多级孔结构介孔二氧化硅的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多级孔二氧化硅材料由于其具有不同等级尺度的孔道结构、高的比表面积和孔体积等优点,在催化、吸附、分离、生物医药等领域具有潜在的应用价值,一直以来成为多孔材料领域的的热点课题。近年来,多种模板合成路线相继被开发出来用以合成多级孔二氧化硅材料。虽然多级孔二氧化硅材料在合成方面已经取得了一定的进展,但是仍然存在一些未解决的问题,如形貌和尺寸难以控制、模板成本较高、操作程序复杂、不同模板剂之间的竞争作用难以控制等。本论文旨在开发出简单高效的多级孔二氧化硅材料合成路线以达到对多级孔二氧化硅材料形貌和尺寸的精确控制,通过对合成的多级孔二氧化硅材料进行改性,赋予多级孔二氧化硅材料更多优异的性能。在以合成方法为研究重点的基础上,考察了所合成的多级孔二氧化硅材料在生物材料固载、多相催化等领域的应用。论文主要内容包括以下三个方面:
     1.多级孔结构介孔二氧化硅和有序介孔有机硅的合成及其生物固载性能研究
     自然界中的生物矿物,如海藻和放射虫等,往往具有一致的粒子尺寸、精巧的形貌和从纳米到微米级的多级结构,而控制生物矿物沉积的过程往往是动态变化的有机质(种类和数量随矿化过程不断变化)调控无机物矿化的过程。受自然界这种奇妙的“制造材料”的启发,我们拟将动态模板机理引入到介孔二氧化硅的制备过程中,从而开发出简单高效的多级孔材料合成路线。本章中,以阴离子聚电解质聚丙烯酸(PAA)和阳离子表面活性剂氯代十六烷基吡啶(CPC)形成的有序介观结构复合物介晶为“动态模板”,在碱性条件下制备了具有多级孔结构的SBA-1单晶颗粒。通过扫描电镜(SEM),X射线衍射(XRD),X-射线小角散射(SAXS),透射电镜(TEM),氮气吸附等手段对合成的多级孔结构介孔二氧化硅的形貌和结构进行了表征。结果表明采用动态模板法合成的SBA-1单晶颗粒包含有序立方Pm3n结构的笼状介孔和较大孔径的二次纳米孔,且二次纳米孔穿插在有序介孔之间,并未破坏介孔的有序周期排列。SBA-1单晶颗粒的尺寸和形貌可以在一定PAA用量范围内进行调控。通过改变合成中加入的PAA量,可以制备出由亚微米球形向微米级多面体演变的多级孔二氧化硅。将合成的多级孔结构的介孔SBA-1单晶颗粒应用于固定化木瓜蛋白酶的研究中,并对固定化酶降解牛血清白蛋白的性能进行了评价。结果表明,与MCM-41相比,SBA-1具有较高的酶固载量和较好的降解蛋白质的能力;另外,通过在合成过程中加入扩孔剂1,3,5-三甲苯来合成改性SBA-1单晶颗粒,发现扩孔剂的加入并没有明显改变SBA-1单晶颗粒的形貌,而通过调节扩孔剂的加入量能够将SBA-1单晶颗粒中的有序介孔孔径在一定范围内进行调变(3.1~5.0nm)。采用CPC/聚马来酸复合物介晶为动态模板,也可以制备出多级孔结构的介孔二氧化硅单晶颗粒。此外,在SBA-1单晶颗粒的合成基础上,以有机硅1,2-双(三乙氧基硅)乙烷为硅源,成功地制备出具有多级孔结构的有序介孔有机硅(PMO)材料。以MCM-41和SBA-15为参比材料,研究了多级孔材料SBA-1和有序介孔有机硅材料在溶菌酶和牛血清白蛋白固定化中的应用。固载实验表明,多级孔结构的PMO材料表现出较高的固载量和较快的固载速率,这主要是由于其具有多级孔结构和疏水的有机官能团。最后,研究了多级孔材料SBA-1和PMO对溶菌酶和过氧化氢酶的共固载性能,结果表明,与单一孔径二氧化硅材料相比,多级孔SBA-1材料其多级孔的性质使得它在两种不同尺寸酶的共固载研究中体现出较优异的性能。
     2.多级孔结构杂原子分子筛的合成及其性能研究
     具有规整形貌的多级孔分子筛由于其多级孔结构、高的比表面积和孔体积及良好的热稳定性而在催化领域引起人们的广泛关注。但是多级孔分子筛在作为催化剂时,由于其较弱的酸性活性中心,大大限制了其在实际生产中的应用。本章在SBA-1单晶颗粒的合成基础上,以异丙醇铝为铝源,合成温度为120oC,通过一步法制备了多级孔结构介孔硅铝分子筛Al-SBA-1单晶颗粒。所合成的Al-SBA-1仍为亚微米尺度的球形颗粒,且球体内部可以清晰地观察到有序排列的介孔和二次纳米孔,说明在SBA-1骨架中引入铝并未对样品的形貌和内部结构产生很大的影响。通过控制合成过程中加入异丙醇铝的量,可以有效地控制制备的Al-SBA-1的硅铝比,且最高掺入量可达大约20%(Si/Al=5)。采用核磁共振(NMR)和氨程序升温脱附(NH_3-TPD)等测试对Al-SBA-1样品的酸性进行了表征。结果表明,Al-SBA-1中铝原子主要以四配位形式存在,且样品的酸性位点浓度随着合成过程中掺铝量的增加而增加。水热稳定性实验表明,Al-SBA-1单晶颗粒在100oC水热处理10天后表现出较好的水热稳定性,且颗粒形貌和多级孔结构得到了很好的保持。
     以制备的Al-SBA-1单晶颗粒为催化剂,选择甲苯苯甲醇烷基化反应为模型反应考察了Al-SBA-1催化剂的催化活性和循环使用性。Al-SBA-1催化剂在反应中表现出较高的催化活性,这是因为Al-SBA-1的多级孔结构有利于反应过程中物料的传输,使得反应物分子更容易达到活性位点。同时,我们发现催化剂Al-SBA-1酸性位点的浓度对反应活性有很大的影响,酸性位点浓度越高,反应速率越快。另外,Al-SBA-1催化剂表现出较好的循环使用性能,在甲苯苯甲醇烷基化反应中循环使用4次后,催化活性没有明显的下降。
     3.多级孔结构介孔二氧化硅纳米颗粒和介孔硅氢化合物纳米颗粒的制备及其性能研究
     介孔二氧化硅纳米颗粒由于具有多孔性、高度生物相容性和化学稳定性以及光学稳定性等优点,因而在催化、吸附、分离等特别是生物医药领域作为药物载体引起了广泛的关注。目前,文献报道的多级孔结构介孔二氧化硅材料通常都具有相对较大的颗粒尺寸(亚微米或微米级)。纳米级多级孔结构介孔二氧化硅材料将赋予多级孔结构介孔二氧化硅材料更加优异的性能。本章以阴离子聚电解质PAA和阳离子表面活性剂形成的有序介观结构复合物介晶为“动态模板”,正硅酸乙酯为硅源,采用“稀溶液法”制备具有多级孔结构的SBA-1纳米颗粒。考察了不同阳离子表面活性剂对多级孔结构的SBA-1纳米颗粒形貌的影响。结果表明,以CPC或十六烷基三甲基溴化铵(CTAB)为阳离子表面活性剂,均可以在该体系中成功地合成出多级孔结构的SBA-1纳米颗粒。纳米颗粒的尺寸在50-300nm之间,颗粒内部可以观察到二次纳米孔以及有序介孔的存在。另外,考察了不同硅源对该体系的影响。当以正硅酸丙酯为硅源时,仅得到具有单一介孔孔道的SBA-1纳米颗粒,颗粒尺寸为75nm左右。这可能是因为相对于正硅酸乙酯而言,正硅酸丙酯水解速度较慢,聚合物PAA有充分的时间被排挤出去,因此在该体系中PAA未起到二次孔模板的作用。最后,我们考察了多级孔结构SBA-1纳米颗粒对溶菌酶的固载能力,结果表明,与具有单一孔结构的SBA-1纳米颗粒相比,多级孔结构的纳米颗粒对溶菌酶有较快的固载速率和较高的固载量。
     含有大量硅氢键的硅氢化合物在高温下能转为光致发光材料,在太阳能材料领域具有潜在的应用价值。最近,文献首次报道了以双亲三嵌段共聚物P123为介孔模板剂,三乙氧基硅烷为硅源,在酸性条件下可以制备出粒径为100~400nm的介孔硅氢化合物。在本论文中,我们通过在该体系中加入季铵盐型阳离子氟碳表面活性剂(FC-04)为抑制剂,研究了抑制剂的加入对介孔硅氢化合物颗粒的形貌、尺寸以及介观结构的影响。结果表明调节合成体系的FC-04用量,可以制备出由实心向空心演变的纳米硅氢颗粒,且颗粒的尺寸由几百纳米减小至50nm左右。以空心的介孔硅氢化合物纳米颗粒为催化剂载体和还原剂,一步法制备了介孔硅氢化合物负载的贵金属纳米颗粒催化剂。将介孔硅氢化合物负载贵金属纳米颗粒催化剂应用于催化还原对硝基苯酚反应中,该催化剂表现出较好的催化活性。
Hierarchically porous silica materials with well-defined morphologies havebeen of growing interest, because of their potential applications in catalysis,adsorption, separation, and biomedical systems. In the past decades, a variety oftemplating approaches have been proposed to synthesize hierarchically porous silicamaterials, and colloidal particles, polymers, emulsion droplets, and surfactants havebeen employed to create porous structures with different sizes. Bimodal or trimodalporous materials, including micro-meso, meso-meso, meso-macro, and evenmicro-meso-macro, have been reported. However, in most cases, the control ofwell-ordered mesostructure and well-defined morphology was difficult, because ofthe mixing of different types of templates in the syntheses. In this thesis, we aim todesign facile and effective preparation methods for synthesis of the hierarchicallyporous silica materials with well-defined morphologies, size and functionality andevaluate the application of the synthesized hierarchically porous silica materials inbioimmobilization and catalysis. The main contents are as follows:
     1. Synthesis of hierarchically mesoporous silica and periodic mesoporousorganosilica (PMO) and their bioimmobilized properties
     In nature, some biominerals (for instance, sea urchin spines) possess complexand spongelike morphology but still remain single crystalline. The formationmechanism of the “porous” single crystals of biominerals can be ascribed to atime-dependent cooperative organization with complex organic matrix as dynamictemplates. Inspired by this, we try to explore facile and effective preparation methodsfor the synthesis of hierarchically porous silica materials with well-definedmorphologies via a “dynamic template mechanism”. In this section,single-crystal-like, hierarchically mesoporous silica SBA-1was synthesized withanionic polymer PAA and cationic surfactant hexadecylpyridinium chloride (CPC) mesomorphous complexes as dynamic template under alkaline condition. Scanningelectron microscopy (SEM), power X-ray diffraction (XRD), small angle X-rayscattering (SAXS), transmission electron microscopy (TEM), nitrogen adsorptionanalyzer were employed to characterize the morphology and mesostrucuture of thesynthesized hierarchically mesoporous silica. The results indicated that the obtainedmaterials possess global mesopore size of SBA-1and secondary interstitialnanoporous pores. The presence of a large amount of foamlike secondary nanoporesdid not disturb the single-crystal characteristic of the SBA-1particles. By adjustingthe amount of PAA in the synthesis, the silica particles involved fromsubmicrometer-sized spherical particles to micrometer-sized drum-like polyhedronparticles. The synthesized hierarchically mesoporous silica (SBA-1-4) was chosen asa typical support for the bioimmobilization of the papain and the digestibility of bullserum