水热法及微乳液法制备无机发光材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机发光材料广泛的应用于照明设备、彩色电视荧光屏和大屏幕彩色显示板、电脑显示器、X射线增感屏、X射线断层扫描医疗诊断技术和荧光免疫监测分析技术等诸多方面。目前实际应用与研究最为广泛的发光材料主要有硫化物、钼酸盐。在材料的制备研究中,对粉体的形貌和尺寸的可控合成一直是研究的热点。因此,寻找简单温和、易操作的方法,实现对各种无机发光材料的形貌、尺寸的可控合成是本论文的主要创新点,基于这个创新点,本文主要介绍了水热法和微乳液法两种方法,进行了如下几个方面的主要研究:
     (一)以硝酸铋(Bi(NO_3)_3.5H_2O)和硫脲(NH_4SCN)为原料,采用LiOH作为矿化剂,低温水热合成了具有纤维状的硫化铋微晶材料,并利用XRD、SEM、PL等分析技术对粉体矿相组成、微观形貌和发光性能进行了表征。详细研究了反应时间、反应温度和矿化剂的引入对硫化铋微晶形成的影响;研究表明,不添加任何矿化剂直接水热反应只能得到不规则的团聚块体硫化铋微晶材料;而以LiOH作为矿化剂水热反应,比较容易得到纤维状的硫化铋微晶。在一定的范围内提高水热反应温度有利于硫化铋微晶的定向生长。另外,荧光光谱分析表明硫化铋粉体的发光性能与其结晶形貌有关。
     (二)以硝酸锌(Zn(NO_3)_2·6H_2O)和硫化钠(Na_S·9H_2O)为原料,采用微乳液法制备前驱体,在160℃低温水热合成了5–10nm的硫化锌纳米粉体并利用XRD、SEM、PL等分析技术对粉体矿相组成、微观形貌和发光性能进行了表征。研究结果表明,提高水热反应温度或延长水热反应时间均有利于硫化锌的结晶发育,提高水热反应温度的影响效果更为明显。硫化锌纳米粉体的发光性能明显优于微米粉体,并且发光中心发生了明显的蓝移。
     (三)以氯化锶(SrCl_2·6 H_2O)和钼酸钠(Na_2MoO_4·2H_2O)为原料,选定环己烷为油相, OP(聚氧乙烯壬基苯酚醚)为表面活性剂,正戊醇为助表面活性剂,采用反相微乳液法在室温下成功地制备了不同结晶形貌的SrMoO_4粉体,并利用XRD、TEM、SEM、PL等分析测试技术对粉体进行了表征。研究结果表明,在相同的微乳体系下静置不同的反应时间可以得到不同形貌的粉体颗粒。荧光光谱分析表明,钼酸锶粉体的发光性能与其形貌和长径比有关。
Inorganic luminescent materials have attracted much attention due to their extensive application in many different technological areas, including biological labeling and diagnostics, light emitting diodes, photoconductive devices, optical waveguide, and lasers. At present, sulfide semiconductor and metal molybdate materials have received much attention owing to their wide application potential in many fields. Study on the size- and morphology-control synthesis is still a challenge. The development and synthesis of inorganic luminescent materials were introduced in the thesis, mainly discussing the synthesis methods such as Hydrothermal and microemulsion methods.
     (一)Uniform Bi2S3 fibers were synthesized via a template-free hydrothermal route using bismuth nitrate (Bi(NO3)3·5H2O), thiourea (CS(NH2)2) and lithium hydroxide (LiOH) as starting materials. The resultant powders were characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescent spectra techniques (PL), respectively. It was found that Bi_2S_3 fibers could be easily synthesized in the presence of LiOH, whereas only irregular and aggregated particles were obtained without adding LiOH; and that elevating hydrothermal reaction temperature in a certain range would promote the preferred orientation growth of Bi2S3 crystallites. The PL spectra results evidenced that the optical properties of Bi2S3 crystallites were obviously influenced by their size and morphology.
     (二)Uniform and spherical ZnS nanoparticles with a diameter of 5–10 nm were successfully synthesized at 160℃via a facile hydrothermal process, where ZnS precursors were prepared by a microemulsion technique. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescent spectra techniques (PL), respectively. The results showed that the hydrothermal temperature exerted a more important effect than the holding time on the crystallization of ZnS crystallites. The as-prepared ZnS nanoparticles exhibited higher PL intensity than that of the normal ones of micrometer scale besides an obvious blue shift.
