公理设计应用研究及其与稳健设计的集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于设计理论与方法在产品开发中起着重要作用,激发了人们对设计的重视,涌现出了多种设计理论与方法。其中Suh提出的公理设计是具有代表性的设计理论,该理论力图为设计建立一个科学基础,通过为设计者提供一个基于逻辑和理性思维过程及工具的理论基础来改进设计活动。利用公理设计理论可增强设计的创造性、减少设计的复杂性以及设计的反复和迭代、设计方案的稳健性,提升设计学的科学性,并使设计活动系统化、逻辑化和理性化。另外,不同背景下发展起来的设计理论与方法各有其适合的应用领域,需要将不同设计理论与方法中的设计工具集成以适应产品设计过程中的各阶段,实现它们之间的优势互补。而揭示不同设计理论与方法的内在关系,是实现优势互补的基础。
     本文借鉴国内外相关研究成果,以公理设计理论与稳健设计方法为重点研究对象,将设计评价方法、优化技术引入其中,研究公理设计理论及其在其它设计领域应用的普适性,探讨公理设计与稳健优化设计之间的关系,为稳健优化设计提供一种新的研究途径。
     详细分析了公理设计域中元素的分解过程和相邻域之间的之字型映射过程,阐述了具体利用独立公理进行设计的过程。将公理设计应用于优化设计中,提出了基于公理设计的多目标优化设计方法。使用正交试验和方差分析技术确定设计变量对各设计目标的影响程度,按设计目标的多少对设计参数进行分组,使之类似于无耦合的优化设计,避免了多个设计目标之间的反复权衡。
     分析了信息公理评价方法的特点,提出了适合于设计评价的信息量计算方法,建立了基于公理设计和模糊数学的设计方案评价模型,给出了具体的评价过程。该方法可根据用户需求来修改各评价指标的设计范围,从而使整个评价过程更加灵活。
     公理设计与稳健设计具有很大的相似性,在分析公理设计与稳健设计各自优劣的基础上,深入探讨了独立公理和信息公理与稳健设计的关系,揭示了公理设计与稳健设计之间的内在联系。并针对质量特性常用的几种统计分布类型,分别建立了公理设计中的信息量与稳健设计方法的质量损失函数/信噪比之间的数学联系。从而延伸了公理设计改善产品设计质量的功效和扩展稳健设计的通用性。
     此外,本文还对稳健优化设计问题进行了研究,针对设计函数为隐函数或高度非线性函数的稳健优化问题,提出了一种基于容差模型和正交试验的稳健优化方法。随后针对多目标稳健优化问题,建立了多目标优化的损失函数,根据信息公理与损失函数的一致性关系,建立以最小化各目标的总损失函数为目标函数,提出了基于公理设计和相容决策支持问题法的多目标稳健优化设计方法。
     基于上述理论与方法研究成果,通过门座起重机设计实例验证了其可行性、有效性和实用性。
Product design is an important stage to determine the product performance, and effective product design can improve quality, reduce cost, and reduce time to market, whereas the design theories and methods play a major role in product design. Up to now, many design theories and methods have been presented. Among which the Axiomatic Design (AD) is a representative design theory. Axiomatic design offers a scientific base for design and improves design activities by providing the designer with a theoretical foundation based on logical and rational thought processes and tools. It is helpful to provide a systematic way of designing products and large systems, reduce the random search process, minimize the iterative trial-and-error process, make designers more creative and develop better designs and select the best design among good alternatives.
     Any design theory and method has its own characteristics and emphases. Furthermore, modern products tend to be more complicate, whereas the time to market and life cycle of products are reduced. As a result, it is difficult for the sole design method to satisfy the design requirements. Therefore, it is necessary to integrate different design tools of design theory and methods, so that the mutually combination of them has complementary advantages. Whereas revealing the inherent connection among the different design theory and methods is the base of achieving complementary advantages
     Using the relevant theoretical research achievements for reference, the axiomatic design theory and robust design method are deeply researched in this dissertation, in which the methods of evaluation and optimization design are introduced. The relation between axiomatic design and robust design is discussed and application of axiomatic design in other design fields, and a new approach to the theoretical research on robust optimal design is presented.