albumin (BSA) by the papain immobilized hierarchically mesoporous silicawas also evaluated. The results demonstrated that the papain immobilizedhierarchically mesoporous silica reveals a high enzyme immobilized amount andgood digestibility compare to that of the MCM-41. By means of pore-expanding with1,3,5-trimethylbenzene, the mesopore size of the SBA-1could be easily tuned from3.1nm to5.0nm, while the morphology of the particles was not changed. Moreover,hierarchically mesoporous PMO were also prepared by employing bridgedsilsesquioxane species (RO)3Si-CH2-CH2-Si(RO)3as a silica precursor. In order tostudy the bioimmobilization ability of the hierarchically nanoporous SBA-1andH-PMO, SBA-1-7.5and H-PMO-3.6were used as typical examples in theimmobilization of lysozyme and BSA. Due to the fact that PMO has not only ahierarchically nanoporous structure but also uniformly distributed bridged-ethylenegroups that provide a hydrophobic surface, the H-PMO showed a good adsorptioncapacity and rapid adsorption dynamics. To further explore the bioimmobilizationability of the hierarchically nanoporous SBA-1-7.5and H-PMO-3.6, theco-immobilization ability of SBA-1-7.5and H-PMO-3.6for two kinds of enzymewith different size were studied. Compare to that of the silica materials with singlepore structure, the hierarchical pore structure of the SBA-1-7.5makes it reveal preferable co-immobilization ability.
     2. Synthesis of hierarchically structured heteroatom molecular sieves andtheir properties
     Hierarchically porous materials with well-defined morphologies have been ofgrowing interest in catalysis system, because of their hierarchical structure, highspecific surface area, high pore volume and superior thermal stability. Nevertheless,a main drawback of these materials with pure silica framework is that they oftendisplay relatively poor hydrothermal stability, which will restrain their extensiveindustrial application. In this section, mesoporous aluminosilicates Al-SBA-1withhierarchical pore structure have been successfully synthesized under alkalinecondition at120°C by employing organic mesomorphous complexes ofpolyelectrolyte (poly(acrylic acid)(PAA)) and cationic surfactant (hexadecylpyridinium chloride (CPC)) as template, aluminum isopropoxide as aluminumsource. The prepared Al-SBA-1exhibited submicrometer spherical morphology withthe presence of interstitial nanopores inside the submicrospheres as well as orderedalignment of mesopores through the whole particle, indicating that the incorporationof Al into the silica framework did not significantly disturb the interior texture andpore structure of the SBA-1. The molar ratio of the Si/Al could be effectivelycontrolled by adjusting the amount of the aluminum in the synthesis, and the Alcontaining could be as high as about20%(Si/Al=5). In order to investigate theacidic properties of the obtained Al-SBA-1materials,27Al MAS NMR andNH_3-TPD have been employed to characterize the synthesized Al-SBA-1materials.It is demonstrated that the incorporated Al atoms in the Al-SBA-1framework mainlyexist in the form of Al(IV) and the acid strength increase with the increasing of theAl content. Hydrothermal treatment showed that the Al-SBA-1materials exhibited ahigh hydrothermal stability and remained stable even after being treated in boilingwater for10days.
     The catalytic activity of the Al-SBA-1materials was investigated by employingAl-SBA-1as catalyst, commercial HZSM-5as reference sample, Friedel–Crafts alkylation of toluene with benzyl alcohol as a model reaction. Compared withcommercial HZSM-5which possess a strong acidity but a micropore structure, theAl-SBA-1exhibited higher catalytic activity due to the hierarchically mesoporousstructure. Moreover, the results indicated that the more acidic sites could efficientlypromote the catalytic reaction rate. Recycling experiment shows that the catalyticactivity of the Al-SBA-1has not significantly reduced after reused four times in thealkylation toluene with benzyl alcohol.
     3. Synthesis of hierarchically mesoporous silica nanoparticles andmesoporous hydridosilica nanoparticles and their properties
     Mesoporous silica nanoparticles (MSNs) have received much attention inpractical fields, such as catalysis, adsorption, separation and biomedicineapplications due to their unique chemical, magnetic and optical properties, and highlevel of biocompatibility. It has been demonstrated that the control of structure,morphology, size, and surface properties of MSNs is important for their biomedicalapplications. However, the reported hierarchically mesoporous silica materials oftenhave relative large particle sizes (sub-micrometre or micrometer). In this section,hierarchically structured single-crystal mesoporous silica SBA-1nanoparticles(HMSNs) were synthesized by using a cationic surfactant and anionic polymerpoly(acrylic acid)(PAA) mesomorphous complexes as a template, tetraethoxysilaneas silica source via the dilute solution method. The effect of different cationicsurfactant to the morphology and the interior structure of the nanoparticles wereinvestigated. The results indicated that hierarchically structured mesoporous silicaSBA-1nanoparticles could be successfully prepared by using CPC or CTAB assurfactant. The size of the nanoparticles was in the range of50-300nm, thesecondary interstitial nanopore and ordered mesopore could be observed. Moreover,mesoporous silica SBA-1nanoparticles synthesized with different silica source wasalso explored. It is found that when tetrapropyl orthosilicate was chosen as silicasource, only the single pore nanoparticles could be obtained and the particle size wasabout75nm. This was mainly due to that hydrolysis rate of tetrapropyl orthosilicate which was slower than that of the tetraethoxysilane. During the hydrolysis process,the polymer of PAA was completely extruded, and the PAA could not play a role asthe secondary template. The bioimmobilization ability of the synthesized HMSNswas investigated by chosen the lysozyme as a typical enzyme. The results revealedthat the HMSNs exhibit a rapid immobilization rates and high immobilized amountsthan that of the MSNs synthesized with tetrapropylorthosilicate as the silica source.
