高硬度回转球面精密磨的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐高温(≥500℃)、耐高压(≥30MPa)、耐磨损、抗热冲击、抗热腐蚀球阀是煤液化工程中高压煤油浆输送与控制的关键部件之一,也是钢铁冶炼、石油化工、核电等重大工程项目中关键部件之一。为了适应上述苛的工作要求,阀门关闭件球体表面必须进行硬化处理,其表面硬度HRC≥62、形状精度要求为400mm直径形状误差≤0.008mm,大面积合金化球面高精度加工制造成为一大难题、也是煤液化球阀加工制造的核心技术。本文针对高硬度回转球面精密磨加工的难点,设计了适用于高硬度回转球面精密磨加工的方法和装备、研究了高硬度涂层材料的精密磨机理、探讨了高硬度回转球面磨工艺系统的几何误差补偿技术,最后将上述研究结论和成果应用于高硬度回转球面精密磨加工、并进行了大量的试验研究,成功地实现了高硬度回转球面高质量和高精度的磨加工。整个课题研究具有较强的系统性,促进了该项技术的国产化,具有极其广阔的经济效益和社会效益。
     设计了适用于高硬度回转球面精密磨加工的方案。该方案综合考虑了高硬度涂层材料加工困难的特性和回转球面加工的精度保证技术等两方面,同时又降低了机床的开发成本、操作简单可靠。其实现原理主要是利用工件和杯形砂轮的旋转运动、并使它们的轴心线相交,进而利用砂轮的坐标运动来调整加工位置和进给方向;机械结构设计的独特之处在于“四心合一”思想,即通过调整主轴、尾座顶尖、回转工作台和磨头等回转轴线的位置、并在空间相交于一点,从而保证球面加工精度。
     对高硬度涂层材料精密磨的磨力从理论和试验等方面进行了系统研究。为了较为方便地研究高硬度涂层材料的磨机理,试验采用杯形砂轮平面磨模拟球面磨来加工高硬度涂层材料;系统分析了杯形砂轮平面磨过程,提出了有效磨宽度的概念,进而分析了磨粒切刃的磨模型。基于单颗磨粒切模型,从理论上分析了WC-Co涂层精密磨的磨力,推导了磨力理论公式。对WC-Co涂层精密磨力进行试验研究,分析了磨力的特点,验证了磨力理论公式的有效性,探讨了磨工艺参数对磨力、磨分力比、磨比能和磨力信号的特征频谱等指标的影响规律。
     对高硬度涂层材料精密磨的磨温度从理论、数值模拟和试验等三方面进行了深入系统的研究。针对杯形砂轮磨高硬度涂层的实际工况,分别使用梯形移动热源和三角形移动热源模型对杯形砂轮平面磨温度场进行理论建模、并推导出相应的温度场理论公式;将有限元法热分析应用到杯形砂轮磨WC-Co涂层的温度场仿真中,建立了有限元热分析的模型、阐述了有限元热分析的步骤、讨论了工件表面温度仿真结果的变化规律;使用热电偶测温法对杯形砂轮磨WC-Co涂层磨温度进行测量,得出了杯形砂轮磨WC-Co涂层的磨温度曲线、讨论了磨工艺参数对磨温度的影响规律;磨温度抑制试验结果表明,向磨弧区施加冷却液可以大幅降低磨温度、有效改善磨工况;磨工件表面XRD物相分析试验结果表明,现行磨用量最大条件下干磨后工件表面物相组份基本未变、磨温度对工件表面材料性能影响不大。
     对高硬度涂层材料精密磨的砂轮磨损进行了深入细致地探讨和研究。分析了WC-Co涂层精密磨过程中的砂轮磨损形式,试验研究发现存在的磨损形式有磨耗磨损、磨粒脱落、结合剂磨损和粘附磨损;阐述了砂轮磨损状态在线评估的基本原理,并将基于小波包分解的时域信号特征提取方法应用于砂轮磨损状态的监控和评估,试验结果为砂轮修整时机的选择、砂轮耐用度的合理确定提供依据,从而达到提高磨加工生产率和保证磨加工质量之目的。
     对数控精密球面磨工艺系统的几何误差补偿进行研究,以求进一步提高球面磨的精度。分析了数控精密球面磨工艺系统移动副、转动副和正交副的运动误差,阐述了几何误差建模的方法、原理和步骤,推导了工艺系统几何误差模型;并将此误差模型应用于数控精密球面磨工艺系统的几何误差补偿研究,试验结果表明几何误差补偿后球体加工的形状精度有所提高、从而验证了误差补偿的有效性。
     在研究高硬度回转球面精密磨方法、高硬度涂层材料精密磨机理和球面磨工艺系统几何误差补偿的基础上,将研究成果和结论应用于高硬度回转球面精密磨、并进行了大量的试验研究。对自行研发的数控精密球面磨床特性进行研究发现磨头组件的刚性数值存在变化、其规律随进给增大刚度也相应增大,在磨加工进给系统间隙消除后可以满足高硬度回转球面精密加工要求;采用了定压力磨策略,避免了砂轮钝化造成对磨过程和加工表面质量的破坏;提出了高硬度回转球面精密磨工艺参数的评价标准,即加工效率(材料去除率)、表面质量(SEM形貌分析)和形状精度(球度)等,并通过大量的工艺试验研究了磨工艺参数对上述三个评价指标的影响规律;通过调整磨工艺参数、综合平衡三个指标之间的关系,实现了一定加工效率条件下的高硬度回转球面高精度和高表面质量的磨加工。
High-performance sphere valve, which can resists high temperature of over 500 centigrade, high pressure of over 30MPa, wearing, thermal impact and heat erosion, is one of key components used in delivery and control of high temperature and high pressure coal oil liquid in coal liquification engineering, and also used in steel smelting, petroleum chemical engineering and nuclear power. In order to satisfy the bad working conditions stated above, the surface of close part of sphere valve must be harden processed, which rigidity of HRC can up to 62. So it is a large difficult problem in machining high rigidity and high precision sphere. At the same time, it is a core-technology of sphere valve manufacturing in coal liquification. In order to solve the difficulty in high-rigidity rotary sphere precision manufacturing, the grinding method and equipment which is suitable to machining high-rigidity rotary sphere was designed, the precision grinding mechanism of high-rigidity coating material was researched, and the geometric error compensation technique in machining high-rigidity rotary sphere was discussed in this paper. At last, the results and achievements obtained above were used in high-rigidity rotary sphere grinding precisely, a large number of grinding experiments were performed, and high-quality and high-accuracy sphere machining were realized successfully. The whole research possesses better systematicness, promotes the localization of this technology, and has large profits for economic and society.
     The grinding method which is suitable to machining high-rigidity rotary sphere precisely was designed. The machining theory is discussed in the following. Work piece and cup wheel perform rotation movement and their axial line are intersect in a point, then the machining position and feed direction can be adjusted by coordinate movement of wheel. Uniqueness of the mechanical design is that the four points, which are the rotation center of spindle, tail stock, rotary work table and grinding head, intersect in a point so as to ensure the machining accuracy.
