聚酰亚胺/纳米Al_2O_3杂化薄膜的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以均苯四甲酸二酐(PMDA)及4, 4’-二氨基二苯基醚(ODA)为原料,N, N-二甲基乙酰胺(DMAc)为溶剂经逐步缩聚反应制备聚酰胺酸(PAA),采用机械共混法将经硅烷偶联剂改性的纳米Al_2O_3粉体,借助超声波以一定的方式加入到PAA中,经热亚胺化成功制备了多个系列聚酰亚胺(PI)/纳米Al_2O_3杂化薄膜。
     采用扫描电子显微镜和X-射线衍射表征了PI杂化薄膜的微观形貌和聚酰亚胺分子链的有序度,测试了系列PI杂化薄膜的紫外-可见光透过率、热稳定性、力学性能和电击穿场强。扫描电镜分析表明纳米Al_2O_3的晶型和含量以及硅烷偶联剂的种类和用量对PI杂化薄膜中纳米Al_2O_3的分散状态有较大影响。X-射线衍射、紫外-可见光透过率分析表明纳米Al_2O_3的晶型和含量以及硅烷偶联剂的种类对聚酰亚胺分子链的有序度、紫外-可见光透过率的影响较大,而偶联剂的用量对其影响较小。热失重测试、力学性能测试、电击穿场强测试分析表明PI纳米杂化薄膜的热分解温度、电击穿场强均高于纯PI膜,而力学性能低于纯PI膜,掺杂γ-Al_2O_3的PI杂化薄膜的热稳定性、拉伸强度高于掺杂α-Al_2O_3的PI杂化薄膜;掺杂α-Al_2O_3的PI杂化薄膜的电击穿场强高于掺杂γ-Al_2O_3的PI杂化薄膜;在使用四种偶联剂改性α-Al_2O_3制备的PI杂化薄膜中,使用硅烷偶联剂KH-550的PI杂化薄膜的热稳定性、力学性能最好,使用硅烷偶联剂AE3012的PI杂化薄膜电击穿场强最高,当偶联剂AE3012用量为无机粒子质量分数的4wt%时,该杂化薄膜的热稳定性、力学性能、电击穿场强均最好。
In this paper, poly(amic acid) was synthesized by step-polycondensation of 4,4’-oxydianiline(ODA) and pyromellitic dianhydride(PMDA)in the solution of N,N-dimethylacetamide(DMAc). Many series of polyimide/nano-Al_2O_3 hybrid films were prepared by the addition of the nano-Al_2O_3 which has been treated by coupling agent into the poly(amic acid) solution by ultrasonic wave through the ultrasonic-mechanical method and thermal imiditation.
     The micro-morphology of PI hybrid films and degree of order of polyimide molecular were studied by SEM and spectra of X-ray diffraction. Transmittivity of UV-Vis, thermal stability, mechanical properties and breakdown strength of PI hybrid films were tested. SEM analysis showed that the contents and crystallographic of nano-Al_2O_3 and the species and amount of silane coupling agents had much effect on the dispersion of nano-Al_2O_3 particles in the PI hybrid films. Spectra of X-ray diffraction and UV-Vis transmittance analysis showed that the contents and crystallographic of nano-Al_2O_3 and the species of silane coupling agents had much effect on the degree of order of polyimide molecular and transmittance of UV-Vis of PI hybrid films, but the content of silane coupling agent had less effect on them. TGA, mechanical and breakdown strength analysis showed thermal stability and breakdown strength of PI/nano-Al_2O_3 hybrid films were higher than pure PI film, but mechanical properties of PI/nano-Al_2O_3 hybrid films were lower than that of pure PI film. Thermal stability and tensile strength of PI hybrid films withγ-Al_2O_3 is higher thanα-Al_2O_3; in the PI/nano-Al_2O_3 hybrid films, the nano-Al_2O_3 was treated by four kinds of coupling agent, thermal stability and mechanical properties of PI hybrid films with KH550 were the best; breakdown strength of PI hybrid films with AE3012 was the highest; when silane coupling agent AE3012 is 4wt% of mass percent of inorganic particles during modifying treatment, thermal stability , mechanical properties and breakdown strength of PI hybrid films were the best.
引文
[1]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社, 2001: 274-276.
    [2]邹盛欧.聚酰亚胺发展动向[J].化工新型材料, 1999, 27(3): 3-7.
    [3]楼南寿,凌春华,付金栋.耐电晕绕组线的发展[J].电线电缆, 2004, 47(4): 13-15.
    [4]汪多仁.聚酰亚胺的合成与应用的进展[J].电线电缆, 2001, 44(6): 10-12.
    [5]周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料[M].北京:化学工业出版社, 2004: 211-212.
    [6]张秀菊,陈鸣才,黄玉惠.聚酰亚胺的性能、应用及发展概况[J].广州化学, 1998, 23(3): 58-59.