     (三)SrMoO_4 crystallites with varying morphology have been prepared by the chemical reaction of Strontium chloride and Sodium molybdate in a reverse microemulsion system consisting of water, OP (P-octyl polyethylene glycol phenylether, non-ionic surfactant), 1-pentanol (co-surfactant) and cyclohexane (oil). The resultant powders were characterized in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and photoluminescent spectra techniques (PL), respectively. It was found that SrMoO_4 crystallites with different morphologies could be synthesized by the microemulsion process with different aging times. The PL spectra results showed that the spindle-shape SrMoO4 crystallites with a higher aspect ratio resulted in better photoluminescence property.
引文
[1]孙家跃,杜海燕,胡文祥,等.固体发光材料,化学工程师,2003, 18: 37~39.
    [2]于立新,曹林,张东丽.天然矿物发光性能研究现状.世界地质, 2000, 19: 342~345.
    [3]高晓明,邱克辉,赵改青,傅茂媛.光致发光材料的研究与进展.科技进步与技术, 2003: 276~277.
    [4]葛葆桂.电致发光原理及应用.材料导报,1985, 20: 20~23.
    [5] J.M.P.J.Verstegen, D.Radielovic, L.E.Vrenken.New generation of deluxe fluorescent lamps combining an efficacy of 80lumens/W or more with a color-rendering index of approximately. J. Electrochen. Soc. 1974, 121:1627~1631.
    [6] J.M.P.J. Verstegen, A.L.N.Stevels. Relation between crystal structure and luminescence inβ-alumian and magnetoplumbite phases. J.Lumin. 1974, 9: 406~414.
    [7] R.N.bhargava, D.Gallagher. Optical properties of manganese-doped nanocryatals of ZnS. Phys.Rev.Lett, 1994, 72: 416~419.
    [8]张密林,安丽娟,等.纳米发光材料的研究进展.化学工程师, 2004, 1: 30~32.
    [9]张立德,牟季美.纳米材料和纳米结构.化学研究与应用, 2002, 2: 24~27.
    [10]杨剑,滕凤恩.纳米材料综述.材料导报, 1997, 11: 6~8
    [11]李民乾.纳米材料的特性.物理学报,1992,21: 65~66.
    [12]严东升,冯端.纳米材料综述.材料新星, 1998, 8:32~34.
    [13] A.J.legget, S.Chakravarty, et al. Rev.Mod. Phys., 1987,59: 1~3.
    [14]张慰萍,尹民,稀土掺杂的纳米发光材料的制备和发光.材料导报, 2000, 21: 314~319.
    [15] B.M.Tissue. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater., 1998, 10: 2837~2840.
    [16]于江波,袁曦明,陈敬中.纳米发光材料的研究现状及发展.材料导报, 2001, 15: 30~32.
    [17]周永慧,林君,张洪杰.纳米发光材料研究的若干进展.化学研究与应用, 2001, 13:117~122.
    [18]刘维平,邱定蕃,卢惠民.纳米材料制备方法及应用领域.化工矿物与加工, 2003, 12:1~5.
    [19] Tan Y, Dai X, Li Y, Zhu D, Preparation of gold, Platinum, palladium and silver nanoparticlesby the reduction of their salts with a weak reductant-potassium bitartrate. J. Mater. Chem., 2003, 13: 1069~1075.
    [20] P.D.Cozzoli, M.L.Curri, A.Agostiano, G.Leo, M.Lomascolo. ZnO Nanocrystals by a Non-hydrolytic Route: Synthesis and Characterization. J.Phys.Chem.B., 2003, 107: 4756~4762.
    [21]丁子上,翁文剑,溶胶-凝胶技术制备材料的发展.硅酸盐学报,1993, 5: 443~445. [22 ] Lu Y, Yin Y, Xia Y, Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano. Lett., 2002, 2: 183~186.
    [23] Liu C, .Zhou B, Zhang Z J. Sol-Gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. J. Am. Chem. Soc., 2001, 123: 4344~4345.
    [24]施尔畏,夏长泰,王步国,等.水热法的应用及发展.无机材料学报, 1996, 2: 67~71.
    [25] Qian Y T, Su Y, Xie Y, Hydrothermal preparation and characterization of nanoccrystalline powder of sphalerite, Mater.Res.Bull., 1995, 30: 601~605.
    [26] A.Dias, V.T.L.Buono, J.M.C.Vilela, Particle size and morphology of Hydrothermally processed MnZn ferrites observed by atomic force microscope, J.Mater.Sci., 1997, 32: 4715~4718.
    [27] Peng Q, Dong Y, Deng Z, Sun X. Low-Temperature Elemental-Direct-Reaction Route toⅡ-ⅥSemiconductor Nanocrystalline ZnSe and CdSe. Inorg.Chem., 2001, 40: 3840~3841.
