纳米材料的合成及在分析化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的不断发展,纳米科学已成为十分热门的研究领域,其应用范围不断扩大。纳米材料在分析化学中的应用已经成为现代分析化学发展的最重要的前沿领域之一。碳纳米管(Carbon nanotubes,CNTs)是优良的一维纳米材料,由于其独特的力学性能,电学性能和极高的纵横比,使CNTs在纳米电子器件、催化剂载体、电极材料、储氢材料、高效吸附剂等方面的应用广泛。纳米SnO_2是n型宽禁带半导体材料,具有优异的气敏特性和光电性能,作为一种新型功能材料应用于气敏和湿敏元件、电极材料、光学玻璃、催化剂、功能陶瓷等方面。
     本论文针对碳纳米管和纳米SnO_2的应用开展了两部分研究工作。
     一、采用氧化性酸对多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)进行了纯化与短切,在碳纳米管表面引入羧基,提高了碳纳米管的水溶性,并用扫描电镜(SEM)和透射电镜(TEM)对其进行表征。将制备的水溶性羧基化碳纳米管作为增敏剂,用方波溶出伏安法测定痕量镉,发现其增敏效果显著。随后讨论了吸附溶出的机理,对富集时间、富集电位、镉的浓度、HCl加入量的影响及部分离子干扰等进行试验,并对含镉水样进行测定。试验结果发现:Cd~(2+)在-0.65V左右出现灵敏溶出峰,峰电流在Cd~(2+)浓度为2.0×10~(-9)~1.0×10~(-8) mol/L时呈现良好的线性关系,检出限为1.0×10~(-10) mol/L,回收率为94%~103%。
     二、以离子液体和水为混合溶剂结合水热技术制备了尺寸可控的SnO_2纳米材料。采用X射线衍射(XRD)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、选区电子衍射(SAED)和X射线能谱分析仪(EDS)等现代表征手段对产物进行表征。
     本文考察了反应温度、反应时间和离子液体浓度等实验条件对纳米SnO_2粉体的晶体结构、粒度及分散性的影响,并对合成机理进行了初步的探讨。结果表明:在水热温度240℃、反应时间20h、离子液体的浓度为2.65mol/L时得到的粉体结晶性好、粉体颗粒大小在8-10nm左右、并具有良好的分散性。纳米级二氧化锡基体的量子尺寸效应和表面效应使得二氧化锡传感器气敏性能优化。将制备的SnO_2纳米材料制作成气敏传感器,可实现对环境中H_2、CO、NO_2、C_2H_2、H_2S、天然气等还原性气体的检测。
With the continuous development of science and technology, nano-science has been widely used in various fields and become a very popular research area. Especially in recent years, the application of nanomaterials in the analytical chemistry has become one of the most important frontier in the modern analytical chemistry. Carbon nanotubes (CNTs) are an excellent kind of one-dimensional nanomaterials. Because of their outstanding chemical, physical and mechanical properties, CNTs have been applied in many fields, such as emission electron sources, scanning probes, chemical sensors, field-effect transistors nano-electronic devices, and so on. Tin oxide (SnO_2) is an n-type, wide bandgap semiconductor. Because of its unique gas sensitivity and photoelectric properties, tin oxide has been widely used for various electrochemical and catalytic applications, such as gas-sensing and humidity sensor, electrode material, optical glass, catalysts, ceramics and so on.
     In this paper, we have mainly done two parts of research work with respect to the applications of carbon nanotubes and nanocrystal SnO_2.
     1. MWCNTs were treated with the oxidized acid to generate pure and unentangled MWCNTs with carboxylic groups on it, and the modified MWCNTs were characterized by scanning electron microscope(SEM) and transmission electron microscope (TEM). The resulting MWCNTs have excellent solubility in water and were used as a sensitizing agent which has significant effect on the square wave anodic stripping voltammetric measurement of trace cadmium. Possible adsorption and stripping mechanism were discussed. The electrochemical response was characterized with respect to accumulation time, cadmium concentration, supporting electrolyte, influence of hydrochloric acid added and possible interferences. The method was successfully applied to determine trace cadmium in water sample. The results show that a sensitive stripping peak potential of cadmium is about -0.65V, and the peak current is linear with the concentration of Cd~(2+) in the range of 2.0×10~(-9)-1.0×10~(-8) mol/L. The detection limit is 1.0×10~(-10) mol/L, and the recovery is 94 %-103 %.
     2. Here we report the preparation of size controllable SnO_2 nanomaterials using ionic liquid and distilled water as the component solvent by hydrothermal method. The phases, morphology, microstructure and composition of the products were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED) and energy-distersive X-ray spectroscopy (EDS) and so on.
     The influences of the hydrothermal temperature, ionic liquid's concentration and hydrothermal time on crystal structure, morphology and paricle size were discussed. The experimental results indicated that SnO_2 powder exhibits well crystallinity with size of 8-10nm and good dispersivity. The optimized conditions for the preparation of SnO_2 are at 220-240℃of the hydrothermal temperature, 2.65mol/L of the ionic liquid's concentration and 20 hours of the hydrothermal time. The quantum size effect and surface effect of nanostructures of SnO_2 can optimize the gas sensitivity of the sensor. The resulting SnO_2 nanomaterials can be used in the preparation of gas sensor for determining reductive gases in environment such as H_2, CO, NO_2, C_2H_2, H_2S and natural gas.
引文
[1]张立德,纳米材料[M].,化学工业出版社,2000.
    
