基于NURBS的空间分度凸轮廓面创成与品质评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间分度凸轮机构作为实现“连续输入—间歇输出”功能的关键组件,广泛应用于各种自动机械、生产线和加工中心中,而空间凸轮作为机构的核心零件,决定了整个机构的运动学和动力学性能。因此,对空间凸轮廓面的高精度和高性能设计与制造技术的研究至关重要。本文从工程实际出发,围绕空间凸轮廓面的创成技术,主要开展了如下研究工作:
     首先,为了适应工程实践中对凸轮机构的各种性能要求,本文提出了NURBS柔性凸轮曲线的概念,并研究了它的实现和多目标优化问题。将凸轮转角无因次化作为节点变量,以NURBS形式描述了凸轮机构的无因次位移、速度、加速度和跃度等运动曲线。基于凸轮机构单自由度动力学模型,分析了输出运动的残余振动,并以NURBS凸轮曲线的控制顶点和对应权因子值为优化变量,以残余振动特性为主要动力学优化目标函数,建立了NURBS柔性凸轮曲线的多目标优化模型。
     将多目标遗传算法与传统的多目标优化方法相结合,提出了一种适合NURBS柔性凸轮曲线个性化设计的改进多目标遗传算法——INSGA算法,用于求解凸轮曲线的多目标优化模型。在该算法中,集成了初始化种群的反算方法、约束条件处理新方法和目标达到选择策略等保证算法快速收敛的一些关键技术。
     其次,根据啮合理论,分析了数控加工空间凸轮时的成形运动,指出数控加工时刀具与工件的创成运动必须与凸轮与子的共轭运动拓扑同构。对于不同类型的空间凸轮,根据凸轮机构运动形式,研究了用于加工凸轮的数控机床的拓扑结构,计算了机床运动坐标,并归纳构建了实现空间凸轮加工的数控机床的运动学图谱。
     根据微分几何理论,对空间凸轮与子接触线可制造性进行分析,指出非等价加工不能实现凸轮廓面的重构,不可避免的存在法矢异向误差。基于传统的刀位补偿加工法,给出了计算廓面法向误差的新方法,并研究了最大法向误差与补偿点位置和补偿量的关系,得出了子和刀具的半径差是最佳补偿量,而最佳补偿点位置并不固定的结论。为此,提出了自适应的柔性刀位补偿方法,以实际廓面的最大法向误差为目标函数,通过优化任意时的补偿点位置参数,得到加工误差趋于最小的优化刀位路径。
     然后,基于逼近理论阐述了曲面的逼近侧铣创成原理,分析了五坐标侧铣创成的单点偏置、双点偏置和三点偏置刀位计算方法。基于刀位补偿单点偏置法,研究了侧铣空间凸轮廓面的双点偏置法,并在此基础上提出了侧铣空间凸轮廓面的多点自由偏置法——逼近偏置法,即以NURBS直纹面逼近空间凸轮廓面的理论刀轴迹面,并具体研究了插值曲面反算和最小二乘逼近两种确定NURBS直纹面控制顶点的方法。以最小二乘逼近偏置法侧铣弧面凸轮廓面为例,进行了刀具位姿的实例计算和廓面的创成加工仿真,验证了算法的正确性和实用性。
     再次,研究了空间凸轮廓面的品质评价方法,构建了廓面品质评价体系。把空间凸轮廓面看作自由曲面,基于三坐标测量机,以等径扫描方式实现凸轮廓面的测量。提出了实现凸轮坐标系和测量坐标系匹配的迭代算法,通过对空间凸轮廓面轮廓度误差的评定来评价廓面自身品质。基于坐标匹配结果,测量凸轮廓面上某一条等参数螺旋线,利用NURBS曲线重构被测节点,然后根据坐标旋转变换和共轭曲面原理,反求出实际输出转角,实现了廓面传动品质的评价。
     最后,以圆柱凸轮工作廓面的创成加工为例,基于刀位补偿和最小二乘逼近偏置刀位规划方法,进行了数控加工圆柱凸轮的仿真校验和创成实践。实验结果充分说明了逼近偏置法在生产实际中的可行性和实用性。基于三坐标测量机,对加工后圆柱凸轮廓面进行了测量,实现了廓面自身品质和传动品质评价。评价结果表明逼近偏置法的加工误差要小于刀位补偿法。
     综上所述,本文基于NURBS方法研究了凸轮曲线的多目标优化、侧铣创成空间凸轮廓面的刀位规划以及廓面品质评价等影响空间凸轮机构综合性能的关键因素,有助于提升空间凸轮分度器的制程能力,从根本上解决目前我国高速高精空间凸轮分度器产品精度和性能差的实际问题。
Spatial indexing cam mechanisms are widely used in various automatic machines, production lines and machining centres as the key component to realize the function from continuous input to intermittent output. The Spatial cam, which is the core part of the cam mechanism, determines the kinematic and dynamic performances of the whole mechanism. So it is of importance to study the technology to design and machine spatial cam surfaces with high accuracy and high performance. Under actual engineering conditions, around the generation technology of spatial cam surfaces, the main research work done in the paper is as follows:
     Firstly, the concept of flexible NURBS cam curve is put forward in the paper to meet various requests on cam mechanisms in the engineering practice. Then the realization and multi-objective optimization of flexible NURBS cam curves are investigated. Many dimensionless motion curves such as displacement, velocity, acceleration, jerk etc, can be all described with NURBS, regarding the dimensionless cam rotation angle as the node variable. The dynamics model of cam mechanisms with single freedom is studied. The residual vibration of the output motion is analyzed. The multi-objective optimization model is established, in which it is the leading dynamic optimization objective to minimize the amplitude of residual vibration. Optimization on NURBS cam curves can be transformed into the optimization on the control points and the corresponding weight factors.