    [28] Chen X, Fan R. Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides. Chem. Mater., 2001, 13: 802~805.
    [29] Yang J, Cheng G H, Zeng J H, Yu S H, Liu X M, Qian Y T. Shape Control and Characterization of Transition Metal Diselenides MSe2 (M=Ni,Co,Fe) Prepared by a Solvothermal-Reduction Process. Chem.Mater., 2001, 13: 848~853.
    [30]李雪梅.基于萃取化学和溶剂热技术的纳米材料的制备.山东大学博士学位论文, 2003, 11
    [31] Janos.H. Fendler. Atomoc and Molecular Clusters in Membrane Mimetic Chemistry. Chem. Rev., 1987, 87: 877~899.
    [32]麦振洪,赵永男.微乳液技术制备纳米材料.物理学报, 2001, 30: 106~110.
    [33]石全珍.纳米微粒的微乳液制备方法,信阳师范学院学报(自然科学版),2000,13,474~478.
    [34] Tawatchai Charinpanitkul, Amornsak Chanagul. Science and Technology of Advanced Materials, 2005, 6: 266~268.
    [35] Zhou H C,Sheng X,Qing P, Li Y D, Chem. Res. Chinese., 2006, 22, 1: 11~13.
    [36] Arnim H. Small-particle research physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989, 89: 1861~1873.
    [37] Schuppler S , Friendman S. L. , Marcus M. A , Adler D. L. , Xie Y. H. , Ross F. M., Harris T. D., Brown W. L., Chabla Y. J., Brus L. E., Citrin P. H. Dimensions of luminescent oxidized and porous silicon structures. Phys. Rev. Lett ., 1994, 72, 16: 2648~2651.
    [38] Tolbert S. H. , Alivisatos A P. Ann. Rev. Phys. Chem. , 1995 , 46 : 595~625.
    [39]孙宝全,等.半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用.分析化学评述与进展, 2002, 9: 1130~1136.
    [40] Heath J. R ., Shiang J. Use of tris(trimethylsilyl)arsine to prepare gallium arsenide and indium arsenide. J. Chem. Soc. Rev., 1998, 27, 1: 65~71.
    [41] Peng X .G., Schlamp M. C., Kadavanich A. V. Alivisatos A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc., 1997, 119(30): 7019~7029.
    [42] Dabbousi B. O., Rodriguez Viejo J , Mikulec F. V., Heine J. R., Mattoussi H, Ober R, Jensen K. F., Bawendi M. G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J . Phys.Chem. B, 1997, 101(46): 9463~9475.
    [43] Alivisatos A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem., 1996, 100 (31): 13226~13239.
    [44] Cao Y. W, Banin U. Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores. J. Am. Chem. Soc., 2000, 122 (40): 9692~9702.
    [45] Peng X, Manna L , Yang W, Wickham J , Scher E , Kadavanich A , Alivisatos A. P. Nature , 2000, 404 (6773): 59~61.
    [46] Manna L, Scher E C, Alivisatos A P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc., 2000, 122(51): 12700~12706.
    [47] Wang Y, N. Herron. Nanometer-sized semiconductor clusters: materials synthesis, quantumsize effects, and photophysical properties. J. Phys. Chem, 1991, 95: 525-532.
    [48] Wang Y, et al. Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electronhole pairs. J. Chem. Phys., 1990, 92(11): 6927~6939.
    [18] Wang Y. Local field effect in small semiconductor clusters and particles. J. Phys.Chem., 1991, 95: 1119-1124.
    [49] Arnim H. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989 , 89 :1861-1873.
    [50] Schuppler S , Friendman S. L. , Marcus M. A , Adler D. L. , Xie Y. H. , Ross F. M., Harris T. D., Brown W. L., Chabla Y. J., Brus L. E., Citrin P. H. Dimensions of luminescent oxidized and porous silicon structures. Phys. Rev. Lett . 1994 , 72 (16) : 2648-2651.
    [51] Tolbert S. H. Alivisatos A P. Ann. Rev. Phys. Chem. , 1995 , 46 : 595~625
    [52] Heath J. R, Shiang J. Use of tris(trimethylsilyl)arsine to prepare gallium arsenide and indium arsenide. J . Chem. Soc. Rev. , 1998 , 27 (1) : 65~71
    [53] G. Ghosh, B.P. Varma, Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films. 1979, 60: 61~65.
    [54] D. Arivuoli, F.D. Gnanam, P. Ramasamy. Growth and microhardness studies of chalcogneides of arsenic, antimony and bismuth, J. Mater. Sci. Lett., 1988, 7: 711~713.