     The grinding force in machining high-rigidity coating precisely was researched in theory and experiment. The reason which is using flat grinding instead of sphere grinding was explained and its feasibility was discussed too. The flat grinding course of cup wheel was analyzed, the concept of effective grinding width was put forward and cutting model of grit was analyzed too. Due to a research blank in high-rigidity grinding force theoretical model, the theoretical formula of grinding force was deduced. By performing experimental research on grinding force in machining WC-Co coating, the characteristic of it was analyzed, the relationships between grinding parameters and grinding force, grinding force ratio, grinding energy and character frequency were explored.
     The grinding temperature in machining high-rigidity coating precisely has been researched in theory, numerical simulation and experiment. According to working condition in grinding high-rigidity coating by cup wheel, theoretical models of grinding temperature field were built by means of trapezium moving heat source and triangle moving heat source. Heat analysis method of FEM was applied to grinding temperature field simulation of WC-Co coating grinded by cup wheel, the analysis procedure and results were discussed too. Experiments of grinding temperature were performed by using thermocouple, and the relationships between grinding parameters and grinding temperature were discussed. Experimental results of grinding temperature controlling showed that grinding temperature may be decreased rapidly by injecting coolant to grinding area. Experimental results of XRD phase analysis of work piece surface indicated that grinding temperatures have not obvious effect on property of work piece under maximum grinding parameters.
     The wear of grinding wheel in machining high-rigidity coating precisely was researched. The wear mechanism of wheel was analyzed. Experimental results showed that there were many wear formats including abrasion wear, grit falling off, bond wear and adhesion wear. The theory of on-line evaluation on wheel’s wear was introduced and feature extraction method based on wavelet packet decomposition was applied to inspection and evaluation of wheel’s wear. Experimental results may provide references for time selection of wheel’s dressing and exact definition of wheel’s life.
     In order to improve the machining precision of sphere, geometric error compensation for NC precision sphere grinding machine was researched. Firstly, motion errors of movement couple, rotation couple and orthogonal couple were analyzed. Secondly, method, theory and procedures of model building of geometric errors were given and the model was deduced. Lastly, experiments on geometric error compensation showed the effectiveness of the error model.
     On the basis of researches on grinding method for machining high-rigidity rotary sphere precisely, grinding mechanism of high-rigidity coating, and geometric error compensation for sphere grinding, experimental researches on high-rigidity rotary sphere precision grinding were performed. The rigidity of grinding head may change, but it can satisfy the precision grinding after eliminating clearance of feed system. The constant pressure grinding was put forward in order to avoiding damage to grinding course. And evaluation standards for grinding parameters, which are material remove rate, surface quality and shape precision, were given. A large number of experiments were performed to research the relationships between grinding parameters and evaluation standards. By adjusting grinding parameters and balancing three evaluation standards, high-precision and high-quality machining of high-rigidity rotary sphere were realized.