     The process of decomposition of domain elements and zigzagging mapping between neighborhood domains in axiomatic design are analyzed in detail, and the designing process utilizing Independence Axiom is expounded. By introducing axiomatic design into optimization design, a multi-objective optimization method based on axiomatic design is proposed. The contribution of design variable to design objectives can be calculated using orthogonal experiment and Analysis of Variance (ANOVA), and design variables are classified into groups and the number of groups is the same as that of the design objectives in order to make the design similar to the uncoupled or decoupled optimization design, which avoid of trade-off between design objectives.
     Then a new way of computing the information content is presented, which transforms numerical value from the fuzzy information by combining the theory of fuzzy mathematic and information axiom for the design is evaluated in quantity. For decision-maker, there is no need to provide the detail weighting factors of evaluation index and only through specifying their design and system range, the optimal design scenario can be selected according to the information contents. This approach allows the decision-maker to express preference flexibly.
     There exist some common concepts between axiomatic design and robust design. The relation between two axioms and robust design has been discussed thoroughly, and the inherent connection is revealed which indicates that the design satisfying the above two axioms is more robust. Furthermore, for several typical statistical distribution forms of product’s quality characteristic, the mathematical relationship between the information content and quality loss as well as the relationship between information content and signal-to-noise ratio has been established. Due to the unification of axiomatic design and robust design, the virtue of axiomatic design for improving product quality can be promoted and the general application of robust design can be extended.
     In addition, robust optimal design is also studied in this dissertation. To solve implicit and high non-linear design function in engineering design optimization, a general approach for robust optimal design was proposed, which was based on tolerance model and orthogonal experimental method. Then for multi-objective robust optimal design, the loss function of multi-objective optimization is defined. According to the accordant relation between Information Axiom and quality loss function in the robust design process of product quality, that the total loss function of each sub-objective function is considered as objective function, and the approach of multi-objective robust optimal design based on axiomatic design and comprise decision support problem is proposed.
     Using the above methods, the design of portal crane is successfully accomplished. The case study indicates that the proposed methods are feasible and effective.
引文
[1]钟志华,周彦伟.现代设计方法.武汉:武汉理工大学出版社, 2001
    [2]肖人彬,陶振武,刘勇.智能设计原理与技术.北京:科学出版社, 2006
    [3] Swif K G, Allen A J. Product variability risks and robust design. Journal of Engineering Manufacture, 1994, 208(1): 9-19
    [4]闻邦春,周知承,韩清凯等.现代机械产品设计在新产品开发中的重要作用.机械工程学报, 2003, 39(10): 43-52
    [5]吴昭同,余忠华,陈文华.保质设计.北京:机械工业出版社, 2004
    [6] Chen K Z. Identifying the relationship among design methods-key to successful applications and developments of design methods. Journal of Engineering Design, 1999, 10(2): 125-141
    [7]余俊,现代设计方法及应用,北京:中国标准出版社, 2002
    [8]邓家褆,韩晓建,曾硝.产品概念设计-理论、方法与技术.北京:机械工业出版社, 2002
    [9] Kim, Y S, Cohran D S. Reviewing TRIZ from the perspective of axiomatic design. Journal of Engineering Design, 2000, 11(1): 79-94