    [55] L. Huang, P.K. Nair, M.T.S. Nair, R.A. Zingaro, E.A. Meyers. Chemical deposition of Bi2S3 thin films on glass substrates pretreated with organosilanes. Thin Solid Films, 1995, 268: 49~56.
    [56] M.E. Rincón, P.K. Nair. Kinetics of electrical conductivity enhancement in bismuth sulphide thin films. Part I: Argon and hydrogen annealing. J. Phys. Chem. Solids., 1996, 57: 1937~1945.
    [57] M.E. Rincón, R. Suárez, P.K. Nair. Kinetics of electrical conductivity enhancement in bismuth sulphide thin films. Part II: Optoelectronic properties (film) and phase transformations (powder) under oxygen annealing, J. Phys. Chem. Solids., 1996, 57: 1947~1955.
    [58] Fang X S, Ye C H, Peng X S, Wang Y H, Wu Y C, Zhang L D. Large-scale synthesis of ZnS nanosheets by the evaporation of ZnSnanopowders. Journal of Crystal Growth, 2004, 263: 263~268.
    [59] Zhang Z X, Wang J X, Yuan H J, Gao Y, Liu D F, Song L. Low-Temperature Growth and Photoluminescence Property of ZnS Nanoribbons. J.Phys.Chen.B, 2005, 109: 18352~18355.
    [60] Cheng C W, Xu G Y, Zhang H Q, Cao J M, Jiao P P, Wang X X. Low-temperature synthesis and optical properties of wurtzite ZnS nanowires. Materials Letters 2006, 60: 3561~3564.
    [61] Chen D L, Gao L. Microemulsion-mediated synthesis of cadmium zinc sulfide nanocrystals with composition-modulated optical properties. Solid State Communications, 2005, 133: 145~150.
    [62] Yang H M, Huang C H, Su X H, Tang A D. Microwave-assisted synthesisand luminescent properties of pure and doped ZnS nanoparticles. Journal of Alloys and Compounds, 2005, 402 : 274~277.
    [63]崔正刚,殷福珊.微乳化技术及应用.化工应用, 1999,10:32~34.
    [64]施利毅,华彬,张剑平,等.微乳液的结构及其在制备超细颗粒中的应用.功能材料, 1998, 2:136~138.
    [65] Subhendu K. Panda, Anuja Datta, Subhadra Chaudhuri. Nearly monodispersed ZnS nanospheres: Synthesis and optical properties. Chemical Physics Letters, 2007, 440: 235~238.
    [66] M. Habib Ullah, Il Kim, Chang-Sik Ha. pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence. Materials Letters, 2007, 61: 4267~4271.
    [67] Wang L C, Chen L Y, Luo T, Qian Y T. A hydrothermal method to prepare the spherical ZnS and flower-like CdS microcrystallites. Materials Letters, 2006, 60: 3627~3630.
    [68] He Y L, Wang J K. A novel simple method to prepare ZnS whiskers. Mater. Lett., 2007, 10: 32~36.
    [69] Liu X Z, Cui J H, Zhang L P, Yu W C, Guo F, Qian Y T. A solvothermal route to semiconductor ZnS micrometer hollow spheres with strong photoluminescence properties. Materials Letters, 2006,60: 2465~2469.
    [70] Motlan, Zhu G H, K. Drozdowicz-Tomsia, K. McBean, M.R. Phillips, E.M. Goldys. Annealing of ZnS nanocrystals grown by colloidal synthesis. Optical Materials, 2007, 29: 1579~1583.
    [71] Soumitra Kar, Subhadra Chaudhuri. Controlled Synthesis and Photoluminescence Properties of ZnS Nanowires and Nanoribbons. J. Phys. Chem. B, 2005, 109: 3298~3302.
    [72] Daniel F. Moore, Yong Ding, Zhong Lin Wang. Crystal Orientation-Ordered ZnS Nanowire Bundles. Materials Letters, 2005, 10: 322~325.
    [73] AninditaChatterjee, Amiya Priyam, Subhash C, Bhattacharya, Abhijit Saha. Differential growth and photoluminescence of ZnS nanocrystals with variation of surfactant molecules. Colloidsand Surfaces A: Physicochem. Eng.Aspects, 2007, 297: 258~266.
    [74] Shao H F, Qian X F, Huang B C. Fabrication of single-crystal ZnO nanorods and ZnS nanotubes through a simple ultrasonic chemical solution method. Materials Letters, 2007, 61: 3639~3643.
    [75] Ma Y R, Qi L M, Ma J M, Cheng H M. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions. Langmuir 2003, 19: 4040~4042.
