silica particles. (2) The results of FTIR and TG revealed successful modification of silica coated with PMMA, MFR and BMFR. As observed by SEM, conglomeration of nano-silica particles was lessened and dispersibiliby of silica in EVA was improved after modification. (3) Study on thermal degradation of composites indicated enhanced charring by modified silica, among which MFR coated silica possessed best charring effects according to lower weight loss rate and more residue left. (4) Tensile properties and flame retardant properties of the composites were affected by the dispersibility and surface structure of modified silica.
引文
[1]王倩,段先键,王跃林.疏水纳米二氧化硅溶胶在高温硫化硅橡胶中的应用[J].四川大学学报(工程科学版), 2007, 39(2): 98-102.
    [2]张密林,丁立国,景晓燕.纳米二氧化硅的制备改性与应用研究进展[J].应用科技, 2004, 31(6): 64-66.
    [3]王宝利,朱振峰.无机纳米粉体的团聚与表面改性[J].陶瓷学报. 2006, 27(1): 135-138.
    [4]黄国波,童筱莉.无机纳米粒子原位复合聚氨酯研究[J].化工新型材料, 2003 31(1): 12-14.
    [5] WADDELL W H, DOUGLAS J B. Improved Black Sidewall Compound Performance Using Precipitated Silica[J]. Rubber World, 1993, 208(3): 21-25.
    [6]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002: 88-89.
    [7]王秀华,翁履谦,王玲.硅烷偶联剂在有机-无机杂化纳米复合材料中的应用[J].有机硅材料, 2004, 18 (3): 30-33.
    [8] YANG F, NELSON G L. PMMA/Silica Nanocomposites Studies: Synthesis and Properties[J]. Appl Polym Sci, 2004, 91(6): 3844-3850.
    [9]李莹,于建,郭朝霞.纳米SiO2粒子表面官能团对尼龙6原位聚合的影响[J].高分子学报, 2003, 2: 235-240.
    [10]容敏智,章明秋,郑永样.纳米SiO2增韧增强聚丙烯的界面效应与逾渗行为[J].复合材料学报, 2002, 19 (1): 1-4.
    [11] LI Y, YU J, GUO Z X. The Influence of Interphase on Nylon-6/Nano-SiO2 Composites Materials Obtained From in situ Polymerization[J]. Polym Int, 2003, 52(6): 981-986.
    [12] TEOFIL J, ANDRZEJ K. Influence of Silane Coupling Agents on Surface Properties of Precipitated Silicas[J]. Appl Surf Sci, 2001, 172 (1): 18-32.
    [13] KAMADA M, KOMINAMI H, KERA Y. Deposition and Interaction of Phosphododecatungstate on a Silica Gel Surface Modified with a Silane Coupling Agent Having Anilino Groups[J]. Colloid Interf Sci, 1996,182(1): 297-300.
    [14] RONG M Z, ZHANG M Q, ZHENG Y X. Structure-Property Relationships of Irradiation Modified Nano-Inorganic Particle Filled PolypropyleneComposites[J]. Polymer, 2001, 42(1): 167-183.
    [15] ZHANG M Q, RONG M Z, YU S L. Effect of Particle Surface Treatment on the Tribological Performance of Epoxy Based Nanocomposites[J]. Wear, 2002, 253(10): 1086-1093.
    [16] PAIBLE R, HAMANN K. Formation of Chemically Bound Polymer Layers on Oxide Surfaces and Their Role in Colloidal Stability[J]. Adv Colloid Interface Sci, 1980, 13: 65-71.
    [17] ELODIE B L, JACQUES L. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media[J]. Colloid Interf Sci, 1998, 197 (2): 293-308.
    [18] SONDI I, FEDYNYSHYN T H. Encapsulation of Nanosized Silica by in Situ Polymerization of Tert-Butyl Acrylate Monomer[J]. Langmuir, 2000, 16(23): 9031-9034.
    [19] RONG M Z, ZHANG M Q, PAN S L. Analysis of the Interfacial Interactions in Polypropylene/Silica Nanocomposites[J]. Polym Int, 2004, 53(2): 176-183.
    [20] TSUBOKAWA N, YOSHIKAWA S. Modification of Polymers with Controlled Molecular Weight onto Ultrafine Silica Surface[J]. Polym Sci, 1995, 33(3): 581-586.
    [21]郭朝霞,李莹,于建.聚芳酯树枝状分子改性纳米二氧化硅[J].高等学校化学学报, 2003, 24 (6): 1139-1141.
