利用电场辅助制备结构取向的质子导电聚合物膜材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是具有极大潜在应用价值的新能源电池。其核心组件为质子交换膜(PEM),而PEM的电导率对于PEMFC的性能至关重要。组成PEM的材料,无论是全氟磺酸(Nafion)或是碳氢基离子聚合物,饱和湿度下都具有分相的两相结构特征,包含一个亲水相和一个憎水相,而质子是在由亲水相组成的曲折通道中传递的。为了提高PEM电导率,人们提出了控制聚合物微相形态的新思路,试图通过控制PEM的憎水、亲水两相形态得到直通的亲水相质子通道。本文在使用电场构筑PEM内垂直方向取向的质子通道方面进行了探索和尝试。
     使用分相的浑浊溶液铸膜是本文的创新点之一。因为发现电场只能对分相体系有取向作用,所以我们在Nafion/DMF的均相溶液中添加了低极性的非溶剂组分CCl4,使溶液呈现出浑浊的非均相状态,人为制造出分相界面。对此非均相溶液施加垂直方向的电场铸膜,PEM中的离子通道实现了在垂直方向的取向,小角X光和广角X光测试证明了聚合物分子的规整排列形态,垂直方向的电导率也因此得到提高。由非均相铸膜液挥发溶剂制得的PEM的断裂强度为9.2-11.8MPa,膜的强度并没有因为溶剂的溶解性差而降低,反而因为电场下Nafion分子的规整排列提高了聚合物膜的结晶度,增强了膜的强度。更特别的是我们发现仅在Nafion/DMF的均相溶液中添加低极性的非溶剂组分就可以使PEM的电导率提高达60%左右,这种简单易行的方法具有很高的应用价值。
     通过控制自由基聚合反应,我们首次合成了两种新的嵌段共聚物聚(1H,1H-五氟-正丙基丙烯酸酯-b-苯乙烯磺酸)和聚(丙烯酸烯丙酯-b-苯乙烯磺酸)。聚(1H,1H-五氟-正丙基丙烯酸酯-b-苯乙烯磺酸)具有典型的两性嵌段共聚物的自组装特性,以聚合物的水溶液挥发溶剂铸膜可以得到规整的分相结构形态。在电场的作用下可以实现该规整相形态的取向控制,垂直向电场处理使相应方向的PEM电导率增加了两倍。聚(丙烯酸烯丙酯-b-苯乙烯磺酸)分子中带有大量的双键交联基团,交联后可以大大提高膜的强度和耐溶剂溶解性能。交联膜的IEC为2.3时室温饱和湿度的电导率比商品Nafion膜提高一倍,具有耐甲醇、水溶解,吸水率高,合成工艺简单,原材料价格便宜、易得的特点。
     实际利用电场对PEM内质子通道的取向作用,我们对于TiO2纳米颗粒掺杂的磺化聚醚醚酮(SPEEK)的溶液施加了一个垂直方向的电场。经电场处理的PEM的垂直向电导率提高了75%。掺杂在铸膜液中的TiO2无机颗粒通过垂直方向上的往复运动避免了颗粒的沉降和团聚,从而被分散的更加均匀,因此提高了掺杂膜的机械强度。我们还探索了使PEM内导电通道取向的最优化电场施加参数,结果表明,施加低频率、高强度的交流电场更有利于实现PEM中亲水通道的取向。
Polymer exchange membrane fuel cells (PEMFC) are considered to be a very promisingalternative power source for a wide spectrum of applications. As one of the key components inPEMFCs, the proton exchange membranes (PEMs) consist of a hydrophilic proton conductivephase and a hydrophobic non-conductive phase. These two phases are randomly distributed inhydrated PEMs, and the hydrated hydrophilic phase forms tortuous channels for protontransportation within the PEMs. One attractive new approach of improving conductivity ofPEMs is to construct straight proton conducting channels. In this work a new method of electricfield treatment is proposed and tested to prepare PEMs with oriented proton channels.
     As the phase separation has been found a critical factor for the external electric field to beeffective, a novel solution casting method of membrane preparation is explored to improve theconductivity of PEMs. A high AC electric field is applied to a heterogeneous Nafion solutionwhile evaporating the solvents, leaving aligned proton channels in the solidified membrane, andthe SAXS and WAXS have been given as direct evidences. Therefore, the trans-planeconductivity of the PEM is increased. A Non-solvent of low polarity carbon tetrachloride (CCl4)causes phase separation in the casting solution, which facilitates the Nafion ionomer to respondto the applied electric field. Despite the severe phase separation in the casting solution, theresultant electro-casting membrane shows a high mechanical strength of11.8MPa, as a resultof the orientation induced high crystallinity fo the molecular chains. The most interestingdiscovery is that the conductivity of PEMs can be increased by60%by just adding somenon-solvent into the casting solution, such a great improvement by the cheap and conveniencemethod.
     Two diblock copolymers of poly(1H,1H-pentafluoro-n-propyl acrylate-b-sulfonate styrene acid)(Polymer1) and poly (allyl acrylate-b-sulfonate styrene acid)(Polymer3) have beensynthesized by RAFT polymerization which can be used as PEMs. Polymer1is a typicalamphiphilic diblock copolymer which can be self-assembled into some ordered phase structures,and an external electric field makes the hydrophilic phase oriented in the trans-plane direction.The trans-plane conductivity of PEM increases by200%after the electric field treatment.Polymer3contains plenty of allyl groups as cross-linker in the diblock copolymer, which can beused to improve the solvent resistance and mechanical property of PEM. The Polymer3with anIEC of2.3can have a conductivity twice as that of Nafion at room temperature saturatedhumidity after cross-linking.
     With the aim to improve the conductivity of PEMs, an external AC electric field is applied to asulfonated poly (ether ether ketone)(SPEEK)-titanium (IV) dioxide (TiO2) hybrid castingsolution during solvent evaporation, and resulting in increased conductivity by75%in thetrans-plane direction versus normal methods. In addition, reciprocation of TiO2under the ACelectric field prevents the nanoparticles from aggregating and improves mechanical strength ofthe PEMs. Factors affect the proton channels’ alignment degree such as the applied fieldmagnitude and frequency are also investigated, and an AC electric field of low frequency andhigh magnitude which make the electric field more effective has been suggested.
引文
[1] History of Fuel Cells in, SAE International,http://www.sae.org/fuelcells/fuelcells-history.htm,2013.
    [2] History in, Fuel Cell Today, http://www.fuelcelltoday.com/about-fuel-cells/history,2013.
    [3] W.R. Grove, XXIV. On voltaic series and the combination of gases by platinum,The London and Edinburgh Philosophical Magazine and Journal of Science,14(1839)127-130.
    [4] W.R. Grove, LXXII. On a gaseous voltaic battery,(1842).
    [5] Fuel cell, in, http://en.wikipedia.org/wiki/Fuel_cell,2013.
    [6] R.E. Billings, Biography of Roger E. Billings, Billings Energy Corporation in,International Association for Hydrogen Energy,http://www.iahe.org/advisory.asp?did=2,2004.
    [7] B. McNicol, Electrocatalytic problems associated with the development of directmethanol-air fuel cells, Journal of Electroanalytical Chemistry and InterfacialElectrochemistry,118(1981)71-87.
    [8] S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: aselective review, J. Electroanal. Chem.,461(1999)14-31.
    [9] Direct Methanol Fuel Cell as the Method to Replenish Energy, in,http://www.hydrogen-fuelcells.com/2012/08/direct-methanol-fuel-cell-as-method-to.html,2011.
    [10] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymerelectrolyte membrane fuel cells: Technology, applications, and needs on fundamentalresearch, Appl. Energy,88(2011)981-1007.
    [11] DOE, Hydrogen and Fuel Cell Activities, Progress, and Plans: Report toCongress in, http://www.hydrogen.energy.gov/pdfs/epact_report_sec811.pdf,2009.