     The hydridosilica with Si-H groups could be transformed intophotoluminescent materials at high temperatures, and have potential applications insolar energy systems. It was reported that the mesoporous hydridosilica particleswith size of100-400nm could be prepared under acidic condition by using triblockcopolymer P123as surfactant, triethoxysilane as silica source. In this section, thefluorocarbon surfactant (FC-04) was used to control the growth of hydridosilicaparticles and the effect of FC-04to the morphology, particle size and meso-structureof the mesoporous hydrosilica was investigated. By adjusting the amount of FC-04,the morphology of the particles involved from solid to hollow, and the sizedecreased from few hundreds of nanometers to50nm. Moreover, by using thehollow mesoporous hydridosilica nanoparticle as support and reducing agent,mesoporous hydridosilica materials supported noble metal nanoparticles catalystswere prepared via one pot method. The performance of mesoporous hydridosilicamaterials supported noble metal nanoparticles catalysts were investigated usingcatalytic reduction of4-nitrophenol as a model reaction and they exhibited excellentcatalytic activity.
引文
[1] Everett D H. IUPAC mannul of symbols and terminology. Pure Appl. Chem.,1972,31,578~680.
    [2] McBain J W. The sorption of gases and vapours by solid. Rutledge and Sons, London, Ch.5,1932.
    [3]徐如人,庞文琴等。分子筛与多孔材料化学。北京:科学出版社,2004。
    [4] Arguaer R J,Landolt G R. Synthesis of Zeolite ZSM-5. U.S, Pat.3702866,1972.
    [5] Kokotailo G T,Lawton S L,Olson D H, et al. Structure of synthetic zeolite ZSM-5. Nature,1978,272:437~438.
    [6] Bellusi G, Pazzuconi G, Perego C, et al. Liquid-phase alkylation of benzene with light olefinscatalyzed by β-zeolites. J. Catal.,1995,157:227~234.
    [7] Bonetto L, Camblor M A, Corma A, et al. Optimization of zeolite-β in cracking catalystsinfluence of crystallite size. Appl. Catal. A,1992,82:37~50.
    [8] Baerlocher Ch, Meier W M, Olsen D H. Atlas of zeolite framework types.2001.
    [9]田辉平,袁健兵,朱泽霖,等。SAPO-11分子筛用i-Pr2NH导向合成及其酸性性质。燃料化学学报,1997,25(6):514~5181。
    [10]汪哲明,阎子峰。丁烯骨架异构化催化剂进展。石油化工,2002,31(4):514~518。
    [11]汪哲明,阎子峰。新型取代型磷酸铝分子筛的合成与表征。燃料化学学报,2001,29(增刊):9~11。
    [12]王利军,赵海涛,郝志显。晶化温度对SAPO-34结构稳定性的影响。化学学报,2008,66:1317~1321。
    [13] Davis M E, Saldarriaga C, Montes C, et al. A molecule sieve with eighteen-membered rings.Nature,1988,331:698~699.
    [14] Estermann M, McCusker L B, Baerlocher C, et al. A synthetic gallophosphate molecularsieve with a20-tetrahedral-atom pore opening. Nature,1991,352,320~323.
    [15] Huo Q, Xu R. A new route for the synthesis of molecular sieves: crystallization of APO-5athigh temperature. J. Chem. Soc., Chem. Commum.,1992,168~169.
    [16] Huo Q, Margolese D I, Stocky G D. Surfactant control of phases in the synthesis ofmesoporous silica-based materials. Chem. Mater.,1996,8:1147~1160.
    [17] Hunter H M A, Wrigh P A. Synthesis and characterisation of the mesoporous silicate SBA-2and its performance as an acid catalyst.2001,43:361~373.
    [18] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores. Science,1998,279:548~552
    [19] Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am.Chem. Soc.,1998,120:6024~6036.
    [20] Sakamoto Y, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages ofthree-dimensional mesoporous materials. Nature,2000,408:449~453.
    [21] Shen S D, Li Y Q, Zhang Z D, et al. A novel ordered cubic mesoporous silica templated withtri-head group quaternary ammonium surfactant. Chem. Commun.,2002,2212~2213.
    [22] Liu X Y, Tian B Z, Yo C Z, et al. Room-temperature synthesis in acidic media of large-porethree-dimensional bicontinuous mesoporous silica with Ia3d symmetry. Angew. Chem. Int. Ed.,2002,41:3876~3878.
    [23] Shen S D, Li Y Q, Zhang Z D, et al. A novel ordered cubic mesoporous silica templated withtri-head group quaternary ammonium surfactant. Chem. Commun.,2002,2212~2213.
    [24] Garcia-Bennett A E, Terasaki O, Che S, et al. Structural investigations of AMS-n mesoporousmaterials by transmission electron microscopy. Chem. Mater.,2004,16:813~821.
    [25] Gao C, Sakamoto Y, Sakamoto K, et al. Synthesis and characterization of mesoporous silicaAMS-10with bicontinuous cubic Pn3m Symmetry. Angew. Chem. Int. Ed.,2006,45:4295~4298.
    [26] Garcia-Bennett A E, Miyasaka K, Terasaki O, et al. Structural solution of mesocaged materialAMS-8. Chem. Mater.,2004,16:3597~3605.
    [27] Garcia-Bennett A E, Lund K, Terasaki O, et al. Particle-size control and surface structure ofthe cubic mesocaged material AMS-8. Angew. Chem. Int. Ed.,2006,45:2434~2438.
    [28] Che S, Garcia-Bennett A E, Yokoi T, et al. A novel anionic surfactant templating route forsynthesizing mesoporous silica with unique structure. Nature Mater.,2003,2,801~805.
    [29] Han L, Sakamoto Y, Che S A, et al. Insight into the defects of cage-type silica mesoporouscrystals with Fd3m symmetry: TEM observations and a new proposal of “polyhedron packing”for the crystals. Chem. Eur. J.,2009,15:2818~2825.
    [30] Gao C, Sakamoto Y, Terasaki O, et al. Molecular design of the surfactant and theco-structure-directing agent (CSDA) toward rational synthesis of targeted anionic surfactanttemplated mesoporous silica. J. Mater. Chem.,2007,17:3591~3602.
    [31] Gao C, Qiu H, Zeng W, et al. Formation mechanism of anionic surfactant-templatedmesoporous silica. Chem. Mater.,2006,18:3904~3914.
    [32] Sakamoto Y, Han L, Che S A, et al. Structure analyses of intergrowth and stacking fault inage-type mesoporous crystals. Chem. Mater.,2009,21:223~229.
    [33] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism. Nature,1992,359:710~712.
    [34] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves preparedwith liquid crystal templates. J. Am. Chem. Soc.,1992,114:10834~10843.
    [35] Firouzi A, Atef F, Oertli A, et al. Alkaline lyotropic silicate-surfactant liquid crystals. J. Am.Chem. Soc.,1997,119:3596~3610.
    [36] Firouzi A., Kumar D., Bull L., et al. Cooperative organization of inorganic-surfactant andbiomimetic assemblies. Science,1995,267:1138~1143.
    [37] Huo Q, Margolese D, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganiccomposite materials. Nature,1994,368:317~321.
    [38] Burkett S L, Sims S D, Mann S. Synthesis of hybrid inorganic organic mesoporous silica byco-condensation of siloxane and organosiloxane precursors. Chem. Commun.,1996,11:1367~1368
    [39] Sutra P, Brunel D. Preparation of MCM-41type silica-bound manganese(III) schiff-basecomplexes, Chem. Commun.,1996,21:2485~2486.
    [40] Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties ofMCM-41silicas by bonding organosilanes. J. Phys. Chem. B,1998,102:5503~5510.
