大行程纳米定位系统若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着IC制造工艺、超精密加工、精密仪器及生物医学工程等众多领域的不断发展,与之相关的设备对定位行程、定位精度的要求越来越高,因此大行程纳米定位技术在现代科学技术中起到十分关键的作用,近年来一直是精密工程领域的研究热点之一。本论文对此开展的研究工作是:研制一套宏微(双)驱动方式的大行程纳米定位及其标定的实验研究系统,并对定位技术中的误差建模、全工作行程上定位系统内部的振动测试分析、宏微定位系统的动态建模及特性分析等几个关键问题进行研究。
     通过对各种大行程纳米定位系统构成方案的深入分析,确定了由交流伺服电机加珠丝杠螺母机构为宏动台、压电陶瓷加柔性铰链机构为微动台、纳米光栅测量装置为系统位置全闭环的宏微双驱动方式大行程纳米定位系统;以PC机为上位机,用VB6.0对宏、微定位系统进行了集成以实现宏微定位,定位误差测量及工作台精度评定通过单频激光干涉仪标定系统来实现。定位系统实现了100mm行程、10nm定位分辨率、20mm/s运动速度的工作指标。
     在定位误差的建模研究中,对定位系统中各种误差的来源、特点进行了详细的分析,以误差是否具有时变性为依据、并根据实际应用中误差补偿的实现方法来研究定位误差的建模问题,建立了插值、多项式、RBF神经网络和灰色系统GM(1,1)等多种静、动态误差模型,并对它们进行了理论分析和仿真研究。在静态误差模型研究中,通过比较得到了改善过拟合RBF神经网络模型这一比较理想的静态误差模型;在对RBF神经网络建模时数据中的噪声处理方面,采用对径向基函数分布宽度和训练目标进行二维优化方法来改善神经网络的过拟合问题,取得了显著的效果。用GM(1,1)建立的灰色动态模型,能将定位系统中的系统误差和随机误差统一考虑,用能量变化方法分析误差的动态特性,所需的建模数据少、计算量小、补偿速度快,是补偿动态定位误差的有效方法。在改善灰色预测模型精度方面,采用了改善背景值的GM(1,1)模型,仿真和实验研究证明它比普通的GM(1,1)模型具有更高的模型精度。
     对定位精度产生影响的振动问题包括外部的环境振动和定位系统内部的振动。本论文从宏定位系统内部入手,通过构建以LabVIEW软件为核心的虚拟仪器测试系统,用傅立叶变换和小波变换联合分析、对比的方法,研究了在伺服状态下宏动台全行程上定点和运动状态的振动特征。尽管两种方法得出了一致的结论,但小波变换方法可分析工作台各工作位置上的动态特性,分析结果更加具体、准确,其有效性通过PID控制参数调整实验得到了验证。
     在宏微定位系统的动态特性研究中,根据宏、微工作台的串联形式建立其整体动态模型,分析了宏、微工作台之间的动态耦合关系,讨论了宏微工作台在不同的驱动形式(宏驱动、微驱动和宏微驱动)的阶跃响应。研究结果表明,由于作用位置的不同,宏、微驱动对宏微定位系统动态响应的影响是相反的,应用中要根据实际需要确定宏、微工作台的动态特性参数。根据所建立的动态模型,用宏、微工作台两种不同动态特性参数的配置,分别对白噪声干扰和正弦干扰下的动态补偿定位、低频和高频正弦输入信号的连续补偿定位进行了仿真研究,验证了所建动态模型的正确性和宏微定位实现的可行性,研究结果能够对宏微定位系统设计起到很好的指导作用。
     最后,用论文中研制的大行程纳米定位及其标定系统进行了实验研究。首先对大行程和微行程内的定位误差进行了标定及分析,而后进行了静、动态误差的补偿实验和宏微两级定位实验,用定位误差评定的国际标准ISO230-2对宏微定位误差进行了处理和分析。实验结果验证了论文研究工作的正确性和本实验系统的有效性。
With the progress of techniques in fields of IC manufacturing, ultra-precision machining, precision instrument and Biomedical Engineering, etc., requirement of positioning accuracy related to these apparatus is getting higher more and more. Nowadays, nano-positioning technique with long stroke plays an extremely important role in modern science and technology, and for years, it is the focus in precision engineering research. The studying aims of this paper are to develop an experiment system of long stroke nano-positioning stage based on macro-micro (dual) actuators and its calibration system, and then studying some key problems in positioning technique, such as positioning errors modeling, testing and analyzing to inner vibration of positioning system within full working range of the stage, dynamic system modeling on micro-macro positioning system and discussing of its feature.