    [12] DOE-EERE, Fuel cell technology challenges, in,http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_challenges.html,2008.
    [13] D.M. Craig Gittleman, Scott Jorgensen, James Waldecker, Shinichi Hirano, MarkMehall, Tarek Abdel-Baset, Automotive Fuel Cell R&D Needs, in, USCAR/FreedomCAR Fuel Cell Tech Team Industry Membershttp://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/fuelcell_pre-solicitation_wkshop_mar10_gittleman.pdf,2010.
    [14] S. Zhang, X.-Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, Areview of platinum-based catalyst layer degradation in proton exchange membranefuel cells, J. Power Sources,194(2009)588-600.
    [15] A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: Areview, Int. J. Hydrogen Energy,30(2005)1297-1302.
    [16] J. Butler, Portable fuel cell survey2009, Fuel Cell Today, UK, April,(2009).
    [17] World’s largest ‘hydrogen town project’ starts in Japan, in,http://www.japanfs.org/en/pages/028694.html,2009.
    [18] FuelCellToday, Korea to Build World's Largest Hydrogen-Powered Town, in,http://www.fuelcelltoday.com/news-events/news-archive/2012/may/korea-to-build-worlds-largest-hydrogen-powered-town,2012.
    [19] M.R. Tant, K.A. Mauritz, G.L. Wilkes, Ionomers: synthesis, structure, propertiesand applications, Springer,1997.
    [20] K.A. Mauritz, R.B. Moore, State of understanding of Nafion, Chem. Rev.(Washington, DC, U. S.),104(2004)4535-4585.
    [21] A.Z. Weber, J. Newman, Modeling transport in polymer-electrolyte fuel cells,Chemical Reviews-Columbus,104(2004)4679-4726.
    [22] Y. Wang, Y. Kawano, S.R. Aubuchon, R.A. Palmer, TGA and time-dependentFTIR study of dehydrating Nafion-Na membrane, Macromolecules,36(2003)1138-1146.
    [23] A. Eisenberg, Clustering of ions in organic polymers. A theoretical approach,Macromolecules,3(1970)147-154.
    [24] K. Mauritz, C. Hora, A. Hopfinger, Theoretical model for the structures ofionomers: application to Nafion materials, Ions in Polymers,187(1980)123-144.
    [25] T. Gierke, G. Munn, F. Wilson, The morphology in Nafion perfluorinatedmembrane products, as determined by wide‐and small‐angle x‐ray studies,Journal of Polymer Science: Polymer Physics Edition,19(1981)1687-1704.
    [26] S. Lowry, K. Mauritz, An investigation of ionic hydration effects inperfluorosulfonate ionomers by Fourier transform infrared spectroscopy, J. Am. Chem.Soc.,102(1980)4665-4667.
    [27] M. Fujimura, T. Hashimoto, H. Kawai, Small-angle X-ray scattering study ofperfluorinated ionomer membranes.1. Origin of two scattering maxima,Macromolecules,14(1981)1309-1315.
    [28] H.W. Starkweather Jr, Crystallinity in perfluorosulfonic acid ionomers andrelated polymers, Macromolecules,15(1982)320-323.
    [29] W.C. Forsman, Effect of segment-segment association on chain dimensions,Macromolecules,15(1982)1032-1040.
    [30] W.Y. Hsu, T.D. Gierke, Elastic theory for ionic clustering in perfluorinatedionomers, Macromolecules,15(1982)101-105.
    [31] W.Y. Hsu, T.D. Gierke, Ion transport and clustering in Nafion perfluorinatedmembranes, J. Membr. Sci.,13(1983)307-326.
    [32] K.A. Mauritz, C. Rogers, A water sorption isotherm model for ionomermembranes with cluster morphologies, Macromolecules,18(1985)483-491.
    [33] H. Yeager, A. Steck, Cation and water diffusion in Nafion ion exchangemembranes: influence of polymer structure, J. Electrochem. Soc.,128(1981)1880-1884.
    [34] W. MacKnight, W. Taggart, R. Stein, A model for the structure of ionomers, in:Journal of Polymer Science: Polymer Symposia, Wiley Online Library,1974, pp.113-128.
    [35] E. Roche, R. Stein, T. Russell, W. MacKnight, Small‐angle x‐ray scatteringstudy of ionomer deformation, Journal of Polymer Science: Polymer Physics Edition,18(1980)1497-1512.
    [36] M. Fujimura, T. Hashimoto, H. Kawai, Small-angle X-ray scattering study ofperfluorinated ionomer membranes.2. Models for ionic scattering maximum,Macromolecules,15(1982)136-144.
    [37] E. Roche, M. Pineri, R. Duplessix, Phase separation in perfluorosulfonateionomer membranes, Journal of Polymer Science: Polymer Physics Edition,20(1982)107-116.
    [38] B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes, M. Thomas,Distribution of the "micelles" in hydrated perfluorinated ionomer membranes fromSANS experiments, Journal De Physique,51(1990)1341-1354.
    [39] M.H. Litt, A reevaluation of Nafion morphology, Polym. Prepr,38(1997)80.
    [40] G. Gebel, R.B. Moore, Small-angle scattering study of short pendant chainperfuorosulfonated ionomer membranes, Macromolecules,33(2000)4850-4855.
    [41] G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomersfrom dry membrane to solution, Polymer,41(2000)5829-5838.
    [42] H.-G. Haubold, T. Vad, H. Jungbluth, P. Hiller, Nano structure of Nafion: aSAXS study, Electrochim. Acta,46(2001)1559-1563.
    [43] L. Rubatat, A.L. Rollet, G. Gebel, O. Diat, Evidence of elongated polymericaggregates in Nafion, Macromolecules,35(2002)4050-4055.
    [44] K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafionfuel-cell membranes, Nat. Mater.,7(2007)75-83.
    [45] P. Choi, N.H. Jalani, R. Datta, Thermodynamics and proton transport in Nafion II.Proton diffusion mechanisms and conductivity, J. Electrochem. Soc.,152(2005)E123-E130.
    [46] B. Yang, A. Manthiram, Comparison of the small angle X-ray scattering study ofsulfonated poly (etheretherketone) and Nafion membranes for direct methanol fuelcells, J. Power Sources,153(2006)29-35.
    [47] C.H. Park, C.H. Lee, J.-Y. Sohn, H.B. Park, M.D. Guiver, Y.M. Lee, Phaseseparation and water channel formation in sulfonated block copolyimide, The Journalof Physical Chemistry B,114(2010)12036-12045.
    [48] Y. Yang, S. Holdcroft, Synthetic strategies for controlling the morphology ofproton conducting polymer membranes, Fuel Cells,5(2005)171-186.
    [49] Y. Yang, Z. Shi, S. Holdcroft, Synthesis of sulfonated polysulfone-block-PVDFcopolymers: enhancement of proton conductivity in low ion exchange capacitymembranes, Macromolecules,37(2004)1678-1681.
    [50] J. Ding, C. Chuy, S. Holdcroft, A self-organized network of nanochannelsenhances ion conductivity through polymer films, Chem. Mater.,13(2001)2231-2233.
    [51] X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, K.-i. Okamoto, Novel sulfonatedpolyimides as polyelectrolytes for fuel cell application.2. Synthesis and protonconductivity of polyimides from9,9-bis (4-aminophenyl) fluorene-2,7-disulfonicacid, Macromolecules,35(2002)6707-6713.
    [52] J. Won, H.H. Park, Y.J. Kim, S.W. Choi, H.Y. Ha, I.-H. Oh, H.S. Kim, Y.S. Kang,K.J. Ihn, Fixation of nanosized proton transport channels in membranes,Macromolecules,36(2003)3228-3234.
    [53] C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Solublesulfonated naphthalenic polyimides as materials for proton exchange membranes,Polymer,42(2001)359-373.
    [54] B.R. Breslau, I.F. Miller, A hydrodynamic model for electroosmosis, Industrial&Engineering Chemistry Fundamentals,10(1971)554-565.