    [10] El-Haik B, Yang K. The components of complexity in engineering design. IIE Transaction, 1999, 31(10), 725-734
    [11] Frey D D, Jahangir E, Engelhardt F. Computing the information content of decoupled designs. Research in Engineering Design, 2000(12): 90-102
    [12] Shin, G S, Yi J W, Yi S I, et al. Calculation of information content in axiomatic design. The Third International Conference on Axiomatic Design, 2004, Seoul-June, 21-24
    [13] Wu F C, Chyu C C. Optimization of robust design for multiple quality characteristics. International Journal of Production Research, 2004, 42(2): 337-354
    [14] Hilario L O. Unifying axiomatic design and robust design through the transfer function. The Third International Conference on Axiomatic Design, 2004, Seoul-June, 21-24
    [15]叶元烈,机械现代设计方法学.中国计量出版社, 2000
    [16]王凤岐,张连洪,邵宏宇.现代设计方法.天津大学出版社, 2004
    [17]丁俊武,韩玉启,郑称德.现代产品设计理论研究综述.机械制造, 2005, 43(12): 8-10
    [18] Pahl G, Beitz W. Engineering Design (second edition). London: Springer, 2001
    [19] Grabowski H. Universal design theory: elements and applicability to computers. In Universal Design Theory, Aachen: Shaker-Verlag, 1998
    [20] Tomiyama T. General design theory and its extensions and applications. In Universal Design Theory, Aachen: Shaker-Verlag, 1998
    [21] Souchkov V. TRIZ: a systematic approach to conceptual design. In Universal Design Theory, Aachen: Shaker-Verlag, 1998
    [22] Altshuller G. The innovation algorithm, TRIZ, systematic innovation and technical creativity. INC Worcester: Technical Innovation Center, 1999
    [23] Suh N P. The Principles of Design. New York: Oxford University Press, 1990
    [24] Suh N P. Axiomatic Design: Advances and Applications. New York: Oxford University Press, 2001
    [25]顾佩华.设计理论与方法学研究方面的最新进展.机械与电子, 1998(5): 26-31
    [26]谢友柏.现代设计理论和方法的研究.机械工程学报, 2004, 40(4): 1-9
    [27]帕尔G.,拜茨W.工程设计学.北京:机械工业出版社, 1992
    [28] Hubka V., Eder W. Theory of technical systems. Springer-Verlag, 1988
    [29]檀润华.创新设计:TRIZ发明问题解决理论.北京:机械工业出版社, 2002
    [30]罗振壁,于学军.创新设计与管理(五):现代公理设计理论之一.世界制造技术与装备市场, 2006(2): 87-92
    [31]徐利治.数学方法论选讲.武汉:华中理工大学出版社,2000
    [32] Zeng Y. Axiomatic approach to the modeling of product conceptual design processes using set theory. Ph. D Dissertation, The University of Calgary, Canada, 2001
    [33] Braha D, Maimon O. A Mathematical Theory of Design: Foundations, Algorithms and Applications. New York: Kluwer Academic Publishers, 1998
    [34] Bras, B. and Mistree, F., Robust design using compromise decision support problem. Engineering Optimization, 1993, 21(2): 213-239
    [35] Lee K D, Suh N P, Oh J H. Axiomatic design of machine control System. Annals of the CIRP, 2001, 50(1): 109-114
    [36] Do S H, Park G J. Application of design axioms for glass bulb design and software development for design automation. ASME Journal of Mechanical Design, 2001, 123: 322-329
    [37] Skin M K, Hong S W; Park G J. Axiomatic design of the motor-driven tilt/telescopic steering system for safety and vibration. Journal of Automobile Engineering, 2001,215(2): 179-187
    [38] Helander M G, Li L. Axiomatic design in ergonomics and an extension of the information axiom. Journal of Engineering Design, 2002, 13(4): 321-340
    [39] Park G-J, Kang B-S, Song K-N, etal. Design of a spacer grid using axiomatic design. Journal of Nuclear Science and Technology, 2003, 40(12): 989-997
    [40] Johnnesson H L. Computer aided analysis of functional couplings in structural axiomatic design. Proceedings of the 1995 Design Engineering Technical Conferences, 1995, 83: 337-343
    [41] Johnnesson H L. On the nature and consequences of functional couplings in axiomatic machine design. Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference, CA, U.S.A., 1996