     By comprehensive comparing, the structure of long stroke nano-positioning system and its calibration system is determined. Positioning system is consisted of macro stage, which are made of AC servo motor and ball-screw unit, and micro stage, which are made of PZT and flexible hinge respectively. A grating measurement with 10nm resolution is used for position feedback of entire loop of the system. Macro and micro positioning system (stage) are integrated with a PC as host computer and the VB6.0 as software. Single-frequency laser interferometer is used for errors measurement and accuracy evaluation of the positioning system. The system can realize the working parameters as 100mm working range, 10nm positioning resolution and 20mm/s moving velocity.
     For the study of errors modeling, reasons for producing positioning errors and its features are analyzed completely. Two kinds of errors, i.e. static and dynamic errors are determined according to the characters of time-varying and compensating method of the errors. Interpolation, curve fit and RBF neural network models are used as static errors model, while grey system model GM(1,1) is used as dynamic errors model. Theory analysis and simulation are carried out to these models. By comparing the static models above, it can be concluded that the improved (de-noised) RBF neural network model is an ideal one relatively. As to the strategies of modeling data de-noising in RBF network, the method of two dimensions optimizing to the parameters of radial basis function spread and network training goal is proved to be especially effective. In the dynamic errors modeling, system errors and random errors are treated as a whole in grey system model GM(1,1). The character of dynamic errors is explained in way of energy change by GM(1,1). The model has the merits of little modeling data, little computing time and fast errors compensating speed. So it is an effective method for dynamic errors compensation. For improving the model's precision, the method of using reformed background value is taken. It is proved by simulation and experiment that the model is of higher precision.
     There are two kinds of vibration affect to positioning accuracy. The first is external environment vibration and another is the inner vibration of positioning system. The later one is studied in this paper. Virtual instrument vibration testing system is developed based on the software of LabVIEW. Testing data for some fixed positions and moving path on working range of macro stage in servo state are analyzed and compared by means of Fourier transform and wavelet transform. Though same conclusions are obtained by two of the studying methods, but wavelet transform can analyze the dynamic features of each position of macro stage, and get more detailed, precise results. The effectiveness of this method is validated by the experiment of PID parameter regulating.
     For the study of dynamic properties of macro-micro positioning system, the integral dynamic model (macro-micro model) of macro stage and micro stage is established according to series relationship of them. Theoretical Study shows that there is a dynamic coupling between macro stage and micro stage, and step response shows that there is an opposite action on macro-micro positioning system with different system input (macro input and micro input) because of different acting position of the input. So, dynamic parameters of macro and micro stages should be arranged carefully based on particular application. Two kinds of arrangement are applied to dynamic model of the macro-micro stage. With the arrangement, simulating study on dynamic compensation positioning disturbed by white noise and sinusoid signal, continuous compensation positioning to the input of sinusoid signal with low and high frequencies. Simulating study proved the rightness of the macro-micro model, the possibility and practicability of macro-micro positioning. The studying results take great role in the design of macro-micro positioning system.
     In the end, corresponding experiments are carried out with the dual-actuators positioning system developed in this paper. First of all, the positioning errors in long stroke and micro stroke are calibrated and analyzed carefully. Then the experiments of static and dynamic errors compensating are conducted. At last, macro-micro positioning experiment is achieved and the experiment data are evaluated by international standard of ISO230-2. The correctness and effectiveness of the research in this paper are validated by all of these experiments.
引文
[1] 董吉洪,田兴志,李志来,王明哲.100nm步进扫描投影光机工件台、掩模台的发展.微纳科学与技术,2004,5:20-24.
    [2] 吴一辉.纳米分辨率压电式X-Y微定位系统的研究.中国科学院长春光学精密机械与物理研究所博士论文,1996.
    [3] 周兆英,叶雄英,崔天宏,张联.微米纳米技术及微型机电系统.光学精密工程,1998,1:1-7.
    [4] 徐盛林,陈耿.精密超精密定位技术及其应用.中国机械工程,1997,4:73-75.
    [5] 杨妹清.超精密定位技术的现状及展望.光机电信息,1996,10:15-18.
    [6] 王波,董申,赵万生.超精密定位中几项相关关键技术.航空精密制造技术,1998,3:13-16.
    [7] 浦昭邦,赵辉,蔡红红,王建民.超精瞄准定位系统的研究.计量学报,1997,2:81-84.