    [7]崔永丽,张仲华,江利.聚酰亚胺的性能及应用[J].塑料科技, 2005, 167(3): 50-55.
    [8]唐传林,季承均,单书发.绝缘材料工艺原理[M].北京:机械工业出版社, 1993: 207-215.
    [9] YANO K, USUKI A, OKADA A J. Synthesis and Properties of Polyimide-Clay Hybrid Film[M]. Journal of Polymer Science Part A: Polymer Chemistry, 1997: 2289-2294.
    [10] LINAG Z M, YIN J. Polyimide/Montomorillonite Nanocomposites Based on Thermally Stable, Rigid-Rod Aromatic Amine Modifiers[J]. Polymer, 2003, 44(5): 1391-1399.
    [11]王绪强.联苯型聚酰亚胺[J].绝缘材料通讯, 1998, 33(5): 21-24.
    [12]虞金海.新型聚酰亚胺的合成及其性能表征[J].绝缘材料通讯, 2000, 35(6): 10-12.
    [13]虞金海. 3. 3’-二氨基二苯醚的合成及其聚酰亚胺[J].绝缘材料, 2001, 36(4): 13-15.
    [14]夏作勋,夏林.聚酰亚胺绝缘材料在电机中的应用[J].合成材料老化与应用, 2003, 32(2): 35-38.
    [15]刘业强.改性聚酰亚胺浸渍漆的研究[J].绝缘材料, 2001, 36(5): 13-17.
    [16]唐婷婷,周伍清,戴礼兴.聚酰亚胺的改性研究进展[J].合成技术及应用, 2006, 21(3): 25-29.
    [17]王平华,徐国永.聚丙烯/凹凸棒土纳米复合材料的力学性能的研究[J].塑料工业, 2003, 31(6): 13-16.
    [18]严海彪,胡圣飞,郦华兴.加工工艺纳米复合材料性能的影响[J].工程塑料应用, 2004, 32(1): 25-27.
    [19]钱军民,李旭样.聚酰亚胺改性和应用研究进展[J].绝缘材料, 2001, 36(6): 12-17.
    [20]黄荣辉,姚果,顾宜.三元共聚聚酰亚胺纤维的制备[J].合成纤维工业, 2007, 30(1): 1-4.
    [21]詹茂盛,孙言丽.玻璃纤维/嵌段共聚聚酰亚胺复合材料力学性能的研究[J].塑料, 2006, 35(6): 1-6.
    [22]戴冕,陈大俊,张清华.共聚型聚酰亚胺的热性能研究[J].高分子材料科学与工程, 2005, 21(5): 149-152.
    [23]黄超伯,陈飞,彭信文. BPDA/PDA系列聚酰亚胺的共聚改性研究[J].江西师范大学学报:自然科学版, 2007, 31(1): 82-85.
    [24]陈艳,王新宇,高宗明.聚酰亚胺/二氧化硅纳米尺度复合材料的研究[J].高分子学报, 1997, 41(1): 73-79.
    [25]顾宁,付德刚,张海黔.纳米技术及应用[M].北京:人民邮电出版社, 2002: 16-18.
    [26]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002: 32-42.
    [27]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社, 2003: 144-150,173.
    [28] KIOUL A, MACIA L. Compatibility of Polyimide-Silic Creamers Induced by Al-Koxysilane C-Oupling Agents[J]. Joural of Non-Crystalline Solids, 1994, 175(5): 169-186.
    [29] AHMAD Z, SARWAR M I, MARK J E. Preparation and Roperties of Hybrid Organic-Inorganic Composites Prepared from Poly (phenylene terephthalamide) and Titania[J]. Mater. Chem., 1997, 163(7): 259-263
    [30]薛书凯,姜昱.聚酰亚胺/无机纳米杂化材料的研究[J].化工新型材料, 2006, 34(5): 5-7.
    [31]李晓晔,王文一.聚合物/无机纳米粒子复合材料的研究进展[J].中国粉体工业, 2006, 1(2): 9-13.
    [32] MARK J E. Ceramic-Reinforced Polymer and Polymer-Modified Ceramics[J]. Polymer Science, 1996, 36(8): 2905-2920.
    [33]李福成.聚酰亚胺/无机纳米复合材料的制备、结构与性能[J].工程塑料应用, 2006, 34(4): 68-71.
    [34]李福成,訾静.聚酰亚胺/无机纳米复合材料的制备、结构与性能[J].纤维复合材料, 2005, 21(6): 6-11.
    [35] AHMAD Z, MARK J E. Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route[J]. Chemistry Material, 2001, 13(10): 3320-3330.
    [36]崔冬梅,宋昌颖,金晶.聚酰亚胺/二氧化硅纳米杂化材料制备[J].吉林工学院学报, 2001, 22(4): 21-23.
    [37]徐一琨,詹茂盛.纳米二氧化硅目标杂化聚酰亚胺复合材料膜的制备与性能表征[J].航空材料学报, 2003, 23(2): 33-39.