    [2] Iijima S. Helical microtubles of graphite carbon[J]. Nature, 1991, 354(6348): 56-58.
    
    [3] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J].Science, 1996, 273: 483-487.
    
    [4] Thomas W E. Carbon Nanotubes. Phys Today[J]. 1996, 49 (6): 26-32.
    
    [5] Haufler R E, et al. Efficient production of C_(60) (buckminsterfullerene), C_(60)H_(36), and thesolvated buckide ion[J]. J. Phys. Chem. B, 1990, 94: 8634-8636.
    
    [6] Ebbesen T W, Ajayan P M. Large-scale sythesis of carbon nanotubes[J]. Nature, 1992, 358:220-222.
    
    [7] Yacaman M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubules with fullerenestructure[J]. Appl. Phys. Lett., 1993, 62(2): 202-204.
    
    [8] Dai H, Wong W, Lu Y, et al. Synthesis and characterization of carbide nanorods[J]. Nature,1995, 375(6534): 769-772.
    
    [9] Endo M, Takeuchi K, Kroto H, et al. The production and structure of pyrolyticcarbon nanotubes(PCNT) [J]. J. Phys. Chem. Solid., 1993, 54(12): 1841-1848.
    
    [10] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laservaporization[J]. Chem.Phys. Lett., 1995, 243(1-2): 49-54.
    
    [11] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes[J]. J. Phys.Chem. B, 1995, 99(27): 10694-10697.
    
    [12] Cho W S, Hamada E, Kondo Y, et al. Synthesis of carbon nanotubes from bulk polymer[J].Appl. Phys. Lett., 1996, 69(2): 278-283.
    
    [13] Sen R, Govindaraj A, Rao C N R. Carbon nanotubes by the metalocene route[J]. Chem.Phys. Lett., 1997, 267(3-4): 276-280.
    
    [14] Richter H, Hernadi K, Caudano R, et al. Formation of nanotubes in low pressurehydrocarbon flames[J]. Carbon, 1996, 34(3): 427-429.
    
    [15] Chowdhury K D, Howard J B, Vandersande J B. Fullerenic nanostructures in flames[J]. J.Mater. Res., 1996,11(2): 341-347.
    
    [16] Chernozatonskii L A , Kosakovskaja I J, Fedorov E A , et al. New carbon tube literderedfilm stucture of multilayer nanotubes[J]. Phys. Lett. A, 1995, 197(1): 40-43.
    
    [17] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphitemicrotubule growth[J]. Nature, 1992, 356: 776-778.
    
    [18]程筠,甘仲惟.碳纳米管研究综述[J].高等函授学报(自然科学版),2000,13(2):21-23.
    
    [19] Ivanov V, Nagy J B, Lambin P, et al. The study of carbon nanotubes produced by catalytic methode[J]. Chem. Phys. Lett., 1994, 223(4): 329-335.
    
    [20]徐幸梓等.纳米碳管性能的研究进展[J].材料导报.2001,15(11):45-47.
    