    [8] 徐峰,文贵林.纳米定位技术的进展.机电工程,2001,3:1-3.
    [9] 吴鹰飞,周兆英.超精密定位工作台.微细加工技术,2002,2:41-47.
    [10] 唐小萍.亚微米i线投影曝光机三维精密定位工件台控制系统研究.光电工程,1998,3:12-17.
    [11] 朱煜,尹文生,段广洪.光机超精密工件台研究.电子工业专用设备,2004,2:24-27,44.
    [12] 王立松,苏宝库,董申,张晶.大行程高精度两级定位工作台的控制方法研究.机械设计与制造,2001,4:71-72.
    [13] A.T.Elfizy, G.M.Bone, M.A.Elbestawi. Design and control of a dual-stage feed drive. Machine Tool & Manufacture, 45(2005): 153-165.
    [14] 板生清,保坂宽,片桐祥雅.光微机械电子学.科学出版社,2002.
    [15] 张琛.精密定位技术.上海交通大学出版社,1991.
    [16] R. GlOβ. Nanometer Precise Hybrid Actuator in Positioning Mechanism with Long travel Range. Physik Instrumente (PI) GmbH & Co. KG.
    [17] 薛实福,李庆祥.精密仪器设计.清华大学出版社,1991.
    [18] 苏绍璟.大量程纳米级光栅位移测量理论及关键技术研究.国防科学技术大学博士论文,2001.
    [19] 余文新,胡小唐,邹自强.光栅纳米测量技术及应用.计量技术,2001,7:9-12.
    [20] 贾宏光.基于变比模型的压电驱动微位移工作台控制方法研究.中国科学院长春光学精密机械与物理研究所博士论文,2000.
    [21] 吴一辉,杨宜民.压电微定位系统的纳米分辨率线性化控制.仪器仪表学报,1999,1:92-93.103.
    [22] Paul I. Ro, Wonbo Shim, Sanghwa Jeong. Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system. Precision Engineering 24(2000): 160-173.
    [23] M.H. Perng, S. H. Wu. A fast control law for nano-positioning. Machine Tool & Manufacture 46(2006): 1753-1763.
    [24] 王中华,王兴松,王群,徐卫良.新型摩擦模型的参数辨识及补偿实验研究.制造业自动化,2001,6:30-32,42.
    [25] 倪军.数控机床误差补偿研究的回顾及展望.中国机械工程,1997,1:29-33.
    [26] Hong Yang, Jun Ni. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. Machine Tool & Manufacture 45(2005): 455-465.
    [27] 刘又午,章青,赵小松,张志飞.数控机床全误差模型和补偿技术的研究.制造技术与机床,2003,7:46-50.
    [28] 赵仲生,张润孝,林其骏.基于时间序列理论的误差预测补偿技术.制造技术与机床,1998,12:36-38.
    [29] 何建忠.精密隔振平台主动阻尼系统的低频微振动测量研究.仪器仪表学报,2006,6:583-587.
    [30] 梅德庆,陈子辰.微制造平台的精密隔振系统研究.光学精密工程,2001,6:506-510.
    [31] Xinghui Huang, Roberto Horowits, Yunfeng Li. Track-following control with active vibration damping and compensation of a dual-stage servo system. Microsystem Technologies 11 (2005): 1276-1286.
    [32] 田延岭,张大卫,陈华伟,黄田.基于微定位工作台的精密磨过程动力学建模与误差补偿技术.机械工程学报,2005,4:168-173.
    [33] 王立松,董申,苏宝库,张飞虎.无间隙极限环的超精密机床伺服控制技术研究.仪器仪表学报,2001,4(增刊):1-2,14.
    [34] 王波,董申,赵万生.利用珠丝杠的微动特性实现纳米定位.航空精密制造技术,1998,6:8-10.
    [35] 孙立宁,孙绍云,曲东升,王立,蔡鹤皋.大行程高精度宏/微双重驱动机器人系统的研究.高技术通讯,2004,4:50-52.
    [36] 节德刚,刘延杰,孙立宁,孙绍云,蔡鹤皋.一种宏微双重驱动精密定位机构的建模与控制.光学精密工程,2005,2:171-178.
    [37] 孙绍云.宏/微结合双重驱动的高精度定位系统的研究.哈尔滨工业大学博士学位论文,2004.
    [38] 米凤文,戴旭涵,沈办兵,杨国光.0.1μm大行程精密定位控制系统的研究.仪器仪表学报,2000.1:89-91.94.