    [55] K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in protonconductors for fuel-cell applications: simulations, elementary reactions, andphenomenology, Chemical Reviews-Columbus,104(2004)4637-4678.
    [56] N.W. Deluca, Y.A. Elabd, Polymer electrolyte membranes for the direct methanolfuel cell: A review, Journal of Polymer Science Part B: Polymer Physics,44(2006)2201-2225.
    [57] D. Seeliger, C. Hartnig, E. Spohr, Aqueous pore structure and proton dynamics insolvated Nafion membranes, Electrochim. Acta,50(2005)4234-4240.
    [58] A. Okawara, H. Horie, H. Miyake, H. Nishimura, K. Saijo, T. Hashimoto,Real-time analysis of small-angle X-ray scattering from perfluorocarboxylic ionomermembranes during electrodialysis, Polymer,33(1992)1579-1582.
    [59] H.Y. Jeong, B.K. Kim, Electrochemical behavior of a new type of perfluorinatedcarboxylate membrane/platinum composite, J. Appl. Polym. Sci.,99(2006)2687-2693.
    [60] R. Yeo, C.H. Cheng, Swelling studies of perfluorinated ionomer membranes, J.Appl. Polym. Sci.,32(1986)5733-5741.
    [61] M.E. Dry, Advances in Fishcher-Tropsch chemistry, Industrial&EngineeringChemistry Product Research and Development,15(1976)282-286.
    [62] B. Smitha, S. Sridhar, A. Khan, Solid polymer electrolyte membranes for fuelcell applications—a review, J. Membr. Sci.,259(2005)10-26.
    [63] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science andtechnology from the1960s to the year2000: Part I. Fundamental scientific aspects, J.Power Sources,102(2001)242-252.
    [64] Y. Sone, P. Ekdunge, D. Simonsson, Proton Conductivity of Nafion117asMeasured by a Four‐Electrode AC Impedance Method, J. Electrochem. Soc.,143(1996)1254-1259.
    [65] N. Miyake, J. Wainright, R. Savinell, Evaluation of a sol-gel derived nafion/silicahybrid membrane for polymer electrolyte membrane fuel cell applications: II.Methanol uptake and methanol permeability, J. Electrochem. Soc.,148(2001)A905-A909.
    [66] N. Miyake, J. Wainright, R. Savinell, Evaluation of a sol-gel derivedNafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications:I. Proton conductivity and water content, J. Electrochem. Soc.,148(2001)A898-A904.
    [67] Q. Deng, R. Moore, K. Mauritz, Nafion/(SiO2, ORMOSIL, anddimethylsiloxane) hybrids via in situ sol–gel reactions: characterization offundamental properties, J. Appl. Polym. Sci.,68(1998)747-763.
    [68] E. Chalkova, M.B. Pague, M.V. Fedkin, D.J. Wesolowski, S.N. Lvov, Nafion∕TiO2Proton Conductive Composite Membranes for PEMFCs Operating at ElevatedTemperature and Reduced Relative Humidity, J. Electrochem. Soc.,152(2005)A1035-A1040.
    [69] Z. Liu, B. Guo, J. Huang, L. Hong, M. Han, L.M. Gan, Nano-TiO2coatedpolymer electrolyte membranes for direct methanol fuel cells, J. Power Sources,157(2006)207-211.
    [70] H. Tang, Z. Wan, M. Pan, S.P. Jiang, Self-assembled Nafion–silica nanoparticlesfor elevated-high temperature polymer electrolyte membrane fuel cells, Electrochem.Commun.,9(2007)2003-2008.
    [71] I. Nicotera, T. Zhang, A. Bocarsly, S. Greenbaum, NMR characterization ofcomposite polymer membranes for low-humidity PEM fuel cells, J. Electrochem. Soc.,154(2007) B466-B473.
    [72] S. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, Inorganicmodification of proton conductive polymer membranes for direct methanol fuel cells,J. Membr. Sci.,203(2002)215-225.
    [73] V. Silva, B. Ruffmann, H. Silva, Y. Gallego, A. Mendes, L. Madeira, S. Nunes,Proton electrolyte membrane properties and direct methanol fuel cell performance: I.Characterization of hybrid sulfonated poly (ether ether ketone)/zirconium oxidemembranes, J. Power Sources,140(2005)34-40.
    [74] C.H. Rhee, H.K. Kim, H. Chang, J.S. Lee, Nafion/sulfonated montmorillonitecomposite: a new concept electrolyte membrane for direct methanol fuel cells, Chem.Mater.,17(2005)1691-1697.
    [75] H. Munakata, H. Chiba, K. Kanamura, Enhancement on proton conductivity ofinorganic–organic composite electrolyte membrane by addition of sulfonic acid group,Solid State Ionics,176(2005)2445-2450.
    [76] C. Bi, H. Zhang, Y. Zhang, X. Zhu, Y. Ma, H. Dai, S. Xiao, Fabrication andinvestigation of SiO2supported sulfated zirconia/Nafion self-humidifyingmembrane for proton exchange membrane fuel cell applications, J. Power Sources,184(2008)197-203.
    [77] H.-M.Z. Xiao-Bing Zhu, Yong-Min Liang, Yu Zhang, Bao-Lian Yi, A NovelPTFE-reinforced multilayer self-humidifying composite membrane for PEM fuel cells,Electrochem. Solid-State Lett.,9(2006) A49-A52.
    [78] X.-M. Yan, P. Mei, Y. Mi, L. Gao, S. Qin, Proton exchange membrane withhydrophilic capillaries for elevated temperature PEM fuel cells, Electrochem.Commun.,11(2009)71-74.
    [79] B.R. Limoges, R.J. Stanis, J.A. Turner, A.M. Herring, Electrocatalyst materialsfor fuel cells based on the polyoxometalates [PMo(12n)VnO40](3+n)(n=0–3),Electrochim. Acta,50(2005)1169-1179.
    [80] B. Tazi, O. Savadogo, Parameters of PEM fuel-cells based on new membranesfabricated from Nafion, silicotungstic acid and thiophene, Electrochim. Acta,45(2000)4329-4339.
    [81] S. Malhotra, R. Datta, Membrane‐supported nonvolatile acidic electrolytesallow higher temperature operation of proton‐exchange membrane fuel cells, J.Electrochem. Soc.,144(1997) L23-L26.
    [82] M. Casciola, G. Bagnasco, A. Donnadio, L. Micoli, M. Pica, M. Sganappa, M.Turco, Conductivity and methanol permeability of Nafion–zirconium phosphatecomposite membranes containing high aspect ratio filler particles, Fuel Cells,9(2009)394-400.
    [83] J. Zhang, Y. Wang, Modeling the Effects of Methanol Crossover on the DMFC,Fuel Cells,4(2004)90-95.
    [84] Y. Zhang, H. Zhang, C. Bi, X. Zhu, An inorganic/organic self-humidifyingcomposite membranes for proton exchange membrane fuel cell application,Electrochim. Acta,53(2008)4096-4103.
    [85] Z. Liang, T. Zhao, New DMFC anode structure consisting of platinum nanowiresdeposited into a Nafion membrane, The Journal of Physical Chemistry C,111(2007)8128-8134.
    [86] H. Uchida, Y. Mizuno, M. Watanabe, Suppression of methanol crossover anddistribution of ohmic resistance in Pt-dispersed PEMs under DMFC operationexperimental analyses, J. Electrochem. Soc.,149(2002) A682-A687.
    [87] B. McCool, G. Xomeritakis, Y. Lin, Composition control and hydrogenpermeation characteristics of sputter deposited palladium–silver membranes, J.Membr. Sci.,161(1999)67-76.
    [88] Z. Ma, P. Cheng, T. Zhao, A palladium-alloy deposited Nafion membrane fordirect methanol fuel cells, J. Membr. Sci.,215(2003)327-336.