引文
[1] 沈阳高中压阀门厂. 阀门制造工艺. 北京, 机械工业出版社, 1984
    [2] 谢代田. 标定用球体加工方法. 机械制造, 1995, 5: 27~28
    [3] 刘元林, 刘兴, 刘元柱, 麻晓红. 球体加工方法的研究与应用. 煤矿机械, 2000, 4: 31~32
    [4] 任舒宪. 大型回转曲面的坐标加工法. 机械制造, 1994, 11: 17~18
    [5] 曲恒剑. 用经济型数控车床车球体的简易方法. 机械工人(冷加工), 2002, 5: 52
    [6] 陈国柱. 经济型数控车床加工球体零件. 机械工艺师, 1995, 8: 14~15
    [7] 何正武. HZ 球体车夹具. 机械工人(冷加工), 2003, 11: 62
    [8] 李汉民. 空心球体的加工. 机械工艺师, 1996, 11: 32~33
    [9] 江九林. 提高球体外表面加工精度的探讨. 机床与液压, 1994, 2: 109~112
    [10] 姚淑芹, 李宗贺. 用普通车床加工球体. 阀门, 1994, 4: 35~36
    [11] 钱子亮. 双刀飞外球面车工具. 机械工人(冷加工), 1999, 7: 12
    [12] 查继明. 旋风切外球面夹具. 机械工人(冷加工), 2000, 5: 17
    [13] 陈国柱, 吕自力. 可调车球体装置. 机械制造, 1996, 4: 29
    [14] 郑文虎. SR460mm 球面副的磨加工. 铁道机车车辆工人, 1994, 3: 1~3
    [15] 杨铁昭. 球阀球面的磨加工. 机械工艺师, 1997, 12: 32
    [16] 左宏. 球面压加工. 现代制造工程, 2003, 12: 112~113
    [17] 王德拥译. 球阀球体的压加工及专用机床. 阀门, 1995, 3: 30~32
    [18] 许铁城. 可提高球阀加工效率的制造方法及其装置. 申请专利号(中国): 96100007.4
    [19] 邱张素月. 球阀阀体的制造方法. 申请专利号(中国): 02109682.1
    [20] 杨安生,杨文安 . 一种超硬密封球阀的加工方法 . 申请专利号 ( 中国): 200310119180.7
    [21] POETZSCH MICHAEL (DE), etc. Method and device for grinding ceramic spheres. IPC: B24B11/06; B24B11/00.
    [22] OLYMPUS OPTICAL CO LTD,Spherical lens grinding device - uses pair of cup type grinding wheels mounted on two independent spindles positioned at opposite sides of lens. Patent Number(s): JP8132341-A
    [23] Arai; Kazuhisa (Tokyo, JP). Apparatus for grinding spherical objects. Pat. No. 6358132(US)
    [24] 中国磨料磨具总公司. 磨料磨具技术手册. 兵器工业出版社, 1993
    [25] 郭志强, 宋月清. 超硬材料与工具. 冶金工业出版社, 1996
    [26] S.J. Schneider, R.W. Rice. The Science of Ceramic Machining and Surface Finishing I. NBS Special Publication, 1972, 348
    [27] B.J. Hockey, R.W. Rice. The Science of Ceramic Machining and Surface Finishing II. NBS Special Publication, 1979, 562
    [28] G.D. Quinn, L.K. Ives, S. Jahanmir. On the Fractorgarphic Analysis of Machining Cracks in Ground Ceramics: A Case Study on Silicon Nitride. NIST Special Publication, 2003, 996
    [29] 任敬心, 康仁科, 史兴宽. 难加工材料的磨. 北京: 国防工业出版社, 1999
    [30] 魏源迁. 国外硬脆材料最新加工技术. 磨床与磨, 1998, 2: 15~19
    [31] 于思远, 林滨, 林彬. 国内外先进陶瓷材料加工技术的进展. 金刚石与磨料磨具工程, 2001, 4: 36~39
    [32] 王仲礼译. 超硬材料的磨技术. 机械制造, 1997, 10: 43~44
    [33] 蒋嵘,吴晨曦. 超硬材料加工技术发展现状及趋势. 佛山陶瓷, 2003,13(12):39~42
    [34] I.P. Tuersley, A. Jawaid, I.R. Pashby. Review: Various methods of machining advanced ceramic materials. Journal of Materials Processing Technology, 1994, 42(4): 377~390
    [35] R. Komanduri, D.A. Lucca, Y. Tani. Technological advanced in fine abrasive processes. Annuals of the CIRP, 1997, 46(2): 545~596
    [36] 史兴宽, 杨茂奎, 原京庭. 硬脆材料超光滑表面磨技术的现状及发展趋势. 机械科学与技术, 1997, 16(5): 883~887
    [37] 任敬心, 史兴宽. 磨技术的新进展-硬脆材料光滑表面的超精磨. 中国机械工程, 1997, 8(4): 106~110
    [38] 于怡青, 徐西鹏, 沈剑云. 陶瓷磨机理及磨加工技术研究进展. 湖南大学学报, 1999, 26(2): 48~56
    [39] 铁瑛, 赵波, 张波. 工程陶瓷材料精密磨加工技术的新发展. 焦作工学院学报, 2003, 22(3): 217~220
    [40] 沈剑云. 结构陶瓷磨机理与热特性分析. 博士学位论文, 天津大学, 2003
    [41] G. Spur, H. Cartsburg. Grinding Reinforced Aluminium Oxide. Industrial Diamond Review, 1993, (2): 92~97