    [22] WERNE T VON, PATTEN T E. Preparation of Structurally well Defined Polymer Nanoparticle Hybirds with Controlled/Living Radical Polmerizations[J]. J Am Chem Soc, 1999, 121(32): 7409-7410.
    [23] SHEN Y Q, ZHU S P, ZENG F Q. Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine[J]. Macromolecules, 2000, 33 (15): 5427-5431.
    [24] PYUN J, MATYJASZEWSKI K, KOWALEWSKI T. Synthesis Of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscle Morphology on Surfaces[J]. J Am Chem Soc, 2001, 123 (38): 9445-9446.
    [25] WERNE T VON, PATTEN T E. Atom Transfer Radical Polymerization from Nanoparticles: a Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/"Living"Radical Polymerizations from Surfaces[J]. J Am Chem Soc,2001, 123 (31): 7497-7505.
    [26] FARMER S C, PATTEN T E. Photoluminescent Polymer/Quantum Dot Composite Nanoparticles[J]. Chem Mater, 2001, 13(11): 3920-3926.
    [27] BARTHOLOME C, BEYOU E, BOURGEAT-LAMI E. Nitroxide-Mediated Polymerizations from Silica Nanoparticles Surfaces: "Graft From" Polymerization of Styrene Using a Triethoxy-Silyl-Terminated Alkoxyamine Initiator[J]. Macromolecules, 2003, 36(21): 7946-7952.
    [28] ZHOU Q Y, WANG S X, FAN X W. Living Anionic Surface-Initiated Polymerization (LASIP) of a Polymer on Silica Nanoparticles[J]. Langmuir, 2002,18: 3324-3331.
    [29] ZHOU Q Y, FAN X W, XIA C J. Living Anionic Surface Initiated Polymerization (SIP) of Styrene from Clay Surfaces[J]. Chem Mater, 2001, 13 (8): 2465-2467.
    [30] TSUBOKAWA N, KOGURE A. Cationic Graft Polymerization from Ultra-Fine Silica Initiated by Acylium Perchlorate Groups Introduced onto the Surface[J]. Polymer Journal, 1993, 25(1): 83-89.
    [31] SPANGE S. Silica Surface Modification by Cationic Polymerization and Carbenium Intermediates[J]. Progress in Polymer Science, 2000, 25(5): 781-785.
    [32] YU H Y, GU J S. Surface Modification of Nano-SiO2 by Modification PMMA/PBA[J]. Chinese Journal of Chemistry, 2003, 21: 1297-1299.
    [33] TSUBOKAWA N, ICHIOKA H. Modification of Dendrimer-Like Highly Branched Polymer onto Ultra- Fine Silica Surface[J]. React Funct Polym, 1998, 37: 75-82.
    [34]钱翼清,范牛奔.烷基化纳米SiO2/MMA核壳乳液聚合、产物表征及其应用.高分子材料科学与工程[J]. 2002, 18(4): 69-73.
    [35] INGALL M D K, HONEYMAN C H, J V MERCURE. Surface Functionalization and Imaging Using Monolayers and Surface-Modified Polymer Layers[J]. J Am Chem Soc, 1999, 121(15): 3607-3613.
    [36]钱晓静,刘孝恒,陆路德.辛醇改性纳米二氧化硅表面的研究[J].无机化学学报, 2004, 20(3): 335-338.
    [37] XIA H S, YANG Q V. Preparation of Conductive Polyaniline/Nanosilica Particle Composites Through Ultrasonic Irradiation[J]. J Appl Poly Sci,2003, 87(11): 1811-1817.
    [38]黄玉强,张彦奇,华幼卿. LLDPE/纳米SiO2复合材料的制备与性能研究[J].中国塑料, 2003, 17(1): 25-29.
    [39]张明艳.影响聚酰亚胺/二氧化硅纳米杂化薄膜聚集态结构的因素[J].绝缘材料, 2007, 40(5): 1-3.
    [40] WEN J Y, WILKES G L. Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach[J]. Chem Mater, 1996, 8 (8): 1667-1681.
    [41] LANDRY C J T, COLTRAIN B K, LANDRY M R. Poly Silica Filled Materials: Material Properties of In-Situ Vs Fumed Silica Particles[J]. Macromolecules, 1993, 26(14): 3702-3712.
    [42] CHEN B K, CHIU T M, TSAY S Y. Synthesis and Characterization of Polyimide/Silica Hybrid Nanocomposites[J]. J Appl Polym Sci, 2004, 94(1): 382-393.