    [39] 谢传钵.分步重复投影光机精密快速定位工件台研究.光电工程,1996,4:65-72.
    [40] 林德教,吴健,殷纯永.具有纳米级分辨率的超精密定位工作台.光学技术,2001,6:556-557,559.
    [41] 吴鹰飞,李勇,周兆英,刘钦彦.蠕动式X-Y-O微动工作台的设计实现.中国机械工程,2001,3:263-265.
    [42] 沈全洪,蒋培军,齐国生,徐端颐,李庆祥.用于高密度母盘录的二级定位方法.清华大学学报(自然科学版),2005,2:163-165,169.
    [43] 刘向阳,郁鼎文,冯平法,孙国梓.纳米级大行程多维运动平台的方案研究.制造技术与机床,2005,3:107-110.
    [44] 孙宝玉,林洁琼,王登月,任建岳.压电驱动超精密定位工作台的研究.机械设计与研究,2003,2:44-45.
    [45] 熊小地.大行程亚微米精度激光直写设备定位技术的研究.中国科学院长春光学精密机械与物理研究所博士论文,2000.
    [46] 宋文荣,于国飞,王延风,何惠阳,田兴志.六维磁悬浮纳米级精密工件台的研究.微细加工技术,2003,3:15-21.
    [47] 刘红忠,卢秉恒,丁玉成,李寒松,严乐.超高精度定位系统及线性补偿研究.西安交通大学学报,2003,3:277-281.
    [48] 刘学鹏,梅雪松,吴序堂.表面电机的二级定位系统.中国机械工程,2004,13:1176-1178.
    [49] J.S. Chen, I.C. Dwang. A ballscrew drive mechanism with piezo-electric nut for preload and motion control. Machine Tool & Manufacture, 40(2000): 513-526.
    [50] C.L. Chao, J.Neou. Model reference adaptive control of air-lubricated capstan drive for precision positioning. Precision Engineering, 24(2000): 285-290.
    [51] Won-jong Kim, David L. Trumpert. High-precision magnetic levitation stage for photolithography. Precision Engineering 22(1998): 66-77.
    [52] Matthijs Groot Wassink, Marc van de Wal, Carsten Scherer, Okko Bosgra. LPV control for a wafer stage: beyond the theoretical solution. Control Engineering Practice 13 (2005): 231-245.
    [53] Jiagen Ding, Shang-Chen Wu, Masayoshi Tomizuka. Setting control with reference redesign for dual actuator hard drive systems. Annual Reviews in Control 28(2004): 219-227.
    [54] Ryan J. Linderman, Victor M. Bright. Nanometer precision positioning robots utilizing Optimized Scratch drive actuators. Sensors and Actuators A 91(2001): 292-300.
    [55] P. Lambert, A. Valentini, B. Lagrange, P. De Lit, A. Delchambre. Design and performances of a one-degree-of-freedom guided nano-actuator. Robotics and Computer Integraded Manufacturing 19(2003): 89-98.
    [56] Mike Holmes, Robert Hocken, David Trumper. The long-range scanning stage: a novel platform for scanned-probe microscopy. Precision Engineering 24(2000): 191-209.
    [57] Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe. Precision positioning of a DC-motor-driven aerostatic slide system. Precision Engineering, 27(2003): 32-41.
    [58] Heui Jae Pahk, Dong Sung Lee, Jong Ho Park. Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation. Machine Tools & Manufacture 41(2001): 51-63.
    [59] Chanwoo Moon, Sungho Lee, J.K. Chung. A new fast inchworm type actuator with the robust I/Q heterdyne interferometer feetback. Mechatronics 16(2006): 105-110.
    [60] Samir Mekid. High precision linear slide. Part (I): design and construction. Machine Tools & Manufacture 40(2000): 1039-1050.
    [61] Samir Mekid. High precision linear slide. Part (II): control and measurements. Machine Tools & Manufacture 40(2000): 1051-1064.
    [62] Sung Q. lee, etc. Continuous gain scheduling control for a micro-positioning system: simple, robust and no overshoot response. Control Engineering Practice 8(2000): 133-138.
    [63] C.L. Chen, M.J. Jang, K.C. Lin. Modeling and positioning control of a ball-screw-driven stage. Precision Engineering 28(2004): 483-495.
    [64] 杨宜民.新型驱动器及其应用.机械工业出版社,1997.
    
    [65] Chanwoo Moon, Sungho Lee, J.K. Chung. A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback. Mechatronics 16(2006): 105-110.