    [41] Clark J H, Macquarrie D J, Catalysis of liquid phase organic reactions using chemicallymodified mesoporous inorganic solids, Chem. Commun.,1998,8:853~860.
    [42] Yamamoto K, Tatsumi T. Organic functionalization of mesoporous molecular sieves withgrignard reagents, Micropor. Mesopor. Mater.,2001,44-45:459~464.
    [43] Yoshitake H, Yokoi T, Tatsumi T. Adsorption of chromate and arsenate byamino-functionalized MCM-41and SBA-1, Chem. Mater.,2002,14:4603~4610.
    [44]Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniformdistribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc,1999,121:9611~9614
    [45] Melde B J, Holland B T, Blanford C F, et al. Mesoporous sieves with unified hybridinorganic/organic frameworks. Chem. Mater.,1999,11:3302~3308.
    [46] Asefa T, MacLachlan M J, Coombs N, et al. Periodic mesoporous organosilicas with organicgroups inside the channel walls. Nature,1999,402:867~871.
    [47] Hoffmann. F, Cornelius. M, Morell. J, et al. Silica-based mesoporous organic-inorganichybrid materials. Angew. Chem. Int. Ed,2006,45:3216~3251.
    [48] Romero A A, Alba M D. Aluminosilicate mesoporous molecular sieve MCM-48.J. Phys. Chem. B.1998,102(1),123~128.
    [49] Kosslick H, Lischkeq Landmesser H, Parlitz B, et al. Acidity and Catalyticbehavior of substituted MCM-48. J. Catal.1998,176,102~114.
    [50] Morey M, Davidson A, Eckert H, et al. Pseudotetrahedral O; nV=O centers immbilized onthe walls of a mesoporous, cubic MCM-48support: preparation, characterization, and reactivitytoward water as investigated by S 'V NMR and UV Vis spectroscopies. Chem. Mate.,1996,8:486~492.
    [51] Morey M, Davidson A, Stucky G D. A new step toward transition metalin corporationincubic mesoporous materials: preparation and characterization of Ti-MCM-48. Microp. Mate.,1996,6,99~104.
    [52] Corma A, Kan Q, Rey F. Synthesis of Si and Ti-Si-MCM-48mesoporous materials withcontrolled pore sizes in the absence of polar organic additives and alkali metalions. Chem.Commun.1998,998,579~580.
    [53] Zhao D, Goldfarb D. Synthesis of manganese containing mesoporous molecular sieveMn-MCM-41, Mn-MCM-48and Mn-MCM-L. Chem. Commun.,1995,875~876.
    [54] Zheng Y, Li Z H, Zheng Y, et al. Synthesis and characterization of Fe-Ce-MCM-41. Mater.Let.,2006,60:3221~3223.
    [55] Yao W H, Chen Y J, Min L, et al. Liquid oxidation of cyclohexane to cyclohexanol overcerium-doped MCM-41.J. Mot. Catal. A. Chem.,2006,246:162~166.
    [56] Chien S H, Kuo M C, Chen C L. Synthesis, characterization and catalysis of Ce-MCM-41.J.Chin. Clzem. Soc.,2005,52:733~740.
    [57] Kadgaonkar M D, Laha S C, Pandey R K. Cerium-containing MCM-41materials as selectiveacylation and alkylation catalysts. Catal. Today.,2004,97:225~231.
    [58] Artmann M, Racouchot S. Synthesis and redox properties of MCM-48containing copper andzinc. Chem. Commun.,1997,997:2367~2368.
    [59] Kawi S, Te M. MCM-48supported chromium catalyst for trichloroethylene oxidation. Catal.Today.,1998,44,101~109.
    [60] Sakthivel A, Dapurkar S E, Selvam P. Mesoporous (Cr)MCM-41and (Cr)MCM-48molecular sieves: promising heterogeneous catalysts for liquid phase oxidation reactions. Catal.Let.,2001,7:155~158.
    [61] Ehchahed B, Moen A. Iron-modified MCM-48mesoporous molecular sieves. Chem.Mater.1997,9:1716~1719.Artmann M, Racouchot S. Synthesis and redox properties of MCM-48containing copper and zinc.Chem. Commun.1997,997:2367~2368.
    [62] Morey M, Stucky G D. Isomorphic substitution and postsynthesis incorporation of zirconiuminto MCM-48mesoporous silica. J. Phys. Chem. B.1999,103:2037~2041.
    [63] Tuel A. Modification of mesoporous silicas by incorporation of heteroelements in theframework. Micro. Meso. Mater.,1999,27:151~169.
    [64] Meldrum F C, Seshadri R. Porous gold structures through templating by echinoid skeletalplates, Chem. Commun.,2000,29~30.
    [65] Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in titania.Science,1998,281:802~804.
    [66] Shchukin D G, Caruso R A. Template synthesis and photocatalytic properties of porousmetal oxide spheres formed by nanoparticle infiltration. Chem. Mater.,2004,16:2287~2292.
    [67] Kuai S, Badilescu S, Bader G, et al. Preparation of large-area3D ordered macroporous titaniafilms by silica colloidal crystal templating. Adv. Mater.,2003,15:73~79.
    [68] Velev O D, Lenhoff A M. Colloidal crystals as templates for porous materials. CurrentOpinion in Colloid&Interface Science,2000,5,56~63.
    [69] Huang L M, Wang Z B, Sun J Y, et al. Fabrication of ordered porous structures byself-assembly of zeolite nanocrystals. J. Am. Chem. Soc.,2000,122:3530~3531.
    [70] Zhu G S., Qiu S L, Terasaki O. Template-assisted self of macro-micro bifunctional porousmaterials. J. Mater. Chem.,2001,11:1687~1693.
    [71] Dong A, Wang Y, Tang Y, et al. Mechanically stable zeolite monoliths with three-dimensionalordered macropores by the transformation of mesoporous silica spheres. Adv. Mater.2002,14:1506~1510.
    [76] Holland B, Abrams L, Stein A. Dual templating of macroporous silicates with zeoliticmicroporous frameworks. J. Am. Chem. Soc.,1999,121:4308~4309.
    [77] Lebeau B, Fowler C, Mann S, et al. Synthesis of hierarchically ordered dye-functionalisedmesoporous silica with macroporous architecture by dual templating. J. Mater. Chem.,2000,10:2105~2108.
    [78] Luo Q, Li L, Yang B, Zhao D. Three-dimensional ordered macroporous structures withmesoporous silica walls. Chem. Lett.2000,378~379.
    [79] Yang Z, Qi K, Rong J, et al. Template synthesis of3-D bimodal ordered porous silica. Chin.Sci. Bull.,2001,46:1785~1790.
    [80] Gundiah G, Macroporous silica-alumina composites with mesoporous walls. Bull. Mater. Sci.,2001,24:211~218.
    [81] Sen T, Tiddy G, Casci J, et al. One-pot synthesis of hierarchically ordered porous-silicamaterials with three orders of length scale. Angew. Chem. Int. Ed.,2003,42:4649~4653.
    [82] Sen T, Tiddy G, Casci J, et al. Synthesis and characterization of hierarchically ordered poroussilica materials. Chem. Mater.,2004,16:2044~2054.
    [83] Vantomme A, Yuan Z Y, Su B L. One-pot synthesis of a high-surface-area zirconium oxidematerial with hierarchically three-length-scaled pore structure. New J. Chem.,2004,28:1083~1085.
    [84] Yuan Z Y, Blin J L, Su B L. Design of bimodal mesoporous silicas with interconnected poresystems by ammonia post-hydrothermal treatment in the mild-temperature range. Chem. Comm.,2002,504~505.
    [85]张晔,蒲敏,吴东,等。非离子型表面活性剂在SiO2凝胶中的造孔作用。化学学报,2001,59:2148~2151.
    [86] Wang J, Zhou H, Sun P, et al. Hollow carved single-crystal mesoporous silica templated bymesomorphous polyelectrolyte-surfactant complexes. Chem. Mater.,2010,22:3829~3831.
    [87] Janssen A H, Koster A J, de Jong K P. On the shape of the mesopores in zeolite Y: athree-dimensional transmission electron microscopy study combined with texture analysis. J. Phys.Chem. B,2002,106:11905~11909.
    [88] Mao R L V, Xiao S, Ramsaran A, et al. Selective removal of silicon from zeolite frameworksusing sodium carbonate. J. Mater. Chem.,1994,4:605~610.