    [43] CHIANG C L, WU D L. Preparation. Characterization and Properties of Novolace-Type Phenolic/SiO2 Hybrid Organic-Inorganic Nanocomposite Materials By Sol-Gel Method[J]. J Polym Sci: Part A: Polym Chem, 2003, 41(7): 905-913.
    [44] KURAUCHI. Composite Material Containing a Layered Silicate[J]. J Appl Polym Sci, 2004, 94(1): 185-188.
    [45]欧玉春,杨锋,庄严,等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究[J].高分子学报, 1997, 2: 199-205.
    [46] BANDYOPADHYAY A, BHOWMICK A K, SARKAR M D. Synthesis and Characterization of Acrylic Rubber/Silica Hybrid Composites Prepared by Sol-Gel Technique[J]. J Appl Polym Sci, 2004, 93(6): 2579-2589.
    [47] IKEDA Y, TANAKA A, KOHJIYA S. Reinforcement of Styrene-Butadiene Rubber Vulcanizate by in situ Silica Prepared by the Sol-Gel Reaction of Tetraethoxysilane[J]. J Mater Chem, 1997, 7 (8): 1497-1503 .
    [48]宋艳江,朱凤娥,张云灿. CaCO3粒子对PVC/CPE/CaCO3复合材料力学性能的影响[J].中国塑料, 2004, 18 (1): 34-38.
    [49]郭卫红,唐颂超,周达飞.纳米SiO2在MMA单体中在位分散聚合的研究[J].材料导报, 2000, 14 (10): 71-72.
    [50] IKEDA Y, KOHJIYA S. In situ Formed Silica Particles in Iubber Wlcanizate by the Sol-Gel Method[J]. Polymer, 1997, 38 (17): 4417-4423.
    [51] TANAHASHI H, OSANAI S, SHIGEKUNI M. Reinforcement of Acrylonitrile-Butadiene Rubber by Silica Generated in situ[J]. Rubber Chem Technol, 1998, 71(1): 38-52.
    [52] YANG F, OU Y C, YU Z Z. Polyamide 6/Silica Nanocomposites Prepared by in situ Polymerization[J]. J Appl Polym Sci, 1998, 69(2): 355-361.
    [53]张密林,丁立国,景晓燕.纳米二氧化硅的制备、改性与应用研究进展[J].应用科技, 2004, 31 (6): 64-66.
    [54] LI Y, YU J, GUO Z X. The Influence of Silane Treatment on Nylon 6/Nano- SiO2 in situ Polymerization[J]. J Appl Polym Sci, 2002, 84(4): 827-834.
    [55] LIU W T, TIAN X Y, CUI P. Preparation and Characterization of Pet/Silica Nanocomposites[J]. J Appl Polym Sci, 2004, 91(2): 1229-1232.
    [56] CHEN X C, WU L M, ZHOU S X. In situ Polymerization and Characterization of Polyester-Based Polyurethane/Nano-Silica Composites[J]. Polym Int, 2003, 52(6): 993-998.
    [57]纪全,张静,夏延致.纳米技术在材料阻燃改性中的应用[J].纳米科技. 2006, 1: 50-55.
    [58] KASHIWAGI T, SHIELDS J R. Thermal and Flammability Properties of a Silica-Poly(Methylmethacrylate) Nanocomposite[J]. Applied Polymer Science. 2003, 89: 207-211.
    [59]何继辉,叶华,罗明良.纳米SiO2对无卤阻燃LLDPE/ PDMS交联共混体系性能的影响[J].塑料工业, 2005, 33(9): 25-29.
    [60] MOUZHENG F, BAOJUN Q. Synergistic Flame Retardant Mechanism of Fumed Silica in Ethylene-Vinyl Acetate/Magnesium Hydroxide Blends[J]. Polymer Degradation and Stability, 2004, 85: 633-639.
    [61]王震宇,韩恩厚,柯伟.纳米阻燃母液提高APP/PER/MEL防火涂料耐水性研究[J].中国腐蚀与防护学报, 2006, 26(2): 103-108.
    [62]陶圣如.磷基阻燃剂的近期进展[J].阻燃材料与技术, 2000, 1: 13-19.
    [63] STEPHANE G, SERGE B, Maryline Rochery. Microencapsula-Tion of Phosphate Application to Flame Retarded Coated Cotton[J]. Polymer Degradation and Stability, 2002, 77: 285-297.
    [64]欧育湘.膨胀型石墨及其协效阻燃剂阻燃的聚丙烯[J].塑料科技,1999,(3): 13~18.