    [66] M.V.Shutov, D.L. Howard, E.E. Sandoz, J,M. Sirota, R.L. Smith, S.D. Collins. Electrostatic inchworm microsystem with long range translation. Sensors and Actuators A 114(2004): 379-386.
    [67] Yung-Tien Liu, Toshiro Higuchi, Rong-Fong Fung. A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator-part Ⅰ: experiment design and result. Precision Engineering 27 (2003): 14-21.
    [68] Valentinas Snitka, Ultrasonic actuators for nanometer positioning. Ultrasonics 38 (2000): 20-25.
    [69] 段智勇,王庆康.新型纳米分辨率位移定位平移台的研制.纳米技术与精密工程,2005,3:177-180.
    [70] 嵇国会,马奎,王磊.微纳定位/进给技术研究现状.微纳电子技术,2003,5:40-44.
    [71] 戴一帆,李圣怡,罗兵,彭莉.扭轮摩擦驱动系统研究.国防科技大学学报,1 999,2:85-88.
    [72] Hiroshi Mizumoto. An Angstrom-positioning system using a twist-roller friction drive. Precision Engineering 17(1995): 57-62.
    [73] Ximin Shan, Development and control of an ultraprecision magnetic suspension stage, DISSERTATION of The Ohio State University, 2001.
    [74] 用军委,王建华,李平,徐萍.超精密驱动机构比较.西安工业学院学报,2002,1:62-66.
    [75] 黄祖尧.精密高速珠丝杠副的发展及其应用.制造技术与机床,2002,5:8-11.
    [76] http://www.physikinstrumente.com/en/index.php.
    [77] 张晓峰,林彬.大行程纳米级分辨率超精密工作台的发展方向.南京航空航天大学学报,Suppl.Nov.2005:179-183.
    [78] 邹自强.论纳米光栅测量技术.纳米技术与精密工程,2004,1:8-15.
    [79] Operating Manual PZ 68E. Release 2.1. Physik Instrumente (PI).
    [80] 李东光,张国雄.高速精密激光干涉测量的研究现状及其关键技术.航空精密制造技术,1998,6:29-34.
    [81] 吴震.光干涉测量技术.中国计量出版社,1995,7.
    [82] 葛轶君.高精度定位平台标定技术.上海大学硕士学位论文,2004.
    [83] Operation Manual DISTAX L-LM-20B Small-size Laser Interference Measuring Unit with Optical Fiber Connection. TOSEI Engineering Co., Ltd.
    [84] 张虎,周云飞,唐小琦,陈吉红.数控机床定位误差的软件补偿.华中科 技大学学报,2001,4:47-49.
    [85] 高满元,刘晋,任偲.机电一体化实验指导书.北京元茂兴控制设备技术有限公司,2001.
    [86] 王宏涛,赵转平,赵冬雪,王军.珠丝杠螺距误差补偿法提高数控机床定位精度的研究.航空精密制造技术,2001,5:2-4.
    [87] 费业泰.误差理论与数据处理.机械工业出版社,1981.
    [88] 王正明,易东云.测量数据建模与参数估计.国防科技大学出版社,1996.
    [89] 延庆津等.计算方法.高等教育出版社,1991.
    [90] 杨大地,涂光裕.数值分析.重庆大学出版社,1998.
    [91] 林洪桦.动态测试数据处理.北京理工大学出版社,1995.
    [92] 王科俊,王克成.神经网络建模、预报与控制.哈尔滨工程大学出版社,1996.
    [93] 赵振宇,徐用懋.模糊理论和神经网络的基础与应用.清华大学出版社,1996.
    [94] 徐秉铮,张百灵,韦岗.神经网络理论与应用.华南理工大学出版社,1994.
    [95] 孙增圻,张再兴,邓志东.智能控制理论与技术.北京:清华大学出版社,1997.
    [96] 李鸣鸣,龚振邦,欧阳航空,孙麟治.实验数据RBF神经网络模型中噪声 的处理方法.光学精密工程.2005增刊:227-231.
    [97] ALI G, DALE S. Automatic basis selection techniques for RBF networks. Neural Networks 16(2003): 809-816.
    [98] 李俭川,秦国军,温熙森,胡茑庆.神经网络学习算法的过拟合问题及解决方法.振动、测试及诊断,2002,4:260-264.
    [99] 朱坚民,王中宇,吕延庆,周福章,宾鸿赞.基于神经网络的测量模型的建立及检验.光学精密工程,2000,4:389-393.