    [89] Janssen A H, Koster A J, Jong K P D. Three-dimensional transmission electron microscopicobservations of mesopores in dealuminated zeolite Y. Angew. Chem. Int. ed.,2001,40:1102~1104.
    [90] Suzuki T, Okuhara T. Change in pore structure of MFI zeolite by treatment with NaOHaqueous solution. Micro. Meso. Mater.,2001,43:83~89.
    [91] Jacobsen C J. H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite singlecrystals. J. Am. Chem. Soc.2000,122:7116~7117.
    [92] Tao Y, Kanoh H, Kaneko K. ZSM-5monolith of uniform mesoporous channels. J. Am. Chem.Soc.2003,125:6044~6045.
    [93] Tao Y, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogeltemplating. J. Phys. Chem. B2003,107:10974~10976.
    [94] Yang Z, Xia Y, Mokaya R. Zeolite ZSM-5with unique supermicropores synthesized usingmesoporous carbon as a template. Adv. Mater,2004,16:727~732.
    [95] Schmidt I, Boisen A, Gustavsson E, et al. Carbon nanotube templated growth of mesoporouszeolite single crystals. Chem. Mater.,2001,13:4416~4418.
    [96] Janssen A H, Schmidt I, Jacobsen C J H, et al. Exploratory study of mesopore templatingwith carbon during zeolite synthesis. Microporous and Mesoporous Materials,2003,65:59~75.
    [97] Zhu H, Liu Z, Wang Y, et al. Nanosized CaCO3as hard template for creation of intracrystalpores within silicalite-1crystal. Chem. Mater.,2008,20:1134~1139.
    [98] Xiao F L, Wang C, Yin K, et al. Catalytic properties of hierarchical mesoporous zeolitestemplated with a mixture of small organic ammonium salts and mesoscale cationic polymers.Angew. Chem. Int. Ed.,2006,45:3090~3092.
    [99] Meng X, Nawaz F, Xiao F S. Templating route for synthesizing mesoporous zeolites withimproved catalytic properties. Nano Today,2009,4:292~301.
    [100] Zhu H, Liu Z, Kong D, et al. Synthesis and catalytic performances of mesoporous zeolitestemplated by polyvinyl butyral gel as the mesopore directing agent. J. Phys. Chem. C,2008,112:17257~17264.
    [101] Choi M, Cho H S, Srivastava R, et al. Amphiphilic organosilane-directed synthesis ofcrystalline zeolite with tunable mesoporosity. Nat. Mater.,2006,5:718~723.
    [102] Cho K, Cho H S, Louis-Charles de Ménorval, et al. Generation of mesoporosity in LTAzeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem.Mater.,2009,21:5664~5673.
    [103] Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporousaluminophosphates constructed with crystalline microporous frameworks. Chem.Commun.,2006,4380~4382.
    [104] Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active andlong-lived catalysts.2009,461:246~250
    [105] Zhang Z T, Han Y, Zhu L, F. S. Xiao, et al. Mesoporous aluminosilicates with orderedhexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures.J. Am. Chem. Soc.,2001,123:5014~5021.
    [106] Han Y, Xiao F S, Wu S, et al. A novel method for incorporation of heteroatoms into themesoporous silica materials synthesized in strong acidic media. J. Phys. Chem. B,2001,105,7963~7966.
    [107] Han Y, Wu S, Sun Y, et al. Hydrothermally stable ordered hexagonal copolymermesoporous aluminosilicates assembled from a triblock and preformed aluminosilicate precursorsin strongly acidic media. Chem. Mater.,2002,14:1144~1149.
    [108] Di Y, Yu Y, Sun Y Y, et al. Synthesis, characterization, and catalytic properties of stablemesoporous aluminosilicates assembled from preformed zeolite L precursors. Micro. Meso.Mater.,2003,62:221~225.
    [109] Liu Y, Zhang W, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembledfrom zeolite type Y seeds. J. Am. Chem. Soc.,2000,122:8791~8792.
    [110] Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructuresassembled from zeolite ZSM-5and zeolite Beta seeds. Angew. Chem. Int. Ed.,2001,40:1255~1258.
    [111] Yang P, Deng T, Zhao D, et al. Hierarchically Ordered Oxides. Science,1998,282:2442~2446.
    [112] Antonietti M, Berton B, Hentze H, et al. Synthesis of mesoporous silica with large poresand bimodal pore size distribution by templating of polymer lattices. Adv. Mater.,1998,10:154~159.
    [113] Luo Q, Li L, Yang B, et al. Three-dimensional ordered macroporous structures withmesoporous silica walls. Chem. Lett.,2000,378~379.
    [114] Gundiah G. Macroporous silica--alumina composites with mesoporous walls. Bull. Mater.Sci.,2001,24:211~214.
    [115] Yang Z Z, Qi K, Rong J H, et al. Chin. Sci. Bull.,2001,46:1785.
    [116] Kuang D B, Brezesinski T, Smarsly B, et al. Hierachical porous silica materials with atrimodal system using surfactant templates.J. Am. Chem. Soc.,2004,126:10534~10535.
    [117] Carn F, Colin A, Achard M F, et al. Inorganic monoliths hierachically textured viaconcentrated direct emulsion and micellar template. J. Mater. Chem.,2004,14:1370~1372.
    [118] Yuan Z Y, Ren T Z, Su B L. Hierarchically mesostructured titamia materials with anunusual interior macroporous structure. Adv. Mater.,2003,15:1462~1465.
    [119] Antonelli D M. Synthesis of macro-mesoporous niobium oxide molecular sieves by aligand-assisted vesicle templating strategy. Microporous Mesoporous Mater.,1999,33:209-214.
    [120] Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of orderedmacrostructures in silica and silica-surfactant mesophases. Nature,1997,385:420~423.
    [121] Meldrum F C, Seshadri R. Porous gold structures through templating by echinoidskeletalplates. Chem. Commun.,2000,29~30.
    [122] Yang D, Qi L, Ma J. Eggshell membrane templating of hierarchically ordered macroporousnetworks composed of TiO2tubes. Adv. Mater.,2002,14:1543~1546.
    [123] Cook G, Timms P L, Goeltner-Spickermann C. Exact Replication of Biological Structuresby Chemical Vapor Deposition of Silica. Angew. Chem. Int. Ed.,2003,42:557~559.
    [124] Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollengrain templates. Chem. Commun.,2003,2784~2785.
    [125] Valtchev V, Smaihi M, Faust A C, et al. Biomineral-silica-induced zeolitization ofequisetum arvense. Angew. Chem. Int. Ed.,2003,42:2782~2785.
    [126] Wang L Q, Shin Y, Samuels W D, et al. Magnetic resonance studies of hierarchicallyordered replicas of wood cellular structures prepared by surfactant-mediated mineralization. J.Phys. Chem. B,2003,107:13793~13802.
    [127] Cook G, Timms P L, G ltner-Spickermann C. Exact replication of biological structures bychemical vapor deposition of silica. Angew. Chem. Int. Ed.,2003,42:557~559.
    [128] Niu D C, Ma Z, Li Y S, and Shi J L. Synthesis of core-shell structured dual-mesoporoussilica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc.,2010,132:15144~15147.
    [129] Zhang B, Davis S A, Mann S. Starch gel templating of spongelike macroporous silicalitemonoliths and mesoporous films. Chem. Mater.,2002,14:1369~1373.
    [130]Chen L H, Li X Y, Tian G, et al. Highly stable and reusable multimodal zeolite TS-1basedcatalysts with hierarchically interconnected three-level micro-meso-macroporous structure.Angew. Chem. Int. Ed.,2011,50:11156~11161.
    [131] Vantomme A, Léonard A, Yuan Z Y, et al. Self-formation of hierarchicalmicro-meso-macroporous structures: Generation of the new concept “Hierarchical Catalysis”Colloids and Surfaces A: Physicochem. Eng. Aspects,2007,300:70~78.
    [132] Fan Y, Xiao H Shi G, et al. Alkylphosphonic acid-and small amine-templated synthesis ofhierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity todi-branched paraffins. Journal of Catalysis,2012,285:251~259.
    [133] Wang X, Yu J C, Ho C, et al. Photocatalytic activity of a hierarchically macro/mesoporoustitania. Langmuir,2005,21:2552~2559.
    [134] Yuan Z Y, Ren T Z, Azioune A, et al. Marvelous self-assembly of hierarchicallynanostructured porous zirconium phosphate solid acids with high thermal stability. Catal. Today,2005,105:647~654.