    [76]朱孟钦,李春忠,胡黎明.细颗粒硫化锌的制备及其研究进展.化工进展, 1996, 6: 31~33.
    [77] Nielsen J W, Foster F G. Unusual etch pits in quartz crystals. Am Mineral., 1960, 45: 612~614.
    [78] Yi G S, Sun B Q, Yang F Z, Chen D P, Zhou Y X, Cheng J. Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: ytterbium and erbium codoped lanthanum molybdate. Chem.Mater., 2002, 14: 2910~2914.
    [79] Baryshevsky V.G., Fyodorov A.A, Korzhiketal M.V., NaBi(WO4)2 scintillators: optical spetroscopy and radiation hardness Heavy scintillators for Scientific and Industrial Applicstions, International workhop, 1992, 11: 375~379.
    [80] Minawa M., Itakura K., Moriyamatel S, Measurement of the property of cooled lead molybdate as a scintillator. Nucl Intrum Methods, 1992, 5: 500~503.
    [81] B.N.Granguly and M.Nicol,Effect of hydrostatic pressure on the vibrational properties and the structure of SrWO4 and PbWO4, Phys.Stat.Sol.(b), 1977, 79: 617~622.
    [82] A.W.Sleight and B.L.Chamberland, Transition metal molybdates of the type AMoO4, Inorganic Chemistry, 1968,7: 1672~1675.
    [83] Malcolm Nicol and Jean F.Durana, vibration Raman spectra of CaMoO4 and CaWO4 at high pressures, The Journal of Chemical Physics, 1971, 54: 1436~1439.
    [84] S.Desgreners,S.Jandl and C.Carlone,Temperature dependence of Raman active phonns in the CaWO4, SrWO4 and BaWO4. J.Phys.Chem.Solids, 1984, 45: 1105~1109.
    [85] C.D.Wagner, W.M.Riggs,L.E.Davis and G.E.Muilenberg,A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy (Pubished by Perkin-Elemer Corporation and Physical Electroncs Divison,6509 Flying Cloud Drive Eden Prairie, Minneota 553447,USA), 1979,5: 42~43.
    [86] C.E.Tyner and H.G.Drickamer,Studies of the luminescence effciency of tungstate and molybdate phosphors as a function of temperature and high pressure, The Journal of Chemical Physics, 1977, 67: 4203~4115.
    [87] J.A.Groenink,C.Hakfoot and G.Blasse, The luminescence of calcium molybdate, Phys.Stat.Sol, 1977, 54: 329~336.
    [88] R.Grasser,E.Pitt,A.Scharmann and G.Zimmerer,Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25eV region, Phys.Stat.Sol.(b),69,359~367(1795).
    [89] G,Blasse and W.J.Schipper. Low-temerature photoluminescence of strontium and barium tungstate, Phys.Stat.Sol.(a),25,163~165(1974).
    [90] G.J. Zhou, M.K. Lu¨, Z.L. Xiua, Polymer micelle-assisted fabrication of hollow BaWO4 nanospheres, J. Cryst. Growth, 2005, 276: 116~120.
    [91] J.H. Ryu, J.-W. Yoon, C.S. Lim, K.B. Shim, Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation, Mater. Res. Bull., 2005, 40: 1468~1476.
    [92] A. Kaddouria, E. Tempestib, C. Mazzocchia, Comparative study of bnickel molybdate phase obtained by conventional precipitation and the sol–gel method, Mater. Res. Bull., 2004, 39: 695~706.
    [93] Yuanming Zhang, Fada Yang, Synthesis of crystalline SrMoO4 nanowires from polyoxometalates, Solid State Commun., 2005, 133: 759~763.
    [94] Grasser R , Pitt E , Scharmann A , et al. Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25 eV Region[J ] . Phys Status Solid ,1975, 69(B): 359~368.
    [95] Johnson L F , Boyd GD , Nassau K, et al. Continous operation of a solid2state optical maser[J ] . Phys Rev ,1962, 126(4): 1406~1409.
    [96] Porto, S. P. S.; Scott, J. F. Phys. ReV. 1967, 157~716.
    [97] Arturo, M., Quintela, L., and Rivas, J. Chemical Reactions in Microemulsions: A Powerful Method to Obtain Ultrafine Particles. J. Colloid Interface Sci. 1993, 158: 446~451.
    [98] A Simple Aqueous Mineralization Process to Synthesize Tetragonal Molybdate Microcrystallites Crystal growth and design 2006 vol.6 No.1 247~252.
    [1] G. Ghosh, B.P. Varma. Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films, 1979, 60: 61~65.