    [38]李传峰,钟顺和.溶胶-凝胶法合成聚酰亚胺二氧化钛杂化膜[J].高分子学报, 2002, 46(3): 25-30.
    [39]樊友兵,李鸿岩,周升.聚酰亚胺/纳米二氧化钛复合物的合成与性能研究[J].绝缘材料, 2004, 39(3): 22-25.
    [40]杜宏伟,孔瑛.聚酰亚胺TiO_2有机-无机纳米复合膜材料的合成与表征[J].高分子材料科学与工程, 2004, 20(1): 84-87.
    [41]肖磊,周建华,王静.纳米颗粒改性PMMA光波导薄膜的研究[J].光电子技术与信息, 2005, 18(1): 26-28.
    [42]徐瑞银,宋存义. TiO_2/SiO_2光催化剂制备及对偶氮染降解的研究[J].能源环境保护, 2004, 18(6): 15-19.
    [43]刘丽,路庆华,印杰.溶胶-凝胶法制备聚酰亚胺/二氧化钛感光杂化材料[J].高等学校化学学报, 2001, 11(22): 1943-1944.
    [44]杜宏伟,孔英,史德青. PI/TiO_2纳米复合膜的H2/CH4和H2/N2分离性能[J].石油大学学报, 2003, 27(3): 98-101.
    [45] MAGARAPHAN R, LILAYUTHALERT W. Preparation, Structure Proper-Ties and Thermal Behavior of Rigid-Rod Polyimide/Montmorillonite Nano-Composites[J]. Composites Science and Technology, 2001, 146(1): 1253-1264.
    [46] CHEN H S, CHEN C M. Study on Nanodispersion of PI/Clay Nanocomposite by Temporal Analyses[J]. Material Chemistry and Physics, 2005, 19(8): 304-310.
    [47] WANG H W, DONG R X. Improvements on the Synthesis and Properties of Fluorinated Polyimide-Clay Nanocomposites by Using Double-Swelling Agents[J]. Materials Chemistry and Physics, 2005, 94(6): 42-51.
    [48] DELOZIER D M, ORWOLL R A. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays[J]. Polymer, 2003, 44(2): 2231-2241.
    [49] NAH C, HAN S H, LEE J H. Intercalation Behavior of Polyimide/Organoclay Nanocompsites During Thermal Imidization[J]. Composites, 2004, 35(9): 125-131.
    [50] ZHANG Y H, WU J T. Studies on Characterization and Cryogenic Mechanical Properties of Polyimide-Layered Silicate Nanocomposite Films[J]. Polymer, 2004, 45(8): 7579-7587.
    [51] CHON H, GONSALVES K E. Synthesis and Properties of an Aluminum Nitride/ Polyimide. Nanocomposite Prepared by a Nonaqueous Suspension Process[J]. Mater. Res., 2002, 154(12): 1274-1286.
    [52] JIANG X W, BIN Y Zh, Matsuo M. Electrical and Mechanical Properties of Polyimide-Carbon Nanotubes Composites Fabricated by In Situ Polymerization[J]. Polymer, 2005, 46(6): 7418-7424.
    [53] OHTANI O, GOTO Y. Synthesis of Self-Standing Mesostructured Phenylene-Silica-Polyimide Hybrid Films[J]. Materials Letters, 2006, 60(5): 177-179.
    [54] LEE Y J, HUANG J M. Low-dielectric, Nanoporous Polyimide Films Prepared From PEO-POSS Nanoparticles[J]. Polymer, 2005, 46(6): 10056-10065.
    [55] THOMPSON C M, HERRING H M, THOMAS S. Preparation and Characteri-Zation of Metal Oxide/Polyimide Nanocomposites[J]. Composites Science and Technology, 2003, 63(7): 1591-1598.
    [56]王秀华,王玲,许国耀,等.硅烷偶联剂在有机无机杂化纳米复合材料中的应用[J].有机硅材料, 2004, 18(3): 30-33.
    [57]杜仕国.复合材料用硅烷偶联剂的研究进展[J].玻璃钢/复合材料, 1996, 22(4): 32-37.
    [58]刘立柱.聚酰亚胺/SiO_2-Al_2O_3纳米杂化的制备、表征与性能[D].哈尔滨:哈尔滨理工大学(博士学位论文), 2006: 51-53.
    [59]李元庆,张以河,李明. PI/T-SiO_2杂化薄膜的制备及偶联剂的影响[J].合成树脂及塑料, 2004, 21(5): 61-64.
    [60]陈季丹,刘子玉.电介质物理学[M].北京:机械工业出版社, 1982: 62-68.
    [61]李鸿岩,郭磊,刘斌.聚酰亚胺/纳米Al_2O_3复合薄膜的介电性能[J].中国电机工程学报, 2006, 26(20): 166-170.