    [42] Hitoshi Ohmori. ELID(Electrolytic Inprocess Dressing) – Grinding technique and its factors for ultraprecision mirror surface machining. Harbin: Proceedings of the 5th SINO-JAPAN joint seminar on ultraprecision machining, 1994: 125~149
    [43] Ohmori H, Takahashi. Efficient grinding Technique utilizing electrolytic In-process Dressing for precision machining of hard materials. Chiba, Japan: Proceedings of the 7th International Conference on Production/Precision Engineering, 1994: 315~320
    [44] Wobker H G. Process design in grinding of advanced Ceramics. Advancement of Inteligent Production. The Japan of Ceramics Precision Engineering, 1994: 297~302
    [45] Mayer J E. Efficient high strength finish grinding of ceramics. Advancement of Inteligent Production. The Japan of Ceramics Precision Engineering, 1994: 285~290
    [46] Ohmori H. Electrolytic In-process Dressing grinding technique for ultraprecison mirror surface machining. Int. J. Japan Soc. Prec. Eng., 1992, 26(4): 242~248
    [47] Malkin S, Ritter JE. Grinding mechanism and strength degradation for ceramics. Journal of Engineering Industry, Trans. Of the ASME, 1989, 111(5): 266~270
    [48] Chen I W, Huang S Y. Shear thickening creep in super plastic silicon Nitride. J. Am. Ceram. Soc., 1992, 75(5): 1073~1079
    [49] Itch N, Ohmori H. ELID lap grinding of hard and brittle materials. JSPE, 1992, 59(9): 158~163
    [50] Salm S. C. Modern grinding process technology. McGraw-Hill Inc, New York, 1992
    [51] Rubenstein C. The mechanics of grinding. Int. J. Mach. Tool Des. Res. 1972, 12: 127~139
    [52] Zhang B. An investigation of the effect of machine stiffness on grinding of ceramics. Annals of the CIRP, 2001, 50(1): 209~212
    [53] Zheng Y S. Relationship between flexural strength and surface roughness for hot-pressed Si3N4 self-reinforced ceramics. Journal of the European Ceramic Society, 2000, 20: 1345~1353
    [54] Tonshoff H. K. Mechanical and thermal effects in grinding of advanced ceramics. Int. J. Japan Soc. Prec. Eng., 1999, 33(1): 32~36
    [55] Warnecke G. Basic of process parameters selection in grinding of advanced ceramics. Annals of the CIRP, 1995, 44(1): 283~286
    [56] Warnecke G. Optimization of the dynamic behavior of grinding wheel for grinding of hard and brittle materials using the finite element method. Annals of the CIRP, 1995, 44(1): 283~286
    [57] Zhang B. Surface integrity in machining hard-brittle materials. Journal of Japan Society for Abrasive Technology, 2003, 47(3): 131~134
    [58] Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics. Journal of Material Processing Technology, 2002, 132: 353~364
    [59] Inasaki I. Grinding of hard brittle materials. Annals of the CIRP, 1987, 36(2): 463~471
    [60] 邓朝晖, 张壁, 周志雄. 陶瓷磨的表面/亚表面损伤. 湖南大学学报, 2002, 29(5): 61~71
    [61] 王西彬, 任敬心. 结构陶瓷磨表面微裂纹的研究. 无机材料学报, 1996, 11(4): 658~664
    [62] Malkin S, Hwang T W. Grinding mechanisms for ceramics. Annals of the CIRP,1996, 45(2): 569~580
    [63] Lawn B. R. Fracture of brittle solids, 2nd Editions. Cambridge University Press, 1993, 249~306
    [64] 龚江宏著. 陶瓷材料断裂力学. 北京: 清华大学出版社, 2001