    [21]杨邦朝,陈金菊,冯哲圣.碳纳米管的物性及应用[J].电子元件与材料,2001,22(5):44-47.
    
    [22] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363: 603-605.
    
    [23]Wang S S,Joselevich E,Woolley A T. Covalently functionalized nanotubes as nanometresizedprobes in chemistry and biology[J]. Nature, 1998, 394: 52-55.
    
    [24]秦学,高学平,吴峰.碳纳米管的电化学贮氢性能研究[J].电化学,2000,6(4):388-392.
    
    [25]张旭志,焦奎,赵常志等.碳纳米管在电化学传感器中的应用进展[J].化学试剂,2006,28(12):717-723.
    
    [26]Kong J, Franklin N R, Zhou C W. Nanotube Molecular Wires as Chemical Sensors[J] . Science, 2000, 287: 622-625.
    
    [27]李博,廉永福等.单层碳纳米管的化学修饰[J].高等化学学报,2000,11:1633-1635.
    
    [28]DaiH, Hafner J H, Rinzler A G, Colbert D T, Smalley R E. Nanotubes as nanoprobes in scanning probe microscopy[J].Nature, 1996, 384: 147-150.
    
    [29]Ong K G, Zeng K, Grimes C A. A wireless, passive carbon nanotube-based gas sensor[J]. IEEE Sensors j., 2002, 2: 82-88.
    
    [30]王宗花,刘军,颜流水等.碳纳米管修饰电极的孔性界面对分离多巴胺和抗坏血酸的影响[J].分析化学,2002,30:1053-105.
    
    [31]姚彦丽,张岱,夏兴华.碳纳米管负载金属Pt催化剂的制备和机理研究[J].无机化学学报,2004,5:531-535.
    
    [32]张宇,张鸿斌,林国栋等.碳纳米管负载铑催化剂上丙烯氢甲酰化[J].物理化学学报,1997,13:1057-1060.
    
    [33]马强,周锋,唐亚平,李辰砂等.在碳纳米管上负载硫化镉的研究[J].无机材料学报,2004,9:985-990.
    
    [34]朱亚波,崔玉亭,王万录.碳纳米管应用的新拓展-红外探测与超导[J].材料导报,2002,16(9):49-51.
    
    [35] Kuhnlenz F, Bark S Z, Stafast H, et al. VUV absorption tail changes of fused silica during ArF laser irradiation[J]. J. Noncryst. Solids, 2000, 278 : 115-118.
    
    [36] Monticone S, Tufeu T, Kanaev A V. Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles[J]. J. Phys. Chem. B .1998,102:2854-2862.
    
    [37]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:105-300.
    
    [38] Ba J H, Polleux J, Antonietti M,et al. Non-aqueous Synthesis of Tin Oxide Nanocrystalsand Their Assemhly into Ordered Porous Mesostructures[J]. Adv. Mater, 2005, 17:2509-2512.
    
    [39] Dobrovolsky Y, Leonova L, Nadlmina S, et al. Low-temperature proton conductivity inhydrated and nonhydrated tin dioxide[J]. Solid State Ionics, 1999, 119: 275-279.
    
    [40] Song K C,Kang Y. Preparation of high surface area tin oxide powders homogeneousprecipitation method[J]. Materials Letters, 2000, 42: 283-289.
    
    [41]徐甲强,王国庆,赵玛等.硝酸氧化法氧化锡陶瓷材料的制备、掺杂与气敏性能[J].中国陶瓷,1999,35(1):10-14.
    
    [42] Chen D L, Gao L. Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process[J].Chemical Physics Letters, 2004(398): 201-206.
    
    [43]尉继英,朱月香,谢有畅.耐温高比表面氧化锡制备[J].物理化学学报,2001,7(7):577-581.
    
    [44]潘庆谊,董晓雯,张剑平等.溶胶-凝胶法制备纳米级SnO_2[J].无机材料学报,2001,??12(4):494-498.
    
    [45]董相廷,刘桂霞,张伟等.水热沉淀法合成SnO_2纳米晶[J].稀有金属材料与工程,2000,29(3):197-199.
    
    [46]菜元霸,梁玉仓.纳米材料的概述、制备及其结构表征[J].结构化学,2001,20(4):425-438.
    