    [135] Tidahy H L, Siffert S, Lamonier J F, et al. New Pd/hierarchical macro-mesoporous ZrO2,TiO2and ZrO2-TiO2catalysts for VOCs total oxidation. G. Appl. Catal. A-General.,2006,310:61~69.
    [136] Sun Y, Prins R. Hydrodesulfurization of4,6-Dimethyldibenzothiophene over noble metalssupported on mesoporous zeolites. Angew. Chem. Int. Ed.,2008,47:8478~8481.
    [137] Christensen C H, Schmidt I, Carlsson A, et al. Crystals in crystals nanocrystals withinmesoporous zeolite single crystals. J. Am. Chem. Soc.,2005,127:8098~8102.
    [138] Mamak M, Coombs N, Ozin G. Self-assembling solid oxide fuel cell materials: mesoporousyttria-zirconia and metal-yttria-zirconia solid solutions. J. Am. Chem. Soc.,2000,122:8932~8939.
    [139] Chai, G S, Shin I S, Yu J S. Synthesis of ordered, uniform, macroporous carbons withmesoporous walls template by aggregates of polystyrene spheres and silica particles for use ascatalyst supports in direct methanol fuel cells. Adv. Mater,2004,16:2057~2061.
    [140] Tanaka N, Kobayashi H, Nakanishi K, et al. A new type of chromatographic support couldlead to higher separation efficiencies. Anal. Chem.,2001,73:420A~429A.
    [141] Zhou Z, Klupp Taylor R N, Kullmann S, et al. Mesoporous organosilicas with largecage-like pores for high efficiency immobilization of enzymes. Adv. Mater.,2011,23:2627~2632.
    [142] Tortajada M, Ramón D, Beltránd D, et al. Hierarchical bimodal porous silicas andorganosilicas for enzyme Immobilization. J. Mater. Chem.,2005,15:3859~3868.
    [143] Andersson J, Rosenholm J, Areva S, et al. Influences of material characteristics onibuprofen drug loading and release profiles from ordered micro-and mesoporous silica matrices.Chem. Mater.,2004,16:4160~4167.
    [144] Gao L, Sun J H, Li Y Z, et al. Bimodal mesoporous silicas functionalized with differentlevel and species of the amino groups for adsorption and controlled release of aspirin. Journal ofnanoscience and nanotechnology.,2011,11:6690~6697.
    [1] Nakanishi K, Tanaka N. Sol-gel with phase separation. Hierarchically porous materialsoptimized for high-performance liquid chromatography separations. Acc. Chem. Res.,2007,40:863~873.Wang J, Xiao Q, Zhou H, et al. Budded, mesoporous silica hollow spheres: hierarchical structurecontrolled by kinetic self-assembly. Adv. Mater.,2006,18:3284~3288.
    [2] Wang J, Xiao Q, Zhou H, et al. Budded, mesoporous silica hollow spheres: hierarchicalstructure controlled by kinetic self-assembly. Adv. Mater.,2006,18:3284~3288.
    [3] Zhao B, Collinson M. Well defined hierarchical templates for multimodal porous materialsfabrication. Chem. Mater.,2010,22:4312~4319.
    [4] Guo X, Deng Y, Tu B. et al. Facile synthesis of hierarchically mesoporous silica particles withcontrollable cavity in their surfaces. Langmuir,2010,26:702~708.
    [5] Stein A, Li F, Denny N R. Morphology control in colloidal crystal templating of inverse opals,hierarchical structures, and shaped particles. Chem. Mater.,2008,20:649~666.
    [6] Rathod S B, Ward T L. Hierarchical porous and composite particle architectures based on selfassembly and phase separation in droplets. J. Mater. Chem.,2007,17:2329~2335.7Zhang H, Hardy G C, Khimyak Y Z, et al. Synthesis of hierarchically porous silica and metaloxide beads using emulsion-templated polymer scaffolds. Chem. Mater.,2004,16,4245~4256.
    [8] Sel O, Kuang D, Thommes M, et al. Principles of hierarchical meso-and macroporearchitectures by liquid crystalline and polymer colloid tempating. Langmuir,2006,22,2311~2322
    [11] Sen T, Tiddy G J T, Casci J L, et al. One pot synthesis of hierarchically ordered porous-silicamaterials with three orders of length scale. Angew. Chem. Int. Ed.,2003,42:4649~4653.
    [12] Niu, D.; Ma, Z.; Li, Y.; Shi, J. Synthesis of core-shell structured dual-mesoporous silicaspheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc.,2010,132,15144~15147.
    [13] Kuang D, Brezesinski T, Smarsly B. Hierachical porous silica materials with a trimodalsystem using surfactant templates. J. Am. Chem. Soc.,2004,126:10534~10535.
    [14] Colfen H. Single crystals with complex form via amorphous precursors. Angew. Chem. Int.Ed.,2008,47:2351~2353.
    [15] Meldrum F C, C lfen H. Controlling mineral morphologies and structures in biological andsynthetic systems. Chem. Rev.,2008,108:4332~4432.
    [16] Antonietti M, Conrad J. Synthesis of very high ordered liquid crystalline phases by complexformation of polyacrylic acid with cationic surfactant. Angew. Chem. Int. Ed.,1994,33:1869~1870.
    [17] Faul C F J, Antonietti M. Ionic self-assembly: facile synthesis of supramolecular materials.Adv. Mater.,2003,15:673~683.
    [18] Piculell L, Norrman J, Svensson A, et al. Ionic surfactant with polymeric sounterions. Adv.Colloid Inter. Sci.,2009,147-148:228~236.
    [19] Zhou S, Chu B. Assembled materials: polyelectrolyte-surfactant complexes. Adv. Mater.,2000,12:545~556.
    [20] Ferber C v, L wen H. Polyelectrolyte-surfactant complexes: phases of self-assembledstructures. Faraday Discuss.,2005,128:389~405.
    [21] kkala O, Brinke G. Hierarchical self-assembly in polymeric complexes: Towards functionalMaterials. Chem. Commun.,2004,19:2131~2137.
    [22] Macknight W J, Ponomarenko E A, Tirrell D A. Self-assembled polyelectrolyte-surfactantcomplexes in nonaqueous solvents and in the solid state. Acc. Chem. Res.,1998,31:781~788.
    [23] Yang B, Edler K. Free-standing ordered mesoporous silica films synthesized withsurfactant-polyelectrolyte complexes at the air/water interface. Chem. Mater.,2009,21:1221~1223.
    [24] Wang J, Zhou H, Sun P, et al. Hollow Carved Single-Crystal Mesoporous SilicaTemplated byMesomorphous Polyelectrolyte-Surfactant Complexes. Chem. Mater.,2010,22:3829~3831.
    [25] Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniformdistribution of organic groups and inorganic oxide in their frameworks. J. Am. Chem. Soc.,1999,121:9611~9614.
    [26] Lee H, Kim J M, Stucky G D. Periodic mesoporous organosilica with a hexagonally pillaredlamellar structure. J. Am. Chem. Soc.,2009,131:14249~14251.
    [27] Li J, Wei Y, Deng Y, et al. An unusual example of morphology controlled periodicmesoporous organosilica single crystals. J. Mater. Chem.,2010,20:6460~6463.
    [28] Kruk M, Mandal M. Large-pore ethylene-bridged periodic mesoporous organosilicas withface-centered cubic structure. J. Phys. Chem. C,2010,114:20091~20099.
    [29] Jeong E Y, Burri A, Lee S Y, et al. Synthesis and catalytic behavior of tetrakis(4-carboxyphenyl) porphyrin-periodic mesoporous organosilica. J. Mater. Chem.,2010,20:10869~19875.
    [30] Park M, Park S S, Selvaraj M. Hydrophobic periodic mesoporous organosilicas for theadsorption of cytochrome c. J. Porous. Mater.,2011,18:21~223.
    [31] Park M, Park S S, Selvaraj M J, et al. Hydrophobic mesoporous materials for immobilizationof enzymes. Micro. Meso. Mater.,2009,124:76~83.
    [32] Zhou Z, Taylor R N T, Kullmann S, et al. Mesoporous organosilicas with large cage-likepores for high efficiency immobilization of enzymes. Adv. Mater.,2011,23:2627~2632.
    [33] Wu Z, Zhao D. Ordered mesoporous materials as adsorbents. Chem. Commun.,2011,47:3332~3338.