    [42] Johnnesson H L. Soderberg R. Structure and matrix models for tolerance analysis from configuration to detail design. Research in Engineering Design, 2000, 12: 112-125
    [43] Kang Y J. The method for uncoupling design by contradiction matrix of triz, and case study. The Third International Conference on Axiomatic Design, Seoul, 2004
    [44] Choi D, Hwang W. A suggestion and a contribution for the improvement of axiomatic design. Third International Conference on Axiomatic Design, Seoul, 2004
    [45]曹鹏彬,肖人彬,库琼.公理设计过程中耦合设计问题的结构化分析方法.机械工程学报, 2006, 42(3): 46-55
    [46]朱龙英,朱如鹏,刘正埙.公理化设计与质量功能配置集成研究.机械科学与技术, 2004, 23(6): 647-650
    [47] Hu M. Enhancing robust design with aid of TRIZ and axiomatic design. Ph. D Dissertation, Wayne State University, America, 2000
    [48]檀润华,马建红,张换高等.技术进化驱动的产品概念设计宏观过程模型.中国机械工程, 2003, 14(11): 958-963
    [49] Bras B, Mistree F. A compromise decision support problem for axiomatic and robust design, Journal of Mechanical Design, 1995, 117(1): 10-19
    [50] Andersson P. A semi-analytic approach to robust design in the conceptual design phase, Research in Engineering Design, 1996, 8(4): 229-239
    [51] Andersson P. On robust design in the conceptual design phase: a qualitative approach, Journal of Engineering Design, 1997, 8(1): 75-89
    [52] Hwang K H, Lee K H, Park G-J. Robust design of the vibratory gyroscope withunbalanced inner torsion gimble using axiomatic design. The Second International Conference on Axiomatic Design, Ma-June, 10-11, 2002
    [53] El-Haik B. Axiomatic Quality and Reliability: Integrating Principles of Design, Design for Six-Sigma, Reliability and Quality Engineering, New York: John Wiley & Sons, Inc., 2005
    [54]向东,段广洪,汪劲松等.公理性设计在绿色工艺选择中的应用.中国机械工程, 2000, 11(9): 972-976
    [55] Kulak O, Kahraman C. Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. Information Sciences, 2005, 170: 191-210
    [56]陈立周.稳健设计.北京:机械工业出版社, 2000
    [57]中国现场统计研究会三次设计组、全国总工会电教中心.正交法和三次设计.北京:科学出版社, 1985
    [58]田口玄一.试验设计法.魏锡禄,王世芳译.北京:机械工业出版社, 1987
    [59]韩之俊.三次设计.北京:机械工业出版社, 1992
    [60] Al-Widyan, K. and Angeles, J., A model-based formulation of robust design, Journal of Mechanical Design, 2005, 127(3): 388-396
    [61] Phadke S M. Quality Engineering Using Robust Design. Englewood Cliffs, NJ: Prentice Hall, 1989
    [62] Park Gyung-Jin, Lee Tae-Hee, Lee Kwon-Hee, etal. Robust design: an overview. AIAA Journal. 2006, 44(1): 181-191
    [63] Shoemaker A C, Tsui K L, Wu CFJ. Economical experimentation methods for robust design. Technometrics. 1991, 33(4): 415-427
    [64] Geoff R V, Raymond H M. Combining Taguchi and response surface philosophics: a dual response approach. Journal of Qualify Technology, 1990, 22(1): 38-45
    [65] Pregibon D. Review of generalized linear models. The Annuals of Statistics, 1984, 12(4): 1589-1596
    [66] Kar, A K. Link axiomatic design and Taguchi methods via information content in design. First International Conference on Axiomatic Design, Cambridge, 2000, MA-June, 21-23
    [67] Gu P H, Lu B, Spiewak S. A new approach for robust design of mechanical systems. Annals of the CIRP, 2004, 53(1): 129-133
    [68] Tsui K L. An overview of the Taguchi method and newly developed statistical methods for robust design. IEE Transactions, 1992, 24(5):44-57
    [69] Nair V N. Taguchi’s parameter design: a panel discussion. Technometrics, 1992, 34 (2): 127-161
    [70]李泳鲜,孟庆国,姬振豫.三次设计中望目特性信噪比的讨论与改进.机械设计, 2001, 18(1): 10-12
    [71] Chen W, Wiecek M. Quality utility-A compromise programming approach to robust design. Quality Engineering, June 1999, 121: 179-187
    [72] Parkinson A. Robust mechanical design using engineering models. Journal of Mechanical Design, 1995,117: 48-54