    [89] Y.-M. Kim, K.-W. Park, J.-H. Choi, I.-S. Park, Y.-E. Sung, A Pd-impregnatednanocomposite Nafion membrane for use in high-concentration methanol fuel inDMFC, Electrochem. Commun.,5(2003)571-574.
    [90]吴洪,直接甲醇燃料电池用阻醇质子导电膜的研究[博士学位论文],天津;天津大学,2000.
    [91] S. Mollá, V. Compa, Performance of composite Nafion/PVA membranes fordirect methanol fuel cells, J. Power Sources,196(2011)2699-2708.
    [92] M. Smit, A. Ocampo, M. Espinosa-Medina, P. Sebastian, A modified Nafionmembrane with in situ polymerized polypyrrole for the direct methanol fuel cell, J.Power Sources,124(2003)59-64.
    [93] C.-Y. Chen, J.I. Garnica-Rodriguez, M.C. Duke, R.F.D. Costa, A.L. Dicks, J.C.D.da Costa, Nafion/polyaniline/silica composite membranes for direct methanol fuel cellapplication, J. Power Sources,166(2007)324-330.
    [94] H.R.K. Ruichun Jiang, James M. Fenton, Multilayer structure membranes withsulfonated hydrocarbon methanol barrier for direct methanol fuel cells, J. Electrochem.Soc.,153(2006) A1554-A1561.
    [95] B.L.Y. L. Wang, H.M. Zhang, Y.H. Liu, D.M. Xing, Z.G. Shao, Y.H. Cai, Novelmultilayer Nafion/SPI/Nafion composite membrane for PEMFCs, J. Power Sources,164(2007)80-85.
    [96] Z.L. San Ping Jiang, Zhiqun Tian, Layer-by-layer self-assembly of compositepolyelectrolyte-Nafion membranes for direct methanol fuel cells, Adv. Mater.(Weinheim, Ger.),18(2006)1068-1072.
    [97] G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites,Science,277(1997)1232-1237.
    [98] C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A. Bocarsly, Approaches andtechnical challenges to high temperature operation of proton exchange membrane fuelcells, J. Power Sources,103(2001)1-9.
    [99] C. Schmidt, T. Glück, G. Schmidt‐Naake, Modification of Nafion membranesby impregnation with ionic liquids, Chem. Eng. Technol.,31(2008)13-22.
    [100] H. Wang, B.A. Holmberg, L. Huang, Z. Wang, A. Mitra, J.M. Norbeck, Y. Yan,Nafion-bifunctional silica composite proton conductive membranes, J. Mater. Chem.,12(2002)834-837.
    [101] C. Li, G. Sun, S. Ren, J. Liu, Q. Wang, Z. Wu, H. Sun, W. Jin, CastingNafion–sulfonated organosilica nano-composite membranes used in direct methanolfuel cells, J. Membr. Sci.,272(2006)50-57.
    [102] D. Shaomei, Random resistance networks model for conductivity simiulation ofproton exchange membrane, School of Chemical Engineering and Technology,Tianjin University,2009.
    [103] W. Zhang, P.-L. Yue, P. Gao, Crystallinity enhancement of Nafion electrolytemembranes assisted by a molecular gelator, Langmuir,27(2011)9520-9527.
    [104] B. Dong, L. Gwee, D. Salas-de La Cruz, K.I. Winey, Y.A. Elabd, Super protonconductive high-purity Nafion nanofibers, Nano Lett.,10(2010)3785-3790.
    [105] K.M. Cable, K.A. Mauritz, R.B. Moore, Anisotropic ionic conductivity inuniaxially oriented perfluorosulfonate ionomers, Chem. Mater.,7(1995)1601-1603.
    [106] J. Elliott, S. Hanna, A. Elliott, G. Cooley, Interpretation of the small-angleX-ray scattering from swollen and oriented perfluorinated ionomer membranes,Macromolecules,33(2000)4161-4171.
    [107] J. Londono, R. Davidson, S. Mazur, SAXS study of elongated ionic clusters inpoly-perfuorosulfonic acid membranes, Abstr. Am. Chem. Soc. Polym. Mater. Sci.Eng,222(2001)342.
    [108] P. Van der Heijden, L. Rubatat, O. Diat, Orientation of drawn Nafion atmolecular and mesoscopic scales, Macromolecules,37(2004)5327-5336.
    [109] N. Hasanabadi, S.R. Ghaffarian, M.M. Hasani-Sadrabadi, Nafion-basedmagnetically aligned nanocomposite proton exchange membranes for direct methanolfuel cells, Solid State Ionics,232(2013)58-67.
    [110] H.L. Lin, T.L. Yu, F.H. Han, A method for improving ionic conductivity ofNafion membranes and its application to PEMFC, J. Polym. Res.,13(2006)379-385.
    [111] E. Allahyarov, P.L. Taylor, Predicted electric-field-induced hexatic structure inan ionomer membrane, Physical Review E,80(2009)020801.
    [112] H.P. Schwan, L.D. Sher, Alternative‐Current Field‐Induced Forces and TheirBiological Implications, J. Electrochem. Soc.,116(1969)22C-26C.
    [113] J.V. Gasa, R. Weiss, M.T. Shaw, Structured polymer electrolyte blends based onsulfonated polyetherketoneketone (SPEKK) and a poly (ether imide)(PEI), J. Membr.Sci.,320(2008)215-223.
    [114] X. Wei, M. Yates, Nafion/polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene composite membranes with electricfield-aligned domains for improved direct methanol fuel cell performance, J. PowerSources,195(2010)736-743.
    [115] D. Liu, M.Z. Yates, Electric field processing to control the structure of poly(vinylidene fluoride) composite proton conducting membranes, J. Membr. Sci.,326(2009)539-548.
    [116] R. Devanathan, Recent developments in proton exchange membranes for fuelcells, Energy&Environmental Science,1(2008)101-119.
    [117] G.L. Tullos, P.E. Cassidy, A.K. St. Clair, Polymers derived fromhexafluoroacetone:12F-poly (ether ketone), Macromolecules,24(1991)6059-6064.
    [118] D. Blundell, B. Osborn, The morphology of poly (aryl-ether-ether-ketone),Polymer,24(1983)953-958.
    [119] B. Bauer, G. Rafler, H.-h. Ulrich, Sulphonated Polyaryletherketones, in, EPPatent0,768,330,1997.
    [120] M.T. Bishop, F.E. Karasz, P.S. Russo, K.H. Langley, Solubility and propertiesof a poly (aryl ether ketone) in strong acids, Macromolecules,18(1985)86-93.
    [121] Y. Gao, G.P. Robertson, M.D. Guiver, X. Jian, Synthesis and characterization ofsulfonated poly (phthalazinone ether ketone) for proton exchange membrane materials,Journal of Polymer Science Part A: Polymer Chemistry,41(2003)497-507.
    [122] M. Gil, X. Ji, X. Li, H. Na, J. Eric Hampsey, Y. Lu, Direct synthesis ofsulfonated aromatic poly (ether ether ketone) proton exchange membranes for fuelcell applications, J. Membr. Sci.,234(2004)75-81.
    [123] X. Li, C. Liu, H. Lu, C. Zhao, Z. Wang, W. Xing, H. Na, Preparation andcharacterization of sulfonated poly (ether ether ketone ketone) proton exchangemembranes for fuel cell application, J. Membr. Sci.,255(2005)149-155.
    [124] T. Liu, Z. Mo, S. Wang, H. Zhang, Nonisothermal melt and cold crystallizationkinetics of poly (aryl ether ether ketone ketone), Polym. Eng. Sci.,37(1997)568-575.
    [125] Y.-M. Sun, T.-C. Wu, H.-C. Lee, G.-B. Jung, M.D. Guiver, Y. Gao, Y.-L. Liu,J.-Y. Lai, Sulfonated poly (phthalazinone ether ketone) for proton exchangemembranes in direct methanol fuel cells, J. Membr. Sci.,265(2005)108-114.