    [34] Zhang Q H, Lu F, Li C L, et al. An efficient synthesis of helical mesoporous silica nanorods.Chem. Lett.,2006,35,190~191.
    [35] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores. Science,1998,279:548~552.
    [36] Bradford M M A. Rapid and sensitive method for quantitation of microgram quantities ofprotein utilizing the principle of protein-dye-binding. Anal. Biochem.,1976,72:248~254.
    [37] Miyasaka, K.; Han, L.; Che, S.; Terasaki, O. A Lesson from the unusual morphology of silicamesoporous crystals: growth and close packing of spherical micelles with multiple Twinning.Angew. Chem. Int. Ed.,2006,45:6516~6519.
    [38] Leonard M, Strey H H. Measurement of phase transition free energies in polyelectrolyte-surfactant complexes. Macromolecules,2010,43:4379~4383.
    [39] Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganiccomposite materials. Stucky, G. D. Nature,1994,368:317~321.
    [40] Huo Q, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: supercageformation in a three-dimensional hexagonal array. Science,1995,268:1324~1327.
    [41] Wang J, Xiao Q, Zhou H, et al. Anionic surfactant-templated mesoporous silica (AMS)nano-spheres with radially oriented mesopores. J. Colloid Interface Sci.,2008,323:332~337.
    [42] Han L, Chen Q, Wang Y, et al. Synthesis of amino group functionalized monodispersedmesoporous silica nanospheres using anionic surfactantMicro. Meso. Mater.,2011,139:94~103.
    [43] Groen J C, Peffer L A A, Pérez-Ramírez, J. Pore size determination in modified micro-andmesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micro. Meso.Mater.,2003,60:1~17.
    [44] Kim M J, Ryoo R. Synthesis and pore size control of cubic mesoporous silica SBA-1. Chem.Mater.,1999,11:487~491.
    [45] Ting C C, Wu H Y, Pan Y C, et al. Sugar-assisted synthesis of ordered and stable cubicmesoporous silica SBA-1. J. Phys. Chem. C,2010,114:19322~19330
    [46]Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization andencapsulation, Chem. Mater.,2005,17,953~961.
    [47] Beck J S. U.S. Patent5,057,296,1991.
    [48] Mizutani M, Yamada Y, Nakamura T, et al. Anomalous pore expansion of highlymonodispersed mesoporous silica spheres and its application to the synthesis of porousferromagnetic composite. Chem. Mater.,2008,20:4777~4782.
    [49] Suteewong T, Sai H, Cohen R, et al. Highly aminated mesoporous silica nanoparticles withcubic pore structure. J. Am. Chem. Soc.,2011,133:172~175.
    [50] Wang Y, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization andencapsulation. Chem. Mater.,2005,17:953~961.
    [1] Che S, Kamiya S, Terasaki O, et al. J. Am. Chem. Soc.,2001,123:12089~12090.
    [2] Li J, Wei Y, Deng Y, et al. An unusual example of morphology controlled periodicmesoporous organosilica single crystals. J. Mater. Chem.,2010,20:6460~6463.
    [3] Che S, Sakamoto Y, Terasaki O, et al. Control of crystal morphology of SBA-1mesoporoussilica. Chem. Mater.,2001,13:2237~2239.
    [4] Yoshitake H, Yokoi T, Tatsumi T. Adsorption of chromate and arsenate by amino-functionalized MCM-41and SBA-1. Chem. Mater.,2002,14:4603~4610.
    [5] Kim M J, Ryoo R. Synthesis and pore size control of cubic mesoporous silica SBA-1. Chem.Mater.,1999,11:487~491.
    [6] Yu C, Yu Y, Zhao D. Highly ordered large caged cubic mesoporous silica structures templatedby triblock PEO–PBO–PEO copolymer. Chem. Commun.,2000,575~576.
    [7] Garcia-Bennett A E, Miyasaka K, Terasaki O, et al. Structural solution of mesocaged materialAMS-8. Chem. Mater.,2004,16:3597~3605.
    [8] Sakamoto Y, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages ofthree-dimensional mesoporous materials. Nature,2000,408:449~453.
    [9] Kim T W, Ryoo R, Kruk M, et al. Tailoring the pore structure of SBA-16silica molecularsieve through the use of copolymer blends and control of synthesis temperature and time. J. Phys.Chem. B,2004,108:11480~11489.
    [10] Huo Q, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganicmolecular species into nanocomposite biphase arrays. Chem. Mater.,1994,6,1176~1191.
    [11] Huo Q, Stucky G D. Mesostructure design with gemini surfactants: supercage formation in athree-dimensional hexagonal array. Science,1995,268:1324-1327.
    [12] Vinu A, Murugesan V, Hartmann M. Pore size engineering and mechanical stability of thecubic mesoporous molecular sieve SBA-1. Chem. Mater.,2003,15:1385~1393.
    [13] Das D, Tsai C M, Cheng S. Synthesis of heteroatom substituted SBA-15by the“pH-adjusting” method. Chem. Commun.,1999,473~477.
    [14] Kim J M, Jun S, Ryoo R. Improvement of hydrothermal stability of mesoporous silica usingsalts: reinvestigation for time-dependent effects. J. Phys. Chem. B,1999,103:6200~6205.
    [15] Li C, Wang Y, Guo Y, et al. Synthesis of highly ordered, extremely hydrothermal stableSBA-15/Al-SBA-15under the assistance of sodium chloride. Chem. Mater.,2007,19:173~178.
    [16] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores. Science,1998,279:548~552.
    [17] Ooi Y S, Zakaria R, Mohamed A R, et al. Hydrothermal stability and catalytic activity ofmesoporous aluminum-containing SBA-15. Catal. Commun.,2004,5:441~445.
    [18] Vinu A, Sawant D P, Ariga K, et al. Benzylation of benzene and other aromatics by benzylchloride over mesoporous AlSBA-15catalysts. Micro. Meso. Mater.,2005,80:195~203.
    [19] Chiu J J, Pine D J, Bishop S T, et al. Friedel–Crafts alkylation properties of aluminosilicaSBA-15meso/macroporous monoliths and mesoporous powders. J. Catal.,2004,221:400~412.
    [20] Jun S, Ryoo R. Aluminum impregnation intomesoporous silica molecular sieves for catalyticapplication to friedel–crafts alkylation. J. Catal.,2000,195:237~243.
    [21] Wu S, Han Y, Zou Y C, et al. Synthesis of heteroatom substituted SBA-15by the“pH-adjusting” method. Chem. Mater.,2004,16:486~492.
    [22] Ryoo R, Jun S. Improvement of hydrothermal stability of MCM-41using salt effects duringthe crystallization process. J. Phys. Chem. B,1997,101:317~320.
    [23] Zhang Z, Han Y, Xiao F S, et al. Mesoporous aluminosilicates with ordered hexagonalstructure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J. Am.Chem. Soc.,2001,123:5014~5021.
    [24] Masika E, and Mokaya R. Mesoporous aluminosilicates from a zeolite BEA recipe. Chem.Mater.,2011,23:2491~2498.
    [25] Han Y, Li N, Zhao L, et al. Understanding of the high hydrothermal stability of themesoporous materials prepared by the assembly of triblock copolymer with preformed zeoliteprecursors in acidic Media. J. Phys. Chem. B,2003,107:7551~7556.
    [26] Gracia M J, Losada E, Luque R, et al. Activity of gallium and aluminum SBA-15materials inthe Friedel–Crafts alkylation of toluene with benzyl chloride and benzyl alcohol. AppliedCatalysis A: General,2008,349:148~155.
    [27] Vinu A, Srinivasu P, Miyahara M, et al. Preparation and catalytic performances ofultralarge-pore TiSBA-15mesoporous molecular sieves with very high Ti content. J. Phys. Chem.B,2006,110:801~806.
    [34] Du X, He J. Spherical silica micro/nanomaterials with hierarchical structures: synthesis andapplications. Nanoscale,2011,3:3984~4002.
    [35] Xu M, Feng D, Dai R, et al. Synthesis of hierarchical nanoporous silica films for controlleddrug loading and release. Nanoscale,2011,2:3329~3333.
    [36] Hua Z L, Zhou J, Shi J L. Recent advances in hierarchically structured zeolites: synthesis andmaterial performances. Chem. Commun.,2011,47:10536~10547.
    [37] Guo X, Deng Y, Tu B, et al. Facile Synthesis of hierarchically mesoporous silica particleswith controllable cavity in their surfaces. Langmuir,2010,26:702~708.