    [65] Li K, Liao T W. Surface/subsurface damage and the fracture strength of ground ceramics. J. Mater. Proc. Tech., 1996, 57: 207~220
    [66] 王西彬, 任敬心. 结构陶瓷磨表面损伤的研究. 硅酸盐学报, 1997, 25(1): 101~105
    [67] 邓朝晖,张壁,孙宗禹等. 陶瓷磨材料去除机理的研究进展. 中国机械工程, 2002, 13(18): 1608~1611
    [68] Kirchner H P. Damage penetration at elongated machining grooves in hot-pressed Si3N4. J. Amer. Ceram. Soc., 1984, 67:127~132
    [69] Bifano T G., Dow T A, Scattergood R O. Ductile-regime grinding: A new technology for machining brittle materials. ASME, J. of Eng. For Ind., 1991, 113: 184~189
    [70] Zhang B, Howes T D. Material-removal mechanisms in grinding ceramics. Annals of the CIRP, 1994, 43(1): 305~308
    [71] Xu H. K., Jahanmir S, Ives L K. Material removal and damage formation mechanisms in grinding silicon nitride. J. Mater. Res., 1996, 11: 1717~1724
    [72] 田欣利, 徐燕申, 林彬等. 陶瓷精密加工表面完整性的研究进展. 中国机械工程, 1998, 9(6): 63~66
    [73] 田欣利, 徐燕申, 彭泽民等. 陶瓷磨表面变质层的产生机理. 机械工程学报, 200, 36(11): 30~32
    [74] 于思远, 林彬, 林滨等. 工程陶瓷超精密磨表面质量的研究. 金刚石与磨料磨具工程, 2002, 5(131): 12~16
    [75] 王西彬, 李相真. 结构陶瓷磨表面的残余应力. 金刚石与磨料磨具工程, 1997, 6(102): 18~22
    [76] Malkin S, Ritter J E. Grinding mechanism and strength degradation for ceramics. ASME, J. of Eng. For Ind., 1989, 111: 167~173
    [77] 邓朝晖. 纳米结构陶瓷涂层精密磨机理及仿真预报技术的研究: [博士学位论文]. 长沙, 湖南大学, 2004
    [78] B.R. Lawn, M.V. Swain. Micro-fracture beneath Point Indentation in Brittle Solids.Journal of Materials Science, 1975, 10: 113~122
    [79] B.R. Lawn, R. Wilshaw. Indentation Fracture: Principles and Applications. Journal of Materials Science, 1975, 10: 1049~1081
    [80] B.R. Lawn, A.G. Evans. A Model for Crack Initiation in Elastic/Plastic: Indentation Fields. Journal of Materials Science, 1977, 12: 2195~2199
    [81] B.R. Lawn, A.G. Evans, D.B. Marshall. Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System. Journal of American Ceramics Society, 1980, 63(9~10): 574~581
    [82] D.B. Marshall, B.R. Lawn, A.G. Evans. Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System. Journal of American Ceramics Society, 1982, 65(11): 561~566
    [83] S.S. Chiang, D.B. Marshall, A.G. Evans. The Response of Solids to Elastic/Plastic Indentation II. Fracture Indentation. Journal of Applied Physics, 1982, 153: 312~317
    [84] B. Zhang, H. Tokura, M. Yoshikawa. Study on Surface Cracking of Alumina Scratched by Single-point Diamond. Journal of Materials Science, 1988, 23: 3214~3224
    [85] J.C. Conway, H.P. Kirchner. The Mechanics of Crack Initiation and Propagation Beneath a Moving Sharp Indenter. Journal of Materials Science, 1980, 15: 2879~2883
    [86] D.B. Marshall, A.G. Evans, B.T. Khuri Yakub, et al. The Nature of Machining Damage in Brittle Materials. Proceedings of Royal Society of London, 1983, A385: 461~475
    [87] A.W. Ruff, H. Shin, C.J. Evans. Damage processes in ceramics resulting from diamond tool indentation and scratching in various environments. Wear, 1995, 181~183(2): 551~562
    [88] M.V. Swain. Micro fracture about scratched in brittle solids. Proceedings of Royal Society of London, 1979, A336: 575~597