    [2] D. Arivuoli, F.D. Gnanam, P. Ramasamy. Growth and microhardness studies of chalcogneides of arsenic, antimony and bismuth. J. Mater. Sci. Lett., 1988, 7: 711~713.
    [3] L. Huang, P.K. Nair, M.T.S. Nair, R.A. Zingaro, E.A. Meyers. Chemical deposition of Bi2S3 thin films on glass substrates pretreated with organosilanes. Thin Solid Films, 1995, 268: 49~56.
    [4] M.E. Rincón, P.K. Nair. Kinetics of electrical conductivity enhancement in bismuth sulphide thin films. Part I: Argon and hydrogen annealing. J. Phys. Chem. Solids., 1996, 57: 1937~1945.
    [5] M.E. Rincón, R. Suárez, P.K. Nair, Kinetics of electrical conductivity enhancement in bismuth sulphide thin films. Part II: Optoelectronic properties (film) and phase transformations (powder) under oxygen annealing, J. Phys. Chem. Solids. 1996, 57: 1947~1955.
    [6] J.D. Klein, R.D. Herrick, D. Palmer, M.J. Sailor, C.J. Brumlik, C.R. Martin, Electrochemical fabrication of cadmium chalcogenide microdiode arrays, Chem. Mater., 1993, 5: 902~904.
    [7] J. Black, E. M. Conwell, L. Seigle, and C. W. Spencer,“Electrical and optical properties of some M2V-B N3VI-B semiconductors,”J. Phys. Chem. Solids., 1957, 2:240~51.
    [8] P. Boudjouk, M. P. Remington, D. G. Grier. Tris(benzylthiolato) bismuth.Efficient Precursor to Phase-Pure Polycrystalline Bi2S3. Inorg. Chem., 1998, 37: 3538~3541.
    [9] M.E. Rincón, P.K. Nair. Kinetics of electrical conductivity enhancement in bismuth sulphide thin films. Part I: Argon and hydrogen annealing. J. Phys. Chem. Solids., 1996, 57: 1937~1945.
    [10] G. Fasol. Room-Temperature blue Gallium Nitride Laser Diode. Science, 1996, 272: 1751~52.
    [11] A. Stafford, D. Baeriswyl, J. Bürki. Jellium Model of Metallic Nanocohesion. Phys. Rev. Lett., 1997, 79: 2863~66.
    [12] Duan X F, Huang Y, Cui Y, Wang J F, C M.Lieber. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66~69.
    [13] Cui Y, Duan X F, Hu J, C.M. Lieber. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B, 2000, 104: 5213~5216.
    [14] Huang M H, Mao S, H. Feick, Yan H Q, Wu Y Y, H. Kind, E. Weber, R. Russo, Yang P D. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897~1899.
    [15] Duan X F, Huang Y, R. Agarwal, C.M. Lieber. Single-nanowire electrically driven lasers. Nature, 2003, 421: 241~245.
    [16] B.B. Nayak, H.N. Acharya, and G.B. Mitra. Structural characterization of Bi2?xSbxS3 films prepared by the dip-dry method. Thin Solid Films, 1983, 105: 17~24 .
    [17] Yu S, Qian Y, Shu L, Xie Y, Yang L, Wang C. Solvent thermal synthesis and characterization of ultrafine powder of bismuth sulfide. Mater.Lett., 1998, 35: 116~119.
    [18] Liu Z, Peng S, Xie Q, Hu Z, Yang Y, Zhang S, Qian Y. Large-Scale Synthesis of Ultralong Bi2S3 Nanoribbons via a Solvothermal Process. Adv. Mater., 2003, 11: 936~940.
    [19] Shao M W, Mo M S, Cui Y, Chen G, Qian Y.T, The effect of agitation states on hydrothermal synthesis of Bi2S3 nanorods. J. Cryst. Growth, 2001, 233: 799~802 .
    [20] Li Q, Shao M W, Wu J. Synthesis of nano-fibrillar bismuth sulfide by a surfactant-assisted approach. Inorg. Chem. Commun., 2002, 5: 933~936 .
    [21] Ye C H, Meng G W, Jiang Z, Wang Y. H, Wang G. Z, Zhang L. D. Rational growth of Bi2S3 nanotubes from quasi-2-dimensional structures. J. Am. Chem. Soc. 2002, 124:15180~151181.
    [22] Liao X H, Wang H, Zhu J J, Chen H Y. Preparation of Bi2S3 nanorods by microwave irradiation. Mater. Res. Bull., 2001, 36: 2339~2346.
    [1] Wang L C, Chen L Y, Luo T, Qian Y T. A hydrothermal method to prepare the spherical ZnS and flower-like CdS microcrystallites. Materials Letters, 2006, 60: 3627~3630.