    [73] Ramakrishna B, Rao S S. A robust optimization approach using Taguchi’s loss function for solving nonlinear optimization problems. Advances in Design Automation, 1991, 32(1): 241-248
    [74] Sundaresan S, Ishii K, Houser D R. A robust optimization procedure with variations on design variables and constraints. Advances in Design Automation, 1993, 69 (1): 379-386
    [75]马义中,徐济超.多指标稳健设计质量特性的度量.系统工程, 1998, 16 (6): 34-37
    [76] Song A, Mathur A, Pattipati K R. Design of process parameters using robust design techniques and multiple criteria optimization. IEEE Transaction on Systems, Man and Cybernetics, 1995, 25 (11): 1737-1746
    [77] Iyer H V, Krishnamurty S. A preference-based robust design metric. ASME Design Technical Conference, DAC5625, 1998, Atlanta, GA
    [78] Chen W, Sahai A, Messca A, etal. Exploration of the effectiveness of physical programming in robust design. Journal of Mechanical Design, 2000, 122(2), 155–163
    [79] Chen W, Allen J K, Tsui K L. A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors. Journal of Mechanical Design, 1996, 118(4), 478–485
    [80]郭惠昕.产品质量的模糊稳健性研究及模糊稳健优化设计方法.中国机械工程. 2002, 13(3): 221-224
    [81] Chen Chaio-Shiung. Design of stable fuzzy control systems using Lyapunov’s method in fuzzy hypercubes. Fuzzy sets and Systems, 2003, 139(1): 95-110
    [82]任冠华,陈立周.基于模糊概率的零缺陷设计在产品质量中的应用.北京科技大学学报, 2003, 25(3): 273-276
    [83]曹衍龙,杨将新.基于模糊质量损失的公差稳健设计方法研究.浙江大学学报, 2004, 38(1): 1-5
    [84]陈入领,潘双夏,沈彤.稳健设计研究现状.机械设计, 2003, 20(8): 1-3
    [85]陈立周.工程稳健设计发展现状与趋势.中国机械工程, 1998, 9(8): 59-62
    [86] Su, J. and Renaud, J E. Automatic differentiation in robust optimization. AIAA Journal, 1997, 35(6): 1072-1079
    [87] Du X, Chen W. Towards a better understanding of modeling feasibility robustness in engineering design. Journal of Mechanical Design. 2001, 122(4): 385-394
    [88] Du X, Chen W. Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA Journal. 2002, 40(3): 545-552
    [89] Gu X, Renaud J E, Batill, S M, et al. Worst case propagated uncertainty of multidisciplinary systems in robust design optimization. Structural and Multidisciplinary Optimization, 2000, 20(3): 190-213
    [90] McAllister C D, Simpson T W. Multidisciplinary robust design optimization of an internal combustion on engine. Journal of Mechanical Design, 2003, 125(1): 124-130
    [91]陈建江.面向飞航导弹的多学科稳健优化设计方法及应用[博士学位论文].武汉:华中科技大学. 2004
    [92]郭惠昕.稳健设计研究现状与模糊稳健设计研究进展.机械设计, 2005, 22(3); 1-5
    [93]黄靖远,龚剑霞,贾延林.机械设计学.北京:机械工业出版社, 2002
    [94]郑称德,公理化设计基本理论及其应用模型.管理工程学报, 2003, 17(2): 81-85
    [95] Liu X P, Soderborg N. Improving an existing design based on axiomatic design principles. First International Conference on Axiomatic Design, Cambridge, MA-June 21-23, 2000
    [96] Lee K W, Yi J W, Lee K H, et al. A structural optimization methodology using the interdependence axiom. First International Conference on Axiomatic Design, Cambridge, MA-June 21-23, 2000
    [97] Jeff Thielman, Ge Ping. Applying axiomatic design theory to the evaluation and optimization of large-scale engineering systems. Journal of Engineering Design, 2006,17(1): 1-16
    [98] Lindholm D, Tate D, Harutunian V. Consequences of design decisions in axiomatic design. Society for Design and Process Science, 1999, 3(4): 1-12
    [99]张瑞红.公理设计的使能技术研究[博士学位论文].天津:河北工业大学, 2004
    [100] Babic B. Axiomatic design of flexible manufacturing systems. International Journal of Production Research, 1999, (37)5: 1159-1173
    [101] Albano L D, Suh N P. Axiomatic design and concurret engineering. Computer Aided Design, 1994, 26(7): 499-504
    [102]黄洪钟,姚新胜,周仲荣.基于满意度原理的装载机工作装置的多目标优化设计.机械工程学报, 2003, 39(5): 97-103
    [103] Papalambros P Y. The optimization paradigm in engineering design. Computer-Aided Design, 2002, 34(4): 939-951