    [100] WANG W J, XU Z B, LU W ZH, ZHANG X Y. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55(2003): 643-663.
    [101] 汪贤进,袁槐,陈剑舟,杨莹.常用统计方法手册.浙江人民出版社,1986.
    [102] 傅立.灰色系统理论及其应用.科学技术文献出版社,1992.
    [103] 邓聚龙.灰色系统基本方法.华中理工大学出版社,1987.
    [104] 刘思峰,郭天榜,党耀国.狄色系统理论及其应用(第二版).科学出版社,1999.
    [105] 谭冠军.GM(1,1)模型的背景值构造方法和应用(Ⅰ).系统工程理论与实践.2000,4:98-103.
    [106] 周铭,王洪发.基于遗传算法的狄色GM(1,1)模型.南昌大学学报(理科版),2002,4:331-333.
    [107] 王军平,陈全世.灰色—神经网络综合预测模型.计算机工程与应用,2004,9:13-15.
    [108] 陈正平,苏虹,王钟羡.灰色系统建模数据的一种变换方法.江苏理工大学学报,1999,3:91-94.
    [109] 王雪丹,姜建国.电机传动系统非线性耦合振动的建模及控制.煤炭学报,2004,5:622-625.
    [110] 涂源钊.频谱分析在控制器参数自调整中的应用.测控技术,1998,3:54-56.
    [111] 刘君华.基于LabVIEW的虚拟仪器设计.电子工业出版社,2003.
    [112] 郑君里,应启珩,杨为理.信号与系统.高等教育出版社,2000.
    [113] 张贤达,保铮.非平稳信号分析与处理.国防工业出版社,1998.
    [114] 杨福生.小波变换的工程分析与应用.科学出版社,2000.
    [115] 胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计—小波分析.西安电子科技大学出版社,1999.
    [116] 晏祖根.面向IC封装的精密定位平台误差补偿及主动控制的研究.哈尔滨工业大学博士学位论文,2005.
    [117] 黄其圣.动导轨运动系统的特性分析.机械,1998,1:11-13.
    [118] 王建林.纳米定位机构及其控制系统的研究.机械设计与研究,2001,2:34-36.
    [119] 于水,李庆祥,白立芬.微位移工作台静、动态特性实验系统.实验技术与管理,2001,4:22-25.
    [120] 刘红忠,卢秉恒,丁玉成,李寒松,严乐.超高精度定位系统及线性补偿研究.西安交通大学学报,2003,3:277-281.
    [121] Gene F.Franklin,J.David Powell,Abbas Emami-Naeini.动态系统的反馈控制(第四版).电子工业出版社,2004,5.
    [122] Gi Heung Choi, Jong Hyun Oh, Gi Sang Choi. Repetitive Tracking Control of a Coarse-fine Actuator. Proceedings of the 1999 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics. September 19-23,1999, Atlanta,USA.
    [123] Jae-Yeol Kim, Ill-Soo Kim, Haeng-Nam Lee, Lee-Ku Kwac, Dong-Hyun Kim. A Study on the Feedback System of Ultra Precision Psirioning Apparatus using Laser Interferometer. ISIE 2001, Pusan, KOREA.
    [124] 田延岭,张大卫,陈华伟,黄田.基于微定位工作台的精密磨过程动力 学建模与误差补偿技术.机械工程学报,2005,4.
    [125] 张纪文,崔淑君.正确评价数控机床定位精度.组合机床与自动化加工技术,2000,7:43-45.
    [126] 贺振明.数控机床位置精度的补偿.机电一体化,1998,3:34-36.
    [127] 于洋,魏娟.数控机床定位精度初探.组合机床与自动化加工技术,2002,10:41-42
    [128] International Standard: ISO230-2, Test code for machine tools--Part 2: Determination of accuracy and repeatability of positioning numerically controlled axes. Second edition, 1997-12-15.
    [129] 中华人民共和国国家标准:机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定(GB/T17421.2-2000).
    [130] Bayside公司标准:Micro交叉柱精密平台.
    [131] THK公司标准:高精度工作台精度评价方法和系统.
    [132] 余文新,胡小唐,邹自强.光栅纳米测量中的系统误差修正技术研究.计量学报,2002,2:101-105.
    [133] PMAC用户手册.版本1.1.北京元茂兴控制设备技术有限责任公司.
    [134] 欧阳航空.基于PMAC的精密定位控制系统的研究.上海大学硕士学位论文,2005.