     A new kind of improved multi-objective genetic algorithm-----INSGAalgorithm is presented to solve the multi-objective optimization model of NURBS cam curves, combining the multi-objective genetic algorithm with the traditional multi-objective optimization method. The INSGA algorithm integrates the reverse calculation method of control points to initialize the population, the new treatment method about constraint conditions and the object approach method to adapt the individualization design of flexible NURBS cam curves. The fast convergence of this algorithm is proved by kinematic and dynamic optimization examples.
     Secondly, according to the envelope movement between the spatial cam and rollers, the shaping movement while machining the spatial cam with the NC machine is analyzed. It is indicated that the generation movement between the cutter and the workpiece must be topological isomorphism with the conjugating movement between the cam surface and the rollers. So only NC machines with appropriate coordinate motions can be chosen out to realize the generation motions. Based on the movement of cam mechanism, the topological structure of NC machines to manufacture different kinds of spatial cam is researched and the motion coordinates are calculated. Then the kinematic spectrum of every NC machine to machine the spatial cam surfaces is summarized in the paper.
     According to the differential geometrical structure of theoretical surface of tool axis trajectory, the machinability of the contact line between the spatial cam and the rollers is analyzed. It is pointed out that the cam surfaces can not be reconstructed with the nonequivalent machining method and the errors caused by the different directions of normal vector along the contact line are unavoidable. A new method to calculate the normal error of machined spatial cam surfaces is introduced based on the traditional tool location compensation method. Simultaneously, the relation between the maximum normal error and the position of compensation point along with the compensation size is discussed. It is concluded that the best compensation value is the radius difference between the roller and the tool, while the best compensation position is not fixed. Therefore, a new adaptive and flexible compensation method of tool location is brought forward to overcome the limitation of compensation method, which is often discussed in many papers. It is the objective function to minimize the maximum normal error of generated surface and the position of the compensation point is looked on as the optimized variable. In this way, the best tool location can be derived by the proposed method.
     Then, the approximate side milling method is put forward, which inducts the approximation theory into the tool path planning. Cutter positioning methods in five-axis side milling generation are investigated including single point offset algorithm, double points offset algorithm and three points offset algorithm. Based on the traditional tool location compensation method, a kind of single point offset method, the double points offset method to mill spatial cam surfacesis researched. On this basis, a kind of multi-point free offset method-----approximation offset method is brought forward. In this method, the theoretical surface of tool axis trajectory can be reconstructed by NURBS ruled surface. The reverse calculation method and the least squares approximation method are deeply studied to confirm control points of the NURBS ruled surfaces. A numerical calculation and simulation example is described based on the least squares approximation offset method. The results show the effectiveness and validity of this algorithm.
     Thirdly, the quality evaluation method on cam surface is introduced and the quality evaluation system is constructed in the paper. The spatial cam surface is measured as a free surface with the coordinate measuring machine (CMM) by scanning an equal-diameter helical line. The iterative algorithm to match the cam coordinate system and the measuring coordinate system is discussed. The profile error of spatial cam surface reflects its quality. Based on the match result of the coordinate systems, a certain equal-parameter helical line on the cam surface is measured and fitted with NURBS. Then the real output angle can be achieved based on the rotation transform of coordinate systems and the theory of conjugate surface. In this way, the transmission quality of cam surface can be evaluated.
     At last, a nonequivalent machining experiment is performed based on the traditional compensation method and the proposed least squares approximation offset method, taking a cylindrical spatial cam with oscillating rollers as an example. The experiment results can verify the validity and feasibility of this new proposed tool path planning method. The manufactured cylindrical cam surfaces are measured with the CMM. Based on the measured data, the quality evaluations on spatial cam surfaces are finished and the results show that the approximation offset method, which excels the tool path compensation method, can decrease the machining error and satisfy the needs in engineering practice.
     As stated above, several key factors related to the motion accuracy of the spatial cam mechanism such as the multi-objective optimization of cam curves, tool path planning method to generate the cam surface, quality evaluation on the cam surface, are studied deeply based NURBS method in the paper, which is helpful to upgrade the process quality of spatial cam indexers and can basically solve the practical problems on the poor product accuracy and poor performance of precisely spatial cam indexers with high speed in our country.