    [104]刘惟信.机械最优化设计(第二版).北京:清华大学出版社, 1994
    [105]俞国燕,郑时雄,黄平.复杂工程设计综合评价系统研究.机械科学与技术, 2001, 20(1): 6-9
    [106]王冬梅,殷国富,谢刚等.机构方案设计优化解的评价与决策研究.现代制造工程, 2005, 6: 9-11
    [107] Nagasawa, Shin'ya. Application of fuzzy theory to value engineering. Computer& Industrial Engineering, 1997, 33(3,4): 565-568
    [108] Satty T L. Ranking by eigenvector versus other methods in the analytic hierarchy process. Applied Mathematics Letters, 1998, 11(4): 121-125
    [109]刘华,陈维平,赵海东等.基于效用函数逼近的绿色产品评价方法.机械工程学报, 2005, 41(10): 17-22
    [110]薄瑞峰,黄洪钟.交互式模糊物理规划在概念设计方案多目标决策中的应用.应用基础与工程学学报, 2005, 13(4): 442-450
    [111]秦寿康.综合评价原理与应用.北京:电子工业出版社, 2003
    [112]李靖华,郭耀煌.主成分分析用于多指标评价的方法研究——主成分评价.管理工程学报, 2002, 116(1): 39-44
    [113]刘长毅,徐诚,方案设计中机构类型选择的决策方法,南京理工大学学报,2001
    [114]邓聚龙.灰色系统基本方法.武汉:华中理工大学出版社, 1987
    [115] Suh N P. Axiomatic design theory for systems, Research in Engineering Design, 1998(10): 189-209
    [116] Suh N P. Designing-in quality through axiomatic design, IEE Transaction on Reliability, 1995, 44(2): 256-264
    [117]赵振宇,徐用懋.模糊理论和神经网络的基础与应用.北京:清华大学出版社,1996
    [118]蒋国仁.港口起重机械.大连:大连海事大学出版社, 1995
    [119] Taguchi G., Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream, New York: ASME Press, 1993
    [120] Suh N P. Complexity: Theory and Applications, New York: Oxford University Press, 2005
    [121]李跃波,周树民,一种新的损失函数,武汉工业大学学报, 1999, 21(4): 86-88
    [122]何伟,林顺英,薛龙,基于DPS的滑动轴承的稳健设计,轴承, 2005, 6: 5-7
    [123] Derringer G, Suich R. Simultaneous optimization of several response variables. Journal of Quality Technology. 1980, 12(4): 214-219
    [124] Pignatiello J J Jr. Strategies for robust multi-response quality engineering. IIE Transaction. 1993, 25(3): 5-15
    [125] Artiles-leon N. A pragmatic approach to multi-response problems using loss functions. Quality Engineering. 1996~1997, 9(2): 213-220
    [126]朱学军,王安麟,张慧侨.非稳态罚函数遣传算法及其用于机械/结构系统的健壮性设计.机械科学与技术, 2000, 19(1): 49-51
    [127] Hsieh Kun-Lin, Tong Lee-Ing. Optimization of multiple quality responses involving qualitative and quantitative characteristics in IC manufacturing using neural networks. Computer in Industry, 2001, 46(1): 1-12
    [128] Myers R H. Response surface methodology-current status and future directions. Journal of Quality Technology, 1999, 31(1): 30-74
    [129] Lee K H, Park G J. Robust optimization considering tolerances of design variables. Computers & Structures, 2001(79): 77-86
    [130] Messac A. Physical programming: effective optimization for computational design. AIAA Journal, 1996, 34(1): 149-158
    [131] Messac A, Ismail-Yahaya A. Multiobjective robust design using physical programming. Structural and Multidiscplinary Optimization, 2002, 23(5): 357-361
    [132] Messac A, Sundararaj G J. A robust design approach using physical programming. AIAA-2000-0562, 2000
    [133] Mistree F, Hughes O F, Bras B A. The compromise decision support problem and the adaptive linear programming algorithm. Structural Optimization: Status and Promise, Kamat, M. P., ed., AIAA, Washington, D.C., 1993: 247–289
    [134] Kalsi M, Hacker K, Lewis K. A comprehensive robust design approach for decision trade-offs in complex systems design. Journal of Mechanical Design, 2001,123(1): 1-10
    [135] McAllister C D, Simpson T W. Multidisciplinary robust design optimization of an internal combustion engine. Journal of Mechanical Design, 2003,125(1): 124-130
    [136] Hernandez G, Allen J K, Mistree F. The compromise decision support problem: modeling the deviation function as in physical programming. Engineering Optimization, 2001, 33(4): 445-47
    [137]张根保,信息公理与精益生产.工业工程与管理, 1998(4): 45-48
    [138]孙国正,优化设计及应用(修订版).北京:人民交通出版社, 2000
    [139]胡吉全,杨艳芳,陈定方.基于模块化的门座起重机虚拟概念设计.武汉理工大学学报(交通科学与工程版), 2005, 29(3): 447-449