    [89] Wobker H G, Tonshoff H K. High efficiency grinding of structural ceramics. In: Machining of Advanced Materials, NIST Special Publication 847, 1993, 171~183
    [90] 殷玲, 刘忠, 陈日曜. 陶瓷磨中金刚石砂轮磨损形式及其生成原因. 华中理工大学学报, 1996, 24(4): 19~22
    [1] 杨叔子. 机械加工工艺师手册. 机械工业出版社, 2002
    [2] 郑文虎. 难加工材料加工技术问答. 北京出版社, 2001
    [3] 原魁, 刘伟强. 变频器基础及应用. 冶金工业出版社, 1997
    [4] 汪恺. 机械设计标准应用手册(第 3 卷). 机械工业出版社, 1997
    [5] 季田. 天线罩内廓形精密测量与修磨工艺技术研究: [博士学位论文]. 大连, 大连理工大学, 2004
    [6] 王启义. 中国机械设计大典(第 2 卷,机械设计基础). 江西科学技术出版社, 2002
    [7] 廖常初. PLC 编程及应用. 机械工业出版社, 2006
    [8] 汪小澄, 袁立宏, 张世荣. 可编程序控制器运动控制技术. 机械工业出版社, 2006
    [1] B. Lin, H. L. Zhang. Theoretical Analysis of Temperature Field in Surface Grinding with Cup Wheel. Key Engineering Materials, 2001(202~203): 441~445
    [2] B. Lin, Q. H. Yuan, etc. Theoretical Analysis of Surface Grinding Temperature Field by Cup Wheel. Key Engineering Materials, 2004(259~260): 256~259
    [3] 有色金属及其热处理编写组. 有色金属及其热处理. 北京, 国防工业出版社, 1981
    [4] 任敬心, 华定安. 磨原理. 西安, 西北工业大学出版社, 1988
    [5] 曹建平. 纳米结构 WC/12Co 涂层材料磨力研究与建模: [硕士学位论文]. 长沙:湖南大学, 2004
    [6] 李力钧, 付杰才. 磨力的数学模型的研究. 机械工程学报, 1981, 17 (4): 12~19
    [7] S.Malkin, N.H.Cook. Trans ASME Series B, 93, 4, 1971
    [8] 任敬心, 康任科, 史兴宽. 难加工材料的磨. 北京, 国防工业出版社, 1999
    [9] 任敬心, 华定安等. 金属切. 上海, 上海交通大学出版社, 1986
    [10] Kistler corp. 力传感器说明资料. 2005
    [11] 邓朝晖. 纳米结构陶瓷涂层精密磨机理及仿真预报技术的研究: [博士学位论文]. 长沙, 湖南大学, 2003
    [12] 上海司太立公司. 热喷涂材料性能手册. 2005
    [13] 王西彬, 任敬心. 结构陶瓷磨力的实验研究. 中国机械工程, 1996, 7(2): 78~80
    [14] [美]S.马尔金著. 蔡光起译. 磨技术理论与应用. 沈阳, 东北大学出版社, 2002
    [15] 诸兴华. 磨原理. 北京, 机械工业出版社, 1988
    [16] 李鹏阳, 杨明顺, 袁启龙, 郑建明, 李言. 基于切力信号的钻头磨损状态实时监测. 工具技术, 2005, 39(8): 79~82
    [17] Malkin S, Ritter J E. Grinding mechanism and strength degradation for ceramics. ASME. J. of Eng. For Ind., 1989, 111: 167~173
    [18]Roth P, Tonshoff H K. Influence of microstructure on grindability of alumina ceramics. In: Machining of Advanced Material, NIST Special Publication 847, 1993, 247~261
    [19] Malkin S. Grinding Technology Theory and applications of machining with abrasives. New York: Ellis Horwood Limited, 1989
    [1] 李伯民, 赵波. 现代磨技术. 北京: 机械工业出版社, 2003
    [2] Zuo D W, Matsuo T. Significance of grinding temperature in metal removal. Key Engineering Materials, 2001, 201-203(6): 57~60
    [3] 兰雄侯, 王继先, 高航. 磨温度理论研究的现状与进展. 金刚石与磨料磨具工程, 2001, 123(3): 5~9
    [4] 张建刚, 林彬. 杯形砂轮平面磨温度场的数值解析和试验研究: [硕士学位论文]. 天津: 天津大学, 2003
    [5] 田晓, 林彬, 张建刚等. 杯形砂轮平面磨温度场的有限元分析. 精密制造与自动化, 2004, 2: 23~24
    [6] 曹建平, 邓朝晖等. 纳米结构 WC/12Co 涂层精密磨的磨力研究. 金刚石与磨料磨具工程, 2004, 140(2): 5~9
    [7] J C Jaeger. Theoretical analysis on grinding temperature field. Proc. Soc. of New South Wales. Vol. 76
    [8] 王霖, 秦勇. 磨温度场的研究现状与发展趋势. 工具技术, 2002, 36(6): 7~10
    [9] 侯镇冰, 何绍杰, 李恕先. 固体热传导. 上海: 上海科技出版社, 1984
    [10] 蒋友谅. 有限元法基础. 北京: 国防工业出版社, 1980
    [11] 王国强. 实用工程数值模拟技术及其在 ANSYS 上的实践. 西安: 西北工业大学出版社, 2000
    [12] 孔祥谦. 有限单元法在传热学中的应用(第三版). 北京: 科学出版社, 1998
    [13] M.C. Shaw. Principles of Abrasive Processing. Oxford, UK: Oxford University Press, 1996
    [14] S. Malkin. Grinding Technology: Theory and Application of Machining with Abrasives, New York: John Wiley & Sons, 1989