    [2] He Y L, Wang J K. A novel simple method to prepare ZnS whiskers. Mater. Lett., 2007, 10: 32~36.
    [3] Liu X Z, Cui J H, Zhang L P, Yu W C, Guo F, Qian Y T. A solvothermal route to semiconductor ZnS micrometer hollow spheres with strong photoluminescence properties. Materials Letters, 2006,60: 2465~2469.
    [4] Motlan, Zhu G H, K. Drozdowicz-Tomsia, K. McBean, M.R. Phillips, E.M. Goldys. Annealing of ZnS nanocrystals grown by colloidal synthesis. Optical Materials, 2007, 29: 1579~1583.
    [5] Soumitra Kar, Subhadra Chaudhuri. Controlled Synthesis and Photoluminescence Properties of ZnS Nanowires and Nanoribbons. J. Phys. Chem. B, 2005, 109: 3298~3302.
    [6] Daniel F. Moore, Yong Ding, Zhong Lin Wang. Crystal Orientation-Ordered ZnS Nanowire Bundles. Materials Letters, 2005, 10: 322~325.
    [7] AninditaChatterjee, Amiya Priyam, Subhash C, Bhattacharya, Abhijit Saha. Differential growth and photoluminescence of ZnS nanocrystals with variation of surfactant molecules. Colloidsand Surfaces A: Physicochem. Eng.Aspects, 2007, 297: 258~266.
    [8] Shao H F, Qian X F, Huang B C. Fabrication of single-crystal ZnO nanorods and ZnS nanotubes through a simple ultrasonic chemical solution method. Materials Letters, 2007, 61: 3639~3643.
    [9] Ma Y R, Qi L M, Ma J M, Cheng H M. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions. Langmuir 2003, 19: 4040~4042.
    [10]朱孟钦,李春忠,胡黎明.细颗粒硫化锌的制备及其研究进展.化工进展, 1996, 6: 31~33.
    [11]陈宗高,李冬梅,桑文斌,等.高分子凝胶蓝色发光ZnS微晶的制备.人工晶体学报, 2001, 30: 348~350.
    [12] Ye X Y, Fang Y, Hu Y S, Xia T, Zhuang W D, Long Z. Formation of cubic zinc sulfide nanocrystals in paraffin liquid. Materials Letters, 2007, 61: 5026~5028.
    [13] Xu J, Li Y D, Formationofzinc sulfidenanorodsandnanoparticles in ternary W/O microemulsions. Journal of Colloid and Interface Science, 2003, 259: 275~281.
    [14] Shin-ichiroYanagiya, Yuji Iseki, TakamasaKaito, Atsushi Mori. Growthof ZnS nano-crystallites in geland their characterization. Materials Chemistry and Physics, 2007, 105: 250~252.
    [15] Hu Z H, Li L Y, Zhou X D, Fu X, Gu G H. Solvothermal synthesis of hollow ZnS spheres. Journal of Colloid and Interface Science, 2006, 294: 328~333.
    [16] Jiang C L, Zhang W Q, Zou G F, Yu W C, Qian Y T. Hydrothermal synthesis and characterization of ZnS microspheres and hollow nanospheres. Materials Chemistry and Physics, 2007: 103, 24~27.
    [17] Wei F, Li G C, Zhang Z K. Hydrothermal synthesis of spindle-like ZnS hollow nanostructures. Materials Research Bulletin, 2005,40: 1402~1407.
    [18] Fang X S, Ye C H, Peng X S, Wang Y H, Wu Y C, Zhang L D. Large-scale synthesis of ZnS nanosheets by the evaporation of ZnSnanopowders. Journal of Crystal Growth, 2004, 263: 263~268.
    [19] Zhang Z X, Wang J X, Yuan H J, Gao Y, Liu D F, Song L. Low-Temperature Growth and Photoluminescence Property of ZnS Nanoribbons. J.Phys.Chen.B, 2005, 109: 18352~18355.
    [20] Cheng C W, Xu G Y, Zhang H Q, Cao J M, Jiao P P, Wang X X. Low-temperature synthesis and optical properties of wurtzite ZnS nanowires. Materials Letters 2006, 60: 3561~3564.
    [21] Chen D L, Gao L. Microemulsion-mediated synthesis of cadmium zinc sulfide nanocrystals with composition-modulated optical properties. Solid State Communications, 2005, 133: 145~150.
    [22] Yang H M, Huang C H, Su X H, Tang A D. Microwave-assisted synthesisand luminescent properties of pure and doped ZnS nanoparticles. Journal of Alloys and Compounds, 2005, 402 : 274~277.