    [47]潘庆谊,徐甲强,刘宏民等.微乳液法纳米SnO_2材料的合成、结构与气敏特性[J].无机材料学报,1999,14(1):83-88.
    
    [48]陆凡,陈诵英.超临界流体干燥法合成超微二氧化锡[J].应用化学,1994,1(5):68-70.
    
    [49]李汶霞,殷声.低温燃烧合成陶瓷微粉[J].硅酸盐学报,1999,27(1):71-77.
    
    [50]岳振星,周济,张洪国等.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J].硅酸盐学报,1999,27(4):466-470.
    
    [51] Leite E R, Weber I T, Longo E, et al. A new method to control particle size and particle size distribution of SnO_2 nanoparticles for gas sensor applications[J]. Adv. Mater., 2000, 12(13): 965-968.
    
    [52]毛蕾蕾,王宗花,邢琳琳等.羧基化碳纳米管在荧光酮光度法测定铅中的应用[J].高等学校化学学报,2006,27(5):830-833.
    
    [1] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(1): 56-58.
    
    [2]肖素芳,王宗花,罗国安.碳纳米管的功能化研究进展[J].分析化学,2005,2:261-266.
    
    [3]姜冉,狄晓威.碳纳米管修饰玻碳电极方波伏安阳极溶出法测定痕量铅[J].冶金分析,2007,27(3):25-28.
    
    [4] Zonghua Wang, Guoan Luo, Jianfang Chen, Sufang Xiao, Yiming Wang Carbon nanotubes as separation carrier in capillary electrophoresis[J]. Electrophoresis, 2003, 24: 4181-4188.
    
    [5]毛蕾蕾,王宗花,邢琳琳等.羧基化碳纳米管在荧光酮光度法测定铅中的应用[J].高等学校化学学报,2006,27(5):830-833.
    
    [6]吕志进,李建虎,黄欣.阳极溶出伏安法测定食品中铅、镉的含量[J].天津医科大学学报,2002,8(2):187-190.
    
    [7黄文胜,杨春海,张升辉.双硫腙修饰玻碳电极阳极溶出伏安法测定痕量镉和铅[J].分析化学,2002,30(11):1367-1370.
    
    [8]罗江,葛海霖,张文清等.溶出伏安法测定饲料级硫酸铜中铅和镉[J].华东理工大学学报,2005,31(4):532-534.
    
    [9]宋兴良,朱化雨,陈令新等.微分电位溶出伏安法同时测定甘草中痕量铅和镉[J].理化检验-化学分册,2005,41(4):261-263.
    
    [10]魏利滨,宋长友,罗胜铁.方波溶出伏安法同时测定食盐中的痕量铅、镉[J].食品科技,2006,2:91-93.
    [1] Antonietti M, Kuang D B, Smarsly B, et al. Ionic Liquids for the Convenient Synthesisof Functional Nanoparticles and Other Inorganic Nanostructures[J]. Angrew. Chem. Int.Ed., 2004, 43: 4988-4992.
    
    [2] Welton T. Room-Temperature Ionic Liquids Solvents for Synthesis and Catalysis[J]. Chem. Rev., 1999, 99: 2071-2084.
    
    [3] Huddleston J G , Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction [J]. Chem. Commun., 1998, 16: 1765-1766.
    
    [4] Endres F, Bukowski M, Hempelmann R, et al. Electrodeposition of Nanocrystalline Metals and Alloys from Ionic Liquids [J]. Angew. Chem. Int. Ed., 2003, 42: 3428-3430.
    
    [5] Kim K S, Demberelnyamba D, Huen Lee .Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids[J]. Langmuir ,2004, 20, 556-560; Scheeren C W, Machado G, Teixeira S R , et al.Synthesis and Characterization of Pt(0) Nanoparticles in Imidazolium Ionic Liquids[J] . J. Phys. Chem. B, 2006, 110: 13011-13020.
    
    [6] Fonseca G S, Machado G, Teixeira S R, et al. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids[J] . Journal of Colloid and Interface Science , 2006, 301: 193-204.
    
    [7] T. Nakashima, N. Kimizuka. Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids [J] J. Am. Chem. Soc. 2003,125: 6386-6387.
    