引文
1 彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社,1990
    2 牧野洋.自动机械机构学[M].日刊工业新闻社,1976
    3 石永刚,徐振华.凸轮机构设计[M].上海:上海科学技术出版社,1995
    4 于云满,张敏,张义选.精密间歇机构[M].北京:机械工业出版社,1999
    5 邹慧君,董师予.凸轮机构的现代设计[M].上海:上海交通大学出版社,1991
    6 伏尔默.凸轮机构[M].北京:机械工业出版社,1981
    7 刘昌祺,牧野洋,曹西京.凸轮机构设计[M].北京:机械工业出版社,2005
    8 陆金贵.凸轮制造技术[M].北京:机械工业出版社,1986
    9 陈志新.共轭曲面原理基础[M].北京:科学出版社,1985
    10 冯德坤,马香峰.包络原理及其在机械方面的应用[M].北京:冶金工业出版社,1994
    11 葛正浩,冯涛,彭国勋.可以任意增加局部控制条件的凸轮机构通用多项式运动规律[J].机械科学与技术,1998,17(6):986-987
    12 J Angeles.Synthesis of plane curves with prescribed local geometric properties using periodic splines[J].Computer Aided Design,1983,15(3):147-155
    13 D M Tsay,C O Huey Jr.Cam motion synthesis using spline functions[J].Journal of Mechanisms,Transmissions,and Automation in Design,1988,110(2):161-165
    14 D M Tsay,C O Huey Jr.Spline functions applied to the synthesis and analysis of nonrigid cam-follower systems[J].Journal of Mechanisms,Transmissions,and Automation in Design,1989,111(12):561-569
    15 E Sandgren,R L West.Shape optimization of cam profiles using a B-spline representation[J].Journal of Mechanisms,Transmissions and Automation in Design,1989,111(6):195-201
    16 K.Yoon,S S Rao.Cam motion synthesis using cubic splines[J].Journal of Mechanisms,Transmissions,and Automation in Design,1993,115(9):441-446
    17 M.Neamtu,H.Pottmann,L.L.Schumaker.Designing NURBS cam profiles using trigonometric splines[J].Journal of Mechanical Design,1998,120(6):175-180
    18 Der Min Tsay,Guan Shyong Hwang.The Synthesis of Follower Motions of Camoids Using Nonparametric B-splines[J].Journal of Mechanical Design,1996,118(1): 135-143
    19 Tsay D M,Lin B J.Improving the Geometry Design of Cylindrical Cams Using Nonparametric Rational B-splines[J].Computer Aided Design,1996,28(1):5-15
    20 Tsay D M,Huey C O Jr.Application of Rational B-splines to the Synthesis of Cam-follower Motion Programs[J].Journal of Mechanical Design,1993,115(4):621-626
    21 Chew M,Chuang C H.Minimizing residual vibrations in high-speed cam-follower systems over a range of speeds[J].ASME Journal of Mechanical Design,1995,117(1):166-172
    22 Vu Thinh Nguyen,Do Joong Kim.Flexible cam profile synthesis method using smoothing spline curves[J].Mechanism and Machine Theory,2007,42(7):825-838
    23 Sanjib Acharyya,Tarun Kanti Naskar.Fractional polynomial mod traps for optimization of jerk and hertzian contact stress in cam surface[J],Computers &Structures,2008,86(3-5):322-329
    24 Hua Qiu,Chang Jun Lin,Zi Ye Li,et al.A universal optimal approach to cam curve design and its applications[J].Mechanism and Machine Theory,2005,40(6):669-692
    25 李钧镒.摆杆圆柱凸轮机构的运动偏差[J],机械科学与技术,1990,9(1):44-50
    26 方绍恩,圆柱凸轮廓线设计的解析法[J],纺织基础科学学报,1994,7(2):157-160
    27 郭为忠,邹慧君,王石刚等,摆动子从动件圆柱凸轮的精确设计[J],上海交通大学学报,1999,33(7):870-873
    28 苏步青,华宣积.实用微分几何引论[M],北京:科学出版社,1986
    29 沈蕴方.空间啮合原理及SG-71型蜗轮副[M],冶金工业出版社,1983
    30 C K Chen,S T Chiou,Z H Fong,et al.Mathematical Model of Curvature Analysis for Conjugate Surfaces with Generalized Motion in Three Dimensions[J].Journal of Mechanical Engineering Science,2001,215(C4):487-502
    31 F L Litvin,N X Chen,J S Chen.Computerized determination of curvature relations and contact ellipse for conjugate surfaces[J].Computer Methods in Applied Mechanics and Engineering,1995,125(2):151-170
    32 王其超,肖正杨,彭国勋.弧面分度凸轮机构啮合特性研究[J].机械设计,1993,10(5):34-38
    33 熊晓航,温锦海,尚锐.圆柱凸轮廓面方程的研究[J].辽宁工学院学报,1998,18(3):60-63
    34 H S.Yan,W T Cheng,Curvature analysis of spatial cam-follower mechanisms[J].Mechanism and Machine Theory,