    [126] F. Wang, T. Chen, J. Xu, T. Liu, H. Jiang, Y. Qi, S. Liu, X. Li, Synthesis andcharacterization of poly (arylene ether ketone)(co) polymers containing sulfonategroups, Polymer,47(2006)4148-4153.
    [127] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S.Kaliaguine, Synthesis and characterization of sulfonated poly (ether ether ketone) forproton exchange membranes, J. Membr. Sci.,229(2004)95-106.
    [128] M.G. Zolotukhin, D.R. Rueda, F.J.B. Calleja, M. Bruix, M.E. Cagiao, A. Bulai,N.G. Gileva, Aromatic polymers obtained by precipitation polycondensation,2.Synthesis of poly (ether ketone ether ketone ketone)(PEKEKK), Macromol. Chem.Phys.,198(1997)1131-1146.
    [129] M. Ueda, H. Toyota, T. Ouchi, J.I. Sugiyama, K. Yonetake, T. Masuko, T.Teramoto, Synthesis and characterization of aromatic poly (ether sulfone) s containingpendant sodium sulfonate groups, Journal of Polymer Science Part A: PolymerChemistry,31(1993)853-858.
    [130] Y. Meng, A. Hay, X. Jian, S. Tjong, Synthesis and properties of poly (aryl ethersulfone) s containing the phthalazinone moiety, J. Appl. Polym. Sci.,68(1998)137-143.
    [131] F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, Directpolymerization of sulfonated poly (arylene ether sulfone) random (statistical)copolymers: candidates for new proton exchange membranes, J. Membr. Sci.,197(2002)231-242.
    [132] G. Xiao, G. Sun, D. Yan, P. Zhu, P. Tao, Synthesis of sulfonated poly(phthalazinone ether sulfone) s by direct polymerization, Polymer,43(2002)5335-5339.
    [133] K. Matsumoto, T. Higashihara, M. Ueda, Locally and densely sulfonated poly(ether sulfone) s as proton exchange membrane, Macromolecules,42(2009)1161-1166.
    [134] Q. Zhang, F. Gong, S. Zhang, S. Li, Novel side-chain-type cardo poly (arylether sulfone) bearing pendant sulfoalkyl groups for proton exchange membranes, J.Membr. Sci.,367(2011)166-173.
    [135] A. Noshay, L. Robeson, Sulfonated polysulfone, J. Appl. Polym. Sci.,20(1976)1885-1903.
    [136] Y.-Z. Fu, A. Manthiram, Synthesis and characterization of sulfonatedpolysulfone membranes for direct methanol fuel cells, J. Power Sources,157(2006)222-225.
    [137] D.J. Jones, J. Rozière, Recent advances in the functionalisation ofpolybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci.,185(2001)41-58.
    [138] X. Glipa, M. El Haddad, D.J. Jones, J. Rozière, Synthesis and characterisationof sulfonated polybenzimidazole: a highly conducting proton exchange polymer,Solid State Ionics,97(1997)323-331.
    [139] Y. Woo, S.Y. Oh, Y.S. Kang, B. Jung, Synthesis and characterization ofsulfonated polyimide membranes for direct methanol fuel cell, J. Membr. Sci.,220(2003)31-45.
    [140] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design andmanufacturing, J. Power Sources,114(2003)32-53.
    [141] N. Ogata, M. Rikukawa, Sulfonated polymers for solid polymer electrolytes, in,Maxdem, Incorporated, San Dimas, Calif.,1995.
    [142] H.R. Allcock, R.M. Wood, Design and synthesis of ion‐conductivepolyphosphazenes for fuel cell applications: Review, Journal of Polymer Science PartB: Polymer Physics,44(2006)2358-2368.
    [143] M. Jaipal Reddy, J. Siva Kumar, U. Subba Rao, P.P. Chu, Structural and ionicconductivity of PEO blend PEG solid polymer electrolyte, Solid State Ionics,177(2006)253-256.
    [144] G. Alberti, M. Casciola, Composite membranes for medium-temperature PEMfuel cells, Annu. Rev. Mater. Res.,33(2003)129-154.
    [145] J. Gidden, T. Wyttenbach, A.T. Jackson, J.H. Scrivens, M.T. Bowers, Gas-PhaseConformations of Synthetic Polymers: Poly (ethylene glycol), Poly (propylene glycol),and Poly (tetramethylene glycol), J. Am. Chem. Soc.,122(2000)4692-4699.
    [146] E.W. Paul, A.J. Ricco, M.S. Wrighton, Resistance of polyaniline films as afunction of electrochemical potential and the fabrication of polyaniline-basedmicroelectronic devices, J. Phys. Chem.,89(1985)1441-1447.
    [147] S.-L. Chen, L. Krishnan, S. Srinivasan, J. Benziger, A. Bocarsly, Ion exchangeresin/polystyrene sulfonate composite membranes for PEM fuel cells, J. Membr. Sci.,243(2004)327-333.
    [148] J. Kim, B. Kim, B. Jung, Proton conductivities and methanol permeabilities ofmembranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers, J. Membr. Sci.,207(2002)129-137.
    [149] Y.A. Elabd, E. Napadensky, Sulfonation and characterization of poly(styrene-isobutylene-styrene) triblock copolymers at high ion-exchange capacities,Polymer,45(2004)3037-3043.
    [150] Y.A. Elabd, C.W. Walker, F.L. Beyer, Triblock copolymer ionomer membranes:Part II. Structure characterization and its effects on transport properties and directmethanol fuel cell performance, J. Membr. Sci.,231(2004)181-188.
    [151] Y.A. Elabd, M.A. Hickner, Block copolymers for fuel cells, Macromolecules,44(2010)1-11.
    [152] R. Vinodh, A. Ilakkiya, S. Elamathi, D. Sangeetha, A novel anion exchangemembrane from polystyrene (ethylene butylene) polystyrene: synthesis andcharacterization, Materials Science and Engineering: B,167(2010)43-50.
    [153] D.J.J. J. Roziere, Non-fluorinated polymer materials for proton exchangemembrane fuel cells, Annu. Rev. Mater. Res.,33(2003)503-555.
    [154] K. Kreuer, On the development of proton conducting polymer membranes forhydrogen and methanol fuel cells, J. Membr. Sci.,185(2001)29-39.
    [155] G. Ye, N. Janzen, G. Goward, Solid-state NMR study of two classic protonconducting polymers: Nafion and sulfonated poly (ether ether ketone) s,Macromolecules,39(2006)3283-3290.
    [156] S. Matsumura, A.R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft,A.S. Hay, Ionomers for proton exchange membrane fuel cells with sulfonic acidgroups on the end groups: novel branched poly (ether-ketone) s, Macromolecules,41(2008)281-284.
    [157] K. Miyatake, M. Watanabe, Emerging membrane materials for high temperaturepolymer electrolyte fuel cells: durable hydrocarbon ionomers, J. Mater. Chem.,16(2006)4465-4467.
    [158] D.M. M.L. Divona, A. D'Epifanio, S. Licoccia, I. Beurroles, R. Denoyel, P.Knauth, Hybrid materials for polymer electrolyte membrane fuel cells: Water uptake,mechanical and transport properties, J. Membr. Sci.,304(2007)76-81.
    [159] R.P. A. Carbone, A. Sacca, I. Gatto, E. Passalacqua, Composite S-PEEKmembrane for medium teperature polymer electrolyte fuel cells, J. Power Sources,178(2008)661-666.
    [160] Y.S.K. Melinda L. Hill, Bran R. Einsta, James E. McGrath, Zirconium hydrogenphosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranefor ptoton exchange membrane fuel cells, J. Membr. Sci.,283(2006)102-108.
    [161] S.M.J. Zaidi, Mikhailenko S.D., Robertson G., M.D. Guiver, S. Kaliaguine,Proton conducting composite membranes from polyether ether ketone andheteropolyacids for fuel cell applications, J. Membr. Sci.,173(2000)17-34.