    [65] LUNA-XAVIER J L, GUYOT A, BOURGEAT-LAMI E. Synthesis andCharacterization of Silica/Poly Nanocomposite Latex Particles Through Emulsion Polymerization Using a Cationic Azo Initiator[J]. J Colloid Interf Sci, 2002, 250(1): 82-92.
    [66]徐旭荣,陈关喜,胡耿源.磷杂螺环化合物的合成及表征[J].精细化工, 1997, 14: 35-38.
    [67]彭冶汉. N阻燃剂MCA阻燃尼龙66的机理研究[J].高分子材料科学与工程, 1998, (4): 106-107.
    [68]崔永岩.聚丙烯膨胀型无卤阻燃体系中协同效应的研究[J].塑料工业, 1999, (5): 26-27.
    [69]闵拥军,冯开才,叶大锵.膨胀阻燃剂的阻燃机理、最新进展及发展方向[J].阻燃材料与科学, 2001, 5: 5-10.
    [70]徐晓楠,张健.二氧化硅对膨胀型阻燃聚乙烯的性能影响研究[J].火灾科学, 2004, 13(3): 168-172.
    [71]郝建薇,王建祺,杜建新. SiO2和Al2O3对PP/APP/PER膨胀阻燃体系的协同作用[J].高分子材料科学与工程, 2004, 20(1): 165-167.
    [72] DUBOIS C, RAJABIAN M, RODRIGUE D. Polymerization Compounding of Polyurethane-Fumed Silica Composites[J]. Polym Eng Sci, 2006, 46(3): 360-371.
    [73] ZHOU S X, WU L M, SUN J. The Change of the Properties of Acrylic-Based Polyurethane Via Addition of Nano-Silica[J]. Progress in Organic Coatings, 2002,45(1): 33-42.
    [74] ZHANG Q, ARCHER L A. Poly(Ethylene Oxide)/Silica Nanocomposites: Structure and Rheology[J]. Langmuir, 2002, 18 (26): 10435-10442.
    [75]李莹,于建郭,朝霞.原位聚合制备尼龙6/纳米SiO2复合材料研究[J].工程塑料应用, 2002, 30 (9): 7-11.
    [76] YUAN Q W, MARK J E. Reinforcement of Poly Networks by Blended and Insitugenerated Silica Fillers Having Various Sizes, Size Distributions, and Modified Surfaces[J]. Macromol Chem Phys, 1999, 200 (1): 206-220.
    [77]倪刚,杨武,薄丽丽.表面引发氮氧自由基聚合反应制备聚苯乙烯/SiO2纳米复合材料[J].科学通报, 2006, 51 (10): 1234-1236.
    [78]范牛奔,钱翼清,孟海兵. TDI改性纳米SiO2表面[J].南京化工大学学报, 2001, 23(3): 10-13.
    [79] BANDYOPADHYAY A, BHOWMICK A K, SARKAR M P. Processing andCharacterization of Epoxy/Clay Nanocomposites[J]. Experimental Mechanics, 2003, 43(3): 348-354.
    [80]刘竞超,李小兵,张华林.纳米SiO2/环氧树脂复合材料的制备和性能[J].湘潭大学自然科学学报, 1999, 31(3): 36-39.
    [81]王福冲.偶联剂在橡胶配方中的应用[J].世界橡胶工业, 1994, 2: 15-27.
    [82] RONG M Z, ZHANG M Q, ZHENG Y X. Improvement of Tensile Properties of Nano-SiO2/PP Composites in Relation to Percolation Mechanism[J]. Polymer, 2001, 42(7): 3301-3304.
    [83]石璞,晋刚,吴宏武.纳米SiO2增强增韧聚丙烯的研究[J].中国塑料, 2002, 16 (1): 37-40.
    [84] MURPHY J. Flame Retardants: Trends and New Developments[J]. Plastics Additives & Compounding, 2001: 4, 16-20.
    [85] MODESTI M, LORENZETTI A. Flame Retardancy of Polyisocyanurate Polyurethane Foams: Use of Different Charring Agents[J]. Polymer Degradation and Stability, 2002, 78: 341-347.
    [86] HORROCKS A R, KANDOLA B K. Flame Retardant Cellulose Textiles in Fire Retardancy of Polymers[J]. Royal Society of Chemistry, 1997, 1: 343-361.
    [87]郝建薇,王建祺,杜建新. SiO2和Al2O3对PP/APP/PER膨胀阻燃体系的协同作用[J].高分子材料科学与工程, 2004, 20(1): 165-167.