    [38] Zhou Z, Taylor R N K, Kullmann S, et al. Mesoporous organosilicas with large cage-likepores for high efficiency immobilization of enzymes. Adv. Mater.,2011,23:2627~2632.
    [39] Sen T, Tiddy G J T, Casci J L, et al. One-pot synthesis of hierarchically ordered porous-silicamaterials with three orders of length scale. Angew. Chem. Int. Ed.,2003,42:4649~4653.
    [40] Hartmann M, Vinu A, Elangovan S P, et al. Direct synthesis and catalytic evaluation ofAlSBA-1. Chem. Commun.,2002,11:1238~1239.
    [41]Li Q, Wu Z, Tu B, et al. Highly hydrothermal stability of ordered mesoporousaluminosilicates Al-SBA-15with high Si/Al ratio. Micro. Meso. Mater.,2010,135:95~104.
    [42] Venkatachalam K, Palanichamy M, Murugesan V. Acetalization of heptanal over Al-SBA-1molecular sieve. Catal. Commun.,2010,12:299~303.
    [43] Balasubramanian V V, Anand C, Pal R R, et al. Characterization and the catalyticapplications of mesoporous AlSBA-1. Micro. Meso. Mater.,2009,121:18~25.
    [44] Hartmann M, Vinu A, Elangovan S P, et al. Direct synthesis and catalytic evaluation ofAlSBA-1. Chem. Commun.,2002,1238~1239.
    [45] Liu M_C, Chang C S, Chan J C C, et al. An alkaline route to prepare hydrothermally stablecubic Pm3n mesoporous silica using CTEA template. Micro. Meso. Mater.,2009,121:41~51.
    [46] Gu X, Jiang T, Tao H, et al. Hydrothermally highly stable acidic mesoporous aluminosilicatespheres with radial channels. J. Mater. Chem.,2011,21:880~886.
    [47] Li C, Wang Y, Guo Y, et al. Synthesis of highly ordered, extremely hydrothermal stableSBA-15/Al-SBA-15under the assistance of sodium chloride. Chem. Mater.2007,19:173~178.
    [48] Perego C, Amarilli S, Carati A, et al. Mesoporous silica-aluminas as catalysts for thealkylation of aromatic hydrocarbons with olefins. Micro. Meso. Mater.,1999,27:345~354.
    [49] Botella P, Corma A, López-Nieto J M, et al. Acylation of toluene with acetic anhydride overbeta zeolites: influence of reaction conditions and physicochemical properties of the catalysts. J.Catal.,2000,195:161~168.
    [1] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanoparticles of differentshapes. Chem. Rev.,2005,105:1025~1102.
    [2] Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization,and application. Angew. Chem. Int. Ed.,2007,46:1222~1244.
    [3] Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis and biomedicineapplications. Acc. Chem. Res.,2009,42:1097~1107.
    [4] Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells: bioconjugated quantum dots fortargeted and nonspecific extracellular and intracellular imaging. Chem. Soc. Rev.,2010,39:3031~3056.
    [5] Goesmann H, Feldmann C., Nanoparticulate functional materials. Angew. Chem. Int. Ed.,2010,49:1362~1395.
    [6] Pellegrino T, Kudera S, Liedl T, et al. On the development of colloidal nanoparticles towardsmultifunctional structure and their possible use for biological applications. Small,2005,1:48~63.
    [7] He Q, Shi J, Zhao J, et al. Bottom-up tailoring of nonionic surfactant-templated mesoporoussilica nanmaterials by a novel composite liquid crystal templating mechanism. J. Mater. Chem.,2009,19:6498~6503.
    [8] Trewyn B G, Giri S, Slowing I I, et al. Mesoporous silica nanoparticle based controlled release,drug delivery, and biosensor systems. Chem. Commun.,2007,31:3236~3245.
    [9] He Q, Shi J. Mesoporous silica nanoparticle based on nano drug delivery systems: synthesis,controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem.,2011,21:5845~5855.
    [10] Slowing I I, Vivero-Escoto J L, Trewyn B G, et al. Mesoporous silica nanoparticles:structural design and applications. J. Mater. Chem.,2010,20:7924~7937.
    [11] Lu C W, Hung Y, Hsiao J K, et al. Bifunctional magnetic silica nanoparticles for highlyefficient human stem cell labeling. Nano. Lett.,2007,7:149~154.
    [12] Tsai C P, Hung Y, Chou Y H, et al. High-content paramagnetic fluorescent mesoporous silicananorods as a multifunctional cell-imaging probe. Small,2008,4:186~191.
    [13] Manzano M, Vallet-Regí M. New developments in ordered mesoporous materials for drugdelivery. J. Mater. Chem.,2010,20:5593~5604.
    [14] Slowing I I, Trewyn B G, Giri S, et al. Mesoporous silica nanoparticles for drug delivery andbiosensing applications. Adv. Funct. Mater.,2007,17:1225~1236.
    [15] García A, Colilla M, Izquierdo-Barba I I, et al. Incorporation of phosphorus intomesostructured silicas: a novel approach to reduce the SiO2leaching in water. Chem. Mater.,2009,21:4135~4145.
    [16] Slowing I I, Wu C W, Vivero-Escoto J L, et al. Mesoporous silica nanoparticle for reducinghemolytic activity towards mammalian red blood cells. Small,2009,5:57~62.
    [17] Lin Y S, Haynes C L. Impacts of mesoporous silica nanoparticle size, pore ordering, andpore integrity on hemolytic activity. J. Am. Chem. Soc.,2010,132:4834~4842.
    [18] Lu J, Liong M, Zink J I, et a. Mesoporous silica nanoparticles as a delivery system forhydrophobic anticancer drugs. Small,2007,3:1341~1346.
    [19] Yamada Y, Yano K. Synthesis of monodispersed super-microporous/mesoporous silicaspheres with diameters in the low submicron range. Micro. Meso. Mater.,2006,93:190~198.
    [20] M ller K, Kobler J, Bein T. Colloidal suspensions of nanometer-sized mesoporous silica. Adv.Funct. Mater.,2007,17:605~612.
    [21] Han Y, Ying J Y. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticleswith various mesoporous structures. Angew. Chem. Int. Ed.,2005,44:288~292.
    [22] Fowler C E, Khushalani D, Lebeau B, et al. Nanoscale materials with mesostructuredinteriors. Adv. Mater.,2001,13:649-652.
    [23] He Q, Cui X, Cui F, et al. Size-controlled synthesis of monodispersed mesoporous silicanano-spheres under a neutral conditon. Micro. Meso. Mater.,2009,117:609-616.
    [24] Yamada Y, Yano K. Synthesis of monodispersed super-microporous/mesoporous silicaspheres with diameters in the low submicron range. Micro. Meso. Mater.,2006,93:190~198.
    [25] Han Y, Ying J Y. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticleswith various mesoporous structures. Angew. Chem. Int. Ed.,2005,117:292~296.
    [26] Cai Q, Luo Z S, Pang W Q, et al. Dilute solution routes to various controllable morphologiesof MCM-41silica with a basic medium. Chem. Mater.2001,13:258~263.
    [28] Sadasivan S, Fowler C E, Khushalani D, et al. Nucleation of MCM-41nanoparticles byinternal reorganization of disordered and nematic-like silica surfactant clusters. Angew. Chem. Int.Ed.2002,41:2151~2153.
    [29] Niu D C, Ma Z, Li Y S, and Shi J L. Synthesis of core-shell structured dual-mesoporoussilica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc.2010,132,15144-15147.
    [30] Xie Z, Henderson E J, Dag, et al. Periodic mesoporous hydridosilica-synthesis of an“impossible” material and its thermal transformation into brightly photoluminescent periodicmesoporous nanocrystal silicon-silica composite. J. Am. Chem. Soc.,2011,133:5094~5102
    [31] Zhu H, Jones D J, Zajac J, et al. Chem. Commun.,2001,2568~2569.
    [32] Henderson E J, Kelly J A, Veinot J G C. Influence of HSiO1.5sol-gel polymer structure andcomposition on the size and luminescent properties of silicon nanocrystals. Chem. Mater.,2009,21:5426~5434.
    [33] Dag, Henderson E J, Wang W, et al. Spatially confined redox chemistry in periodicmesoporous hydridosilica-nanosilver grown in reducing nanopores. J. Am. Chem. Soc.,2011,133:17454~17462.