    [162] M.M. P. Staiti, Influence of composition and acid treatment on protonconduction of composite polybenzimidazole membranes, J. Power Sources,94(2001)9-13.
    [163] H.I. Kim J.D., Proton conducting polydimethylsiloxane/zirconium oxide hybridmembranes assed with phosphotungstic acid, Electrochim. Acta,48(2003)3633-3638.
    [164] L.P. M.L. Ponce, B. Ruffmann, K. Richau, R. Mohr, S.P. Nunes, Reduction ofmethanol permeability in polyetherketone-heteropolyacid membranes, J. Membr. Sci.,217(2003)5-15.
    [165] S.M.J. Zaidi, Ahmad M.I., Novel SPEEK/heteropolyacids loaded MCM-41composite membranes for fuel cell applications, J. Membr. Sci.,279(2006)548-557.
    [166] G.A.V. V. Demede, J.K. Kallitsis, L. Qingfeng, N.J. Bjerrum, Miscibilitybehavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cellapplications, Macromoleculars,33(2000)7609-7617.
    [167]黄绵延, DMFC用改性磺化聚芳醚酮质子交换膜的研究:[博士学位论文],天津;天津大学,2006.
    [168] J.T.W. J.S. Wainright, R.F. Savinell, M. Litt, H. Moaddel, C. Rogers, Aciddoped polybenzimidazole, a new polymer electrolyte, J. Electrochem. Soc.,142(1995)L121-L123.
    [169] M.-H. Jeong, K.-S. Lee, J.-S. Lee, Cross-linking density effect of fluorinatedaromatic polyethers on transport properties, Macromolecules,42(2009)1652-1658.
    [170] S. Zhong, X. Cui, H. Cai, T. Fu, C. Zhao, H. Na, Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cellapplications, J. Power Sources,164(2007)65-72.
    [171] H. Diao, F. Yan, L. Qiu, J. Lu, X. Lu, B. Lin, Q. Li, S. Shang, W. Liu, J. Liu,High performance cross-linked poly (2-acrylamido-2-methylpropanesulfonicacid)-based proton exchange membranes for fuel cells, Macromolecules,43(2010)6398-6405.
    [172] M. Matsen, F. Bates, Unifying weak-and strong-segregation block copolymertheories, Macromolecules,29(1996)1091-1098.
    [173] M.W. Matsen, F. Bates, Origins of complex self-assembly in block copolymers,Macromolecules,29(1996)7641.
    [174] M. Matsen, F. Bates, Block copolymer microstructures in theintermediate-segregation regime, J. Chem. Phys.,106(1997)2436-2448.
    [175] M.W. Matsen, M. Schick, Stable and unstable phases of a diblock copolymermelt, Phys. Rev. Lett.,72(1994)2660-2663.
    [176] M. Matsen, M. Schick, Microphase separation in starblock copolymer melts,Macromolecules,27(1994)6761-6767.
    [177] M. Matsen, M. Schick, Microphases of a diblock copolymer withconformational asymmetry, Macromolecules,27(1994)4014-4015.
    [178] A.K. Khandpur, S. Foerster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K.Almdal, K. Mortensen, Polyisoprene-polystyrene diblock copolymer phase diagramnear the order-disorder transition, Macromolecules,28(1995)8796-8806.
    [179] A.-V. Ruzette, L. Leibler, Block copolymers in tomorrow's plastics, Nat. Mater.,4(2005)19-31.
    [180] P.C.W. Loss, Block copolyesters containing sulfonate radicals, in, GooglePatents,1967.
    [181] J.P. Gouin, C.E. Williams, A. Eisenberg, Microphase structure of blockionomers.1. Study of molded styrene-4-vinylpyridinium ABA blocks by SAXS andSANS, Macromolecules,22(1989)4573-4578.
    [182] R. Weiss, A. Sen, C. Willis, L. Pottick, Block copolymer ionomers:1. Synthesisand physical properties of sulphonated poly (styrene-ethylene/butylene-styrene),Polymer,32(1991)1867-1874.
    [183] L. Venkateshwaran, G. York, C. DePorter, J. McGrath, G. Wilkes,Morphological characterization of well defined methacrylic based di-and triblockionomers, Polymer,33(1992)2277-2286.
    [184] X. Lu, W. Steckle, R. Weiss, Ionic aggregation in a block copolymer ionomer,Macromolecules,26(1993)5876-5884.
    [185] K.A. Mauritz, R.I. Blackwell, F.L. Beyer, Viscoelastic properties andmorphology of sulfonated poly (styrene-b-ethylene/butylene-b-styrene) blockcopolymers (sBCP), and sBCP/[silicate] nanostructured materials, Polymer,45(2004)3001-3016.
    [186] M.J. Park, K.H. Downing, A. Jackson, E.D. Gomez, A.M. Minor, D. Cookson,A.Z. Weber, N.P. Balsara, Increased water retention in polymer electrolyte membranesat elevated temperatures assisted by capillary condensation, Nano Lett.,7(2007)3547-3552.
    [187] Y.A. Elabd, E. Napadensky, C.W. Walker, K.I. Winey, Transport properties ofsulfonated poly (styrene-b-isobutylene-b-styrene) triblock copolymers at highion-exchange capacities, Macromolecules,39(2006)399-407.
    [188] Z. Shi, S. Holdcroft, Synthesis and proton conductivity of partially sulfonatedpoly ([vinylidene difluoride-co-hexafluoropropylene]-b-styrene) block copolymers,Macromolecules,38(2005)4193-4201.
    [189] Y.A. Elabd, E. Napadensky, J.M. Sloan, D.M. Crawford, C.W. Walker, Triblockcopolymer ionomer membranes: Part I. Methanol and proton transport, J. Membr. Sci.,217(2003)227-242.
    [190] K. Xu, K. Li, P. Khanchaitit, Q. Wang, Synthesis and characterization ofself-assembled sulfonated poly (styrene-b-vinylidene fluoride-b-styrene) triblockcopolymers for proton conductive membranes, Chem. Mater.,19(2007)5937-5945.
    [191] L. Chen, D.T. Hallinan Jr, Y.A. Elabd, M.A. Hillmyer, Highly selective polymerelectrolyte membranes from reactive block polymers, Macromolecules,42(2009)6075-6085.
    [192] Y.S. Kim, L. Dong, M.A. Hickner, B.S. Pivovar, J.E. McGrath, Processinginduced morphological development in hydrated sulfonated poly (arylene ethersulfone) copolymer membranes, Polymer,44(2003)5729-5736.
    [193] H. Xu, Y. Song, H.R. Kunz, J.M. Fenton, Effect of elevated temperature andreduced relative humidity on ORR kinetics for PEM fuel cells, J. Electrochem. Soc.,152(2005) A1828-A1836.
    [194] J. Kim, B. Kim, B. Jung, Y.S. Kang, H.Y. Ha, I.H. Oh, K.J. Ihn, Effect ofCasting Solvent on Morphology and Physical Properties of Partially SulfonatedPolystyrene‐block‐poly (ethylene‐ran‐butylene)‐block‐polystyreneCopolymers, Macromol. Rapid Commun.,23(2002)753-756.
    [195] A. Roy, M.A. Hickner, X. Yu, Y. Li, T.E. Glass, J.E. McGrath, Influence ofchemical composition and sequence length on the transport properties of protonexchange membranes, Journal of Polymer Science Part B: Polymer Physics,44(2006)2226-2239.
    [196] A. Roy, X. Yu, S. Dunn, J.E. McGrath, Influence of microstructure andchemical composition on proton exchange membrane properties ofsulfonated–fluorinated, hydrophilic–hydrophobic multiblock copolymers, J. Membr.Sci.,327(2009)118-124.
    [197] M.J. Park, N.P. Balsara, Anisotropic proton conduction in aligned blockcopolymer electrolyte membranes at equilibrium with humid air, Macromolecules,43(2010)292-298.