    [15] 徐鸿钧, 徐西鹏, 林涛. 断续磨时工件表层温度场解析, 机械工程学报, 1994, 13(1): 30~36
    [16] 徐鸿钧, 徐西鹏, 许洪昌. 缓磨时工件表层温度分布的计算机仿真研究, 应用科学学报, 1996, 14(2): 199~207
    [17] S. Shimida, N. Ikawa, T. Inamura, et al. Brittle/Ductile transition phenomena in micro indentation and micro machining. Annals of the CIRP, 1995, 44(1): 523~526
    [18] 于云霞, 孟庆国, 李文卓. 磨温度场的分析与计算. 管道技术与设备. 1996, 3: 42~44
    [19] 李伟. 钛合金切冷却润滑理论与技术研究: [博士学位论文]. 南京: 南京航空航天大学, 1992
    [20] 林彬, 于思远等. ZrO2 和 SiC 陶瓷的表面磨温度. 天津大学学报, 2000, 33(6): 740~742
    [21] T. Ueda, K. Yamada, T. Sugita. Measurement of Grinding Temperature of Ceramics Using Infrared Radiation Pyrometer with Optical Fiber. Transactions of the ASME, Journal of Engineering for Industry. 1992, 114(3): 317~322
    [22] H.K. Tonshoff, T. Freimuth, J.C. Becker. Process monitoring in grinding. Ann. CIRP 2002, 51(2): 1~21
    [23] K. Takazawa. Bulletin of the Japan Society of Precision Engineering. 1966, 2: 14
    [24] S. Kohli, C. Guo, S. Malkin. Energy partition to the workpiece for grinding with aluminium oxide and CBN abrasive wheels. ASME Journal of Engineering forIndustry. 1995, 117: 160~168
    [25] J.H. Hwang, S. Kompella, S. Chandrasekar, et al. Measurement of temperature field in surface grinding using infra-red(IR) imaging system. Transactions of the ASME, Journal of Tribology, 2003, 125(2): 377~383
    [26] T.N Farris, S. Chandrasekar. High-speed sliding indentation of ceramics: thermal effects, Journal of Materials Science, 1990, 25: 4047~4053
    [27] R.R. Hebbar, S. Chandrasekar, T.N. Farris. Ceramic Grinding Temperatures, Journal of American Ceramic Society, 1992, 75(10): 2742~2748
    [28] 朱德忠. 热物理测量技术. 北京: 清华大学出版社, 1990
    [29] A. Lefebvre, P. Vieville, P. Lipinski, et al. Numerical analysis of grinding temperature measurement by the foil/work piece thermocouple method. International Journal of Machine Tools & Manufacture. 2006, 46: 1716~1726
    [30] 王西彬, 任敬心. 磨温度及热电偶测量的动态分析. 中国机械工程, 1997, 8(6): 77~80
    [31] 国家技术监督局计量司组编. 通用热电偶分度表手册. 中国计量出版社, 北京, 1994
    [32] 邓朝晖. 纳米结构陶瓷涂层精密磨机理及仿真预报技术的研究: [博士学位论文]. 长沙: 湖南大学, 2003
    [1] 吴祥. 轴承磨中砂轮磨损状态在线识别的试验研究. 磨料磨具与磨, 1995, 87(3): 27~30
    [2] 任敬心. 磨原理. 西北工业大学出版社, 1987
    [3] 吴祥. 应用 KL 信息距离识别砂轮磨损状态. 工具技术, 2001, 35(11): 16~18
    [4] A. Hassui, A.E. Diniz, J.F.G. Oliveira, J. Felipe Jr., J.J.F. Gomes, Experimental evaluation on grinding wheel wear through vibration and acoustic emission, Wear, 1998 (217) : 7~14
    [5] 黄荣杰, 吴希让. 磨表面粗糙度的建模和预断. 精密制造与自动化. 2003, 155(3): 33~37
    [6] Stephane Lachance, Robert Bauer, etc. Application of region growing method to evaluate the surface condition of grinding wheels. International Journal of Machine Tools & Manufacture. 2004, 44: 823~829
    [7] Tapiwa Chenje, Peter Radziszewski. Determining the steel media abrasive wear as a function of applied force and friction. Minerals Engineering, 2004, 17: 1255~1258
    [8] 史金飞, 钟秉林, 黄仁. 砂轮磨钝的在线辩识研究. 制造技术与机床, 1997, 1(1): 1~5
    [9] 任敬心. 难加工材料的磨. 北京, 国防工业出版社, 2001
    [10] 王新乐, 孙玉山. 砂轮磨损机理及修整方法研究. 应用科技, 2001, 28(2): 5~7