    [23]崔正刚,殷福珊.微乳化技术及应用.化工应用, 1999,10:32~34.
    [24]施利毅,华彬,张剑平,等.微乳液的结构及其在制备超细颗粒中的应用.功能材料,1998, 2:136~138.
    [25] Subhendu K. Panda, Anuja Datta, Subhadra Chaudhuri. Nearly monodispersed ZnS nanospheres: Synthesis and optical properties. Chemical Physics Letters, 2007, 440:235~238.
    [26] M. Habib Ullah, Il Kim, Chang-Sik Ha. pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence. Materials Letters, 2007, 61: 4267~4271.
    [1] Yi G S, Sun B Q, Yang F Z, Chen D P, Zhou Y X, Cheng J. Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: ytterbium and erbium codoped lanthanum molybdate. Chem.Mater., 2002, 14: 2910~2914.
    [2] Yang P, Yao G. Q, Lin J H, Photoluminescence and combustion synthesis of CaMoO4 doped with Pb2+. Inorg. Chem. Commun., 2004, 7: 389~391.
    [3] Liu B, Yu S H, Li L J, Zhang F, Zhang Q, Y. Masahiro, P.K. Shen. Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWO4. J. Phys. Chem. B, 2004, 108: 2788~2792.
    [4] H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li, Y.T. Qian, Hydrothermal preparation and characterization of luminescent CdWO4 nanorods, Chem. Mater., 2000, 12: 2819~2821.
    [5] S.H. Yu, B. Liu, M.S. Mo, J.H. Huang, X.M. Liu, Y.T. Qian, General synthesis of single-crystal tungstate nanorods/nanowires: a facile, lowtemperature solution approach. Adv. Funct. Mater., 2003, 13: 639~647.
    [6] S.H. Yu, M. Antonietti, H. Co¨lfen, M. Giersig, Synthesis of very thin 1D and 2D CdWO4 nanoparticles with improved fluorescence behavior by polymer-controlled crystallization, Angew. Chem. Int. Ed.,2002, 41: 2356~2360.
    [7] S.J. Chen, J. Li, X.T. Chen, J.M. Hong, Z.L. Xue, X.Z. You, Solvothermal synthesis and characterization of crystalline CaWO4 nanoparticles, J.Cryst. Growth., 2003, 253: 361~365.
    [8] S. Angana, P. Panchanan, A chemical synthetic route for the preparation of fine-grained metal molybdate powders, Mater. Lett. ,2002, 52: 140~146.
    [9] Y.G. Wang, J.F. Ma, Morphology-controlled synthesis of CdWO4 nanorods and nanoparticles via a molten salt method, Mater. Sci. Eng. B: Solid, 2006, 130: 277~281.
    [10] G.J. Zhou, M.K. Lu¨, Z.L. Xiua, Polymer micelle-assisted fabrication of hollow BaWO4 nanospheres, J. Cryst. Growth, 2005, 276: 116~120.
    [11] J.H. Ryu, J.-W. Yoon, C.S. Lim, K.B. Shim, Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation, Mater. Res. Bull., 2005, 40:1468~1476.
    [12] A. Kaddouria, E. Tempestib, C. Mazzocchia, Comparative study of bnickel molybdate phase obtained by conventional precipitation and the sol–gel method, Mater. Res. Bull., 2004, 39: 695~706.
    [13] Yuanming Zhang, Fada Yang, Synthesis of crystalline SrMoO4 nanowires from polyoxometalates, Solid State Commun., 2005, 133: 759~763. [14 ] Grasser R , Pitt E , Scharmann A , et al. Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25 eV Region[J ] . Phys Status Solid ,1975, 69(B): 359~368.
    [15] Johnson L F , Boyd GD , Nassau K, et al. Continous operation of a solid2state optical maser[J ] . Phys Rev ,1962, 126(4): 1406~1409.
    [16] Porto, S. P. S.; Scott, J. F. Phys. ReV. 1967, 157~716.
    [17] Arturo, M., Quintela, L., and Rivas, J. Chemical Reactions in Microemulsions: A Powerful Method to Obtain Ultrafine Particles. J. Colloid Interface Sci. 1993, 158: 446~451.
    [18] Barnickel, P., Wokaun, A., Sager, W., and Eicke, H. F. Size tailoring of silver colloids by reduction in W/O microemulsions. J. Colloid Interface Sci. 1992, 148: 80~90.
    [19] A. Ko?ak, D. Makovec, M. Drofenik, A.?nidar?i?. In situ synthesis of magnetic MnZn-ferrite nanoparticles using reverse microemulsions. Journal of Magnetism and Magnetic Materials, 2004, 272: 1542~1544.