    [198] H. Uehara, M. Kakiage, M. Sekiya, T. Yamagishi, T. Yamanobe, K. Nakajima, T.Watanabe, K. NEMURA, K. Hase, M. Matsuda, Novel Design Solving theConductivity vs Water-Uptake Trade-Off for Polymer Electrolyte Membrane byBicontinuous Crystalline/Amorphous Morphology of Block Copolymer,Macromolecules,42(2009)7627-7630.
    [199] D.T. Hallinan, Y.A. Elabd, Diffusion and sorption of methanol and water inNafion using time-resolved Fourier transform infrared-attenuated total reflectancespectroscopy, The Journal of Physical Chemistry B,111(2007)13221-13230.
    [200] A. Keller, E. Pedemonte, F. Willmouth, Macro-lattice from SegregatedAmorphous Phases of a Three Block Copolymer Nature (London, U. K.),225(1970)538-539.
    [201] P.W. Majewski, M. Gopinadhan, W.-S. Jang, J.L. Lutkenhaus, C.O. Osuji,Anisotropic ionic conductivity in block copolymer membranes by magnetic fieldalignment, J. Am. Chem. Soc.,132(2010)17516-17522.
    [202] M.J. Park, N.P. Balsara, Anisotropic proton conduction in aligned blockcopolymer electrolyte membranes at equilibrium with humid air, Macromolecules,43(2009)292-298.
    [203] R.N. Young, R.P. Quirk, L. Fetters, Anionic polymerizations of non-polarmonomers involving lithium, in: Adv. Polym. Sci., Springer,1984, pp.1-90.
    [204] H.L. Hsieh, R.P. Quirk, Anionic polymerization: principles and practicalapplications, CRC Press,1996.
    [205] N. Hadjichristidis, H. Iatrou, S. Pispas, M. Pitsikalis, Anionic polymerization:high vacuum techniques, Journal of Polymer Science Part A: Polymer Chemistry,38(2000)3211-3234.
    [206] M. Miyamoto, M. Sawamoto, T. Higashimura, Living polymerization ofisobutyl vinyl ether with hydrogen iodide/iodine initiating system, Macromolecules,17(1984)265-268.
    [207] N. Hadjichristidis, S. Pispas, G. Floudas, Block copolymers: synthetic strategies,physical properties, and applications, Wiley-Interscience, New Jersey,2003.
    [208] K. Matyjaszewski, Cationic Polymerization: Mechanisms, Synthesis andApplications, Marcel Dekker Incorporated, United States,1996.
    [209] M. Sawamoto, Modern cationic vinyl polymerization, Prog. Polym. Sci.,16(1991)111-172.
    [210] T. Higashimura, S. Aoshima, M. Sawamoto, New initiators for living cationicpolymerization of vinyl compounds, in: Makromolekulare Chemie. MacromolecularSymposia, Wiley Online Library,1988, pp.457-471.
    [211] G. Odian, Principles of Polymerization, Wiley-Interscience,2004.
    [212] K. Matyjaszewski, J.-L. Wang, T. Grimaud, D.A. Shipp, Controlled/“living”atom transfer radical polymerization of methyl methacrylate using various initiationsystems, Macromolecules,31(1998)1527-1534.
    [213] T.R. Darling, T.P. Davis, M. Fryd, A.A. Gridnev, D.M. Haddleton, S.D. Ittel,R.R. Matheson, G. Moad, E. Rizzardo, Living polymerization: Rationale for uniformterminology, Journal of Polymer Science Part A: Polymer Chemistry,38(2000)1706-1708.
    [214] K. Matyjaszewski, S. Gaynor, J.-S. Wang, Controlled radical polymerizations:the use of alkyl iodides in degenerative transfer, Macromolecules,28(1995)2093-2095.
    [215] J.-S. Wang, K. Matyjaszewski, Controlled/" living" radical polymerization.Atom transfer radical polymerization in the presence of transition-metal complexes, J.Am. Chem. Soc.,117(1995)5614-5615.
    [216] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization ofmethyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium (II)/methylaluminum bis (2,6-di-tert-butylphenoxide) initiating system:possibility of living radical polymerization, Macromolecules,28(1995)1721-1723.
    [217] V. Percec, B. Barboiu," Living" radical polymerization of styrene initiated byarenesulfonyl chlorides and CuI (bpy) nCl, Macromolecules,28(1995)7970-7972.
    [218] B.B. Wayland, G. Poszmik, S.L. Mukerjee, M. Fryd, Living radicalpolymerization of acrylates by organocobalt porphyrin complexes, J. Am. Chem. Soc.,116(1994)7943-7944.
    [219] C. Granel, P. Dubois, R. Jér me, P. Teyssié, Controlled radical polymerizationof methacrylic monomers in the presence of a bis (ortho-chelated) arylnickel (II)complex and different activated alkyl halides, Macromolecules,29(1996)8576-8582.
    [220] G. Moad, E. Rizzardo, S.H. Thang, Toward living radical polymerization, Acc.Chem. Res.,41(2008)1133-1142.
    [221] G. Moad, E. Rizzardo, S.H. Thang, Radical addition–fragmentation chemistryin polymer synthesis, Polymer,49(2008)1079-1131.
    [222] L. Li, Y. Wang, Sulfonated polyethersulfone Cardo membranes for directmethanol fuel cell, J. Membr. Sci.,246(2005)167-172.
    [223]曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002.
    [224]高启君, DMFC用改性磺化聚醚醚酮质子交换膜的研究:[博士学位论文],天津;天津大学,2009.
    [225]邓会宁,含有杂萘联苯的聚芳醚电解质膜研究:[博士学位论文],天津;天津大学,2004.
    [226] C. Gardner, A. Anantaraman, Studies on ion-exchange membranes. II.Measurement of the anisotropic conductance of Nafion, J. Electroanal. Chem.,449(1998)209-214.
    [227] A. Designation, D1434-82Determining Gas Permeability Characteristics ofPlastic Film and Sheeting, Annual Book of ASTM Standards,(1982).
    [228]中国国家标准化管理委员会,塑料薄膜拉伸性能试验方法, GB/T1040.3-2006,中华人民共和国国家标准北京:中国标准出版社,2006.
    [229] P. Dimitrova, K. Friedrich, U. Stimming, B. Vogt, Modified Nafion-basedmembranes for use in direct methanol fuel cells, Solid State Ionics,150(2002)115-122.
    [230] L. Jia, X. Xu, H. Zhang, J. Xu, Sulfonation of polyetheretherketone and itseffects on permeation behavior to nitrogen and water vapor, J. Appl. Polym. Sci.,60(1996)1231-1237.
    [231] X. Jin, M.T. Bishop, T.S. Ellis, F.E. Karasz, A sulphonated poly (aryl etherketone), British polymer journal,17(1985)4-10.
    [232] R. Muthu Lakshmi, V. Choudhary, I. Varma, Sulphonated poly (ether etherketone): Synthesis and characterisation, J. Mater. Sci.,40(2005)629-636.
    [233] H.H. Ulrich, G. Rafler, Sulfonated poly (aryl ether ketone) s, Die AngewandteMakromolekulare Chemie,263(1998)71-78.
    [234] R. Muthu Lakshmi, J. Meier-Haack, K. Schlenstedt, C. Vogel, V. Choudhary, I.Varma, Sulphonated poly (ether ether ketone) copolymers: Synthesis, characterisationand membrane properties, J. Membr. Sci.,261(2005)27-35.
    [235] N. Venkatasubramanian, D.R. Dean, G.E. Price, F.E. Arnold, Synthesis,properties and potential applications of sulpho-pendent poly (arylene ether ketone) s,High Perform. Polym.,9(1997)291-307.
    [236] F. Wang, T. Chen, J. Xu, Synthesis of poly (ether ether ketone) containingsodium sulfonate groups as gas dehumidification membrane material, Macromol.Rapid Commun.,19(1998)135-137.