    [11] Kathryn V. Johnson. Integration and implementation of a watchdog agent toolbox for performance assessment of machinery systems. Master thesis of university of Michigan, 2005
    [12] D. Djurdjanovic, J. Ni and J. Lee, Time-Frequency Based Sensor Fusion in the Assessment and Monitoring of Machine Performance Degradation, in the Proc. of 2002 ASME Int. Mechanical Eng. Congress and Exposition, paper number IMECE2002~32032
    [13] 董小刚, 秦喜文. 信号消噪的小波处理方法及 Matlab 实现. 长春工业大学学报,2003, 24(2): 1~4
    [14] 韩璞, 张君, 董泽等. 气轮机振动信号的最优小波包基消噪与检测. 中国动力工程学报, 2005, 25(1): 92~96
    [15] 刘刚, 屈梁生. 自适应阈值选择和小波消噪方法研究. 信号处理, 2002, 18(6): 509~512
    [16]崔华, 宋国乡. 基于小波阈值去噪方法的一种改进方案. 现代电子技术, 2005, (1): 8~10
    [17]曹怀信, 赵建伟. 小波分析发展综述. 咸阳师范学院学报, 2002, 17(6): 5~8
    [18] 许黎明. 精密曲线磨加工过程的特征提取与状态评估方法的研究: [博士学位论文]. 上海: 上海交通大学, 2006
    [19] 杨国安, 钟秉林, 黄仁等. 机械故障信号小波包分解的时频特征提取方法研究. 振动与冲击, 2001, 20(2): 25~30
    [20] 殷玲, 刘忠, 陈日曜. 陶瓷磨中金刚石砂轮磨损形式及其生成原因. 华中理工大学学报, 1996, 24(4): 19~22
    [1] 刘国良, 张宏韬, 任永强等. 数控机床几何误差综合建模及其专家系统. 现代制造工程, 2005(7): 1~4
    [2] 童恒超, 杨建国, 刘国良等. 机床导轨系统空间误差的齐次变换建模及应用. 上海交通大学学报, 2005, 39(9): 1400~1443
    [3] 蔡自兴. 机器人学. 北京: 清华大学出版社, 2000
    [4] 吴广玉, 姜复兴. 机器人工程导论. 哈尔滨: 哈尔滨工业大学出版社, 1988
    [5] 任永强, 杨建国, 基里维斯, 赵海波. 四轴数控机床误差综合建模原理及分析.机械工程师, 2003(8): 18~22
    [6] 任永强, 杨建国, 窦小龙, 邓卫国. 五轴数控机床综合误差建模分析. 上海交通大学学报, 2003, 37(1): 70~75
    [7] Okafor A. C., Ertekin Y M. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools & Manufacture, 2000, 40(8): 1199~1213
    [8] Huang P S, Ni J. On-line error compensation of coordinate measuring machines. International Journal of Machine Tools & Manufacture, 1995, 35(5): 725~738
    [9] 刘又午, 刘丽冰, 赵小松等. 数控机床误差补偿技术研究. 中国机械工程, 1998, 9(12): 48~52
    [10] Lei W T, Hsu Y Y. Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part I: design and modeling. International Journal of Machine Tools & Manufacture, 2002, 42: 1153~1162
    [11] Rahman M, Heikkala J, Lappalainen K. Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory. International Journal of Machine Tools & Manufacture, 2000, 40(10): 1535~1546
    [12] 任永强, 杨建国. 五轴数控机床综合误差补偿解耦研究. 机械工程学报, 2004, 40(2): 55~59
    [13] Sartori S, Zhang G X. Geometric error measurement and compensation of machines. Annals of the CIRP, 1995, 44(2): 599~609
    [14] Mou J, Liu C R. A method for enhancing the accuracy of CNC machine tools for on-machine inspection. Journal of Manufacturing Systems, 1992, 11(4):229~237
    [15] 张虎,周云飞,唐小琦等. 多轴数控机床几何误差的软件补偿技术. 机械工程学报, 2001, 37(11): 58~62
    [16] Mahbubur Rahman, Jouko Heikkala, Kauko Lappalainen. Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory. International Journal of Machine Tools & Manufacture, 2000(40): 1535~1546
    [17] A.C. Okafor, Y.M. Ertekin. Derivation of machine tool error models and error compensation procedure for three axis vertical machining center using rigid body kinematics. International Journal of Machine tools & Manufacture, 2000, 40(8): 1199~1213
    [1] 甘永立. 形状和位置误差检测. 北京: 国防工业出版社, 1995
    [2] Technical Drawings-Geometrical Tolerance. ISO 1101 (1983) 12~01
    [3] 熊有伦. 精密测量的数学方法. 北京: 中国计量出版社, 1989
    [4] 李岩. 精密测量技术. 北京: 中国计量出版社, 2001
    [5] 谭静. 球度误差及其评定方法综述. 计量与测试技术, 2004, 1:10~11