    [8] Liu Y, Li J, Wang M J, et al. Preparation and Properties of Nanostructure Anatase TiO2 Monoliths Using 1-Butyl-3-methylimidazolium Tetrafluoroborate Room-Temperature Ionic Liquids as Template Solvents[J] .Crystal Growth & Design, 2005, 5(4): 1643-1649.
    
    [9] Wang J, Cao J M, Fang B Q. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids[J]. Materials Letters. 2005, 59:1405-1408.
    
    [10] Biswas K, Rao C N R .Use of Ionic Liquids in the Synthesis of Nanocrystals and Nanorods of Semiconducting Metal Chalcogenides[J] . Chem. Eur. J. 2007, 13, 6123 - 6129.
    [11] Huddleston J G.,Visser A E,Reichert W M. Characerization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J] . Green Chem, 2001, 3:156-164.
    [12] Hagiwara R, Ito Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions[J] .J.Fluorine chem.,2000, 105: 221-227.
    
    
    [1] Veglieri G S. Classical and novel techniques for the preparation of SnO_2 thin-film gassensors [J].Sens. Actuators B, 1992, 6: 239-247.
    
    [2] Dieguez A,Rodriguez A R,Morante J R. Morphological analysis of nanocrystalline SnO_2 forgas sensor applications[J].Sens. Actuators B, 1996 ,31: 1-8.
    
    [3] He Y S,Campbell J C,Murphy R C. Electrical and optical characterization of Sb :SnO_2[J]. J. Mater. Res., 1993, 8(12): 3131-3134.
    
    [4]曹健,孙景志,洪剑等.TiO_2纳米带表面光伏特性的研究[J].高等学校化学学报,2003,24(1 2):2288-2289.
    
    [5] Bernardi S. Slider LPE growth of MCT using in situ Te-solution preparation[J]. J. Cryst. Growth, 1988, 87: 365-371.
    
    [6]张建荣,高濂.水热法合成纳米SnO_2粉体[J].无机材料学报,2004,19(5):1177-1180.
    
    [7]张建荣,高濂.纳米晶氧化锡的水热合成与表征[J].化学学报,2003,61(12):1965-1968.
    
    [8]朱归胜,徐华蕊,廖春图.单分散纳米氧化铟锡粉末的水热合成[J].无机材料学报,2005,20(2):479-483.
    
    [9]石娟,吴世华.王淑荣.从不同氧化态锡盐水热合成法制备纳米SnO_2粉体[J].无机化学学报,2004,20(2):199-201.
    
    [10] Fujihara S, Maeda T, Ohgi H,et al. Hydrothermal Routes to Prepare Nanocrystalline Mesoporous SnO_2 Having High Thermal Stability [J]. Langmuir, 2004, 20 (15): 6476 -6481.
    
    [11] Xu G, Zhang Y W, Sun X,et al. Synthesis, Structure, Texture and CO Sensing Behavior of Nanocrystalline Tin Oxide Doped with Scandia [J]. J. Phys. Chem. B , 2005, 109 (8) : 3269-3278.
    
    [12]张元广,陈友存,周宏等.SnO_2纳米微晶的合成及气敏性分析[J].合成化学,2002,10:438-440.
    
    [13] Dong W S, Li M Y, Liu C L ,et al. Novel ionic liquid assisted synthesis of SnO_2 microspheres??[J]. Journal of Colloid and Interface Science , 2008, 319: 115-122.
    
    [14]王俊勃,李英民,杨敏鸽等.SnO_2共混Fe_2O_3纳米氧化物的制备及其组织结构研究[J].功能材料,2005,36:103-106.
    
    [15] Shannon R D. Revised ejective ionic radii and systematic studies of interatomic distance inhalides and chalcogenides[J]. Acta Crystallogr, 1976, A32: 751-767.
    
    [16] Thangaraju B, Kaliannan P. Spray pyrolytic deposition and characterization of SnS andSnS_2 thin films[J].J. Phys. D: Appl. Phys., 2000, 33: 1054-1059.
    
    [17] Tanusevski A. Optical and photoelectric properties of SnS thin films prepared by chemicalbath deposition [J]. Semicond Sci. Technol., 2003, 18: 501-505.