    [237] C. Zhao, H. Lin, K. Shao, X. Li, H. Ni, Z. Wang, H. Na, Block sulfonated poly(ether ether ketone) s (SPEEK) ionomers with high ion-exchange capacities for protonexchange membranes, J. Power Sources,162(2006)1003-1009.
    [238] L. Li, J. Zhang, Y. Wang, Sulfonated poly (ether ether ketone) membranes fordirect methanol fuel cell, J. Membr. Sci.,226(2003)159-167.
    [239] S. Chen, C. Han, C. Tsai, J. Huang, Y. Chen-Yang, Effect of morphologicalproperties of ionic liquid-templated mesoporous anatase TiO2on performance ofPEMFC with Nafion/TiO2composite membrane at elevated temperature and lowrelative humidity, J. Power Sources,171(2007)363-372.
    [240] T. Hao, A. Kawai, F. Ikazaki, Dielectric criteria for the electrorheological effect,Langmuir,15(1999)918-921.
    [241] M. Evans, D. Heyes, Group theory statistical mechanics and simulation studiesof electrorheology, The Journal of Physical Chemistry,95(1991)5287-5292.
    [242] C. Lepiller, V. Gauthier, J. Gaudet, A. Pereira, M. Lefevre, D. Guay, A.Hitchcock, Studies of Nafion–RuO2xH2O Composite Membranes, J. Electrochem.Soc.,155(2008) B70-B78.
    [243] G. Ye, C. Hayden, G. Goward, Proton dynamics of Nafion and Nafion/SiO2composites by solid state NMR and pulse field gradient NMR, Macromolecules,40(2007)1529-1537.
    [244]李磊,直接甲醇燃料电池聚合物电解质的研究:[博士学位论文],天津;天津大学,2003.
    [245]汤龙程,纳米颗粒改性环氧树脂的断裂行为及其和纤维的界面性能研究,中国科学技术大学,2011.
    [246] M.L. Di Vona, E. Sgreccia, A. Donnadio, M. Casciola, J. Chailan, G. Auer, P.Knauth, Composite polymer electrolytes of sulfonated poly-ether-ether-ketone(SPEEK) with organically functionalized TiO2, J. Membr. Sci.,369(2011)536-544.
    [247] P. Dimitrova, K. Friedrich, B. Vogt, U. Stimming, Transport properties ofionomer composite membranes for direct methanol fuel cells, J. Electroanal. Chem.,532(2002)75-83.
    [248] M.T. M.Yoshitake, N. Yoshida and T. Ishisaki, Studies of perfluorinated ionexchange membranes for polymer electrolyte fuel cells, Journal of theElectrochemical Society of Japan,64(1996)727-736.
    [249] K. Broka, P. Ekdunge, Oxygen and hydrogen permeation properties and wateruptake of Nafion117membrane and recast film for PEM fuel cell, J. Appl.Electrochem.,27(1997)117-123.
    [250] M.L. Di Vona, Z. Ahmed, S. Bellitto, A. Lenci, E. Traversa, S. Licoccia,SPEEK-TiO2nanocomposite hybrid proton conductive membranes via in situ mixedsol-gel process, J. Membr. Sci.,296(2007)156-161.
    [251] P. Kalappa, J.H. Lee, Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2nanocomposites for a direct methanol fuel cell, Polym. Int.,56(2007)371-375.
    [252] S.B. Boob, Field-structured proton exchange membranes for fuel cells,University of Connecticut,2007.
    [253] J.V. Gasa, R. Weiss, M.T. Shaw, Structured polymer electrolyte blends based onsulfonated polyetherketoneketone (SPEKK) and a poly (ether imide)(PEI), J. Membr.Sci.,320(2008)215-223.
    [254] M.D. Stamate, On the dielectric properties of dc magnetron TiO2thin films,Appl. Surf. Sci.,218(2003)318-323.
    [255] M.K. Schwarz, W. Bauhofer, K. Schulte, Alternating electric field inducedagglomeration of carbon black filled resins, Polymer,43(2002)3079-3082.
    [256] S.M.J. Zaidi, Polymer membranes for fuel cells, Springer,2009.
    [257] S. Banerjee, D.E. Curtin, Nafion perfluorinated membranes in fuel cells, J.Fluorine Chem.,125(2004)1211-1216.
    [258] K. Kanamura, T. Mitsui, H. Munakata, Preparation of composite membranebetween a uniform porous silica matrix and injected proton conductive gel polymer,Chem. Mater.,17(2005)4845-4851.
    [259] S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D.Guiver, Proton conducting membranes based on cross-linked sulfonated poly (etherether ketone)(SPEEK)*1, J. Membr. Sci.,233(2004)93-99.
    [260] P. Mukoma, B. Jooste, H. Vosloo, Synthesis and characterization of cross-linkedchitosan membranes for application as alternative proton exchange membranematerials in fuel cells, J. Power Sources,136(2004)16-23.
    [261] B.P. Ladewig, R.B. Knott, D.J. Martin, J.C. Diniz da Costa, G.Q. Lu,Nafion-MPMDMS nanocomposite membranes with low methanol permeability,Electrochem. Commun.,9(2007)781-786.
    [262] Y. Choi, D.H. Youn, S.O. Lee, Y. Kim, J.S. Lee, Sulfonatedresorcinol-formaldehyde polymer gels synthesized in Nafion ion clusters as nanoscalereactors for a filler of hybrid proton exchange membranes, Int. J. Hydrogen Energy,37(2012)9766-9774.
    [263] R. M ki-Ontto, K. de Moel, E. Polushkin, G. Alberda van Ekenstein, G. tenBrinke, O. Ikkala, Tridirectional protonic conductivity in soft materials, Adv. Mater.(Weinheim, Ger.),14(2002)357.
    [264] L. Li, Z. Cai, L. Su, Y. Zhang, Supercritical carbon dioxide treated Nafion212commercial membranes for direct methanol fuel cells, Electrochem. Commun.,14(2012)9-12.
    [265] J. Lu, H. Tang, C. Xu, Nafion membranes with ordered mesoporous structureand high water retention properties for fuel cell applications, J. Mater. Chem.,22(2012)5810-5819.
    [266] R.S. Yeo, Dual cohesive energy densities of perfluorosulphonic acid (Nafion)membrane, Polymer,21(1980)432-435.
    [267] H.L. Lin, T.L. Yu, C.H. Huang, T.L. Lin, Morphology study of Nafionmembranes prepared by solutions casting, Journal of Polymer Science Part B:Polymer Physics,43(2005)3044-3057.
    [268] J.T. Lai, D. Filla, R. Shea, Functional polymers from novel carboxyl-terminatedtrithiocarbonates as highly efficient RAFT agents, Macromolecules,35(2002)6754-6756.
    [269] G. Woeste, W.H. Meyer, G. Wegner, Copolymers of ethyl p‐vinylbenzenesulfonate for the preparation of polyelectrolytes of reproducible ioncontent, Die Makromolekulare Chemie,194(1993)1237-1248.
    [270] T.I. Kozo Matsumoto, Tamotsu Harada, Hideki Matsuoka, Association behaviorof fluorine-containing and non-fluorine-containing methacrylate-based amphiphilicdiblock copolymer in aqueous media Langmuir,20(2004)7270-7282.
    [271] T.-M.Y. Williams P. Hems, Johanna L. M. van Nunen, Andrew I. Cooper,Andrew B. Holmes, David A. Griffin, Dispersion polumerization of methylmethacrylate in supercritical carbon dioxide-evaluation of well defined fluorinatedAB block copolymers as surfactants, J. Mater. Chem.,9(1999)1403-1407.
    [272] L.M. Leung, J.T. Koberstein, DSC annealing study of microphase separationand multiple endothermic behavior in polyether-based polyurethane block copolymers,Macromolecules,19(1986)706-713.
    [273] J.M. Ren, J.T. Wiltshire, A. Blencowe, G.G. Qiao, Synthesis of a Star PolymerLibrary with a Diverse Range of Highly Functionalized MacromolecularArchitectures, Macromolecules,44(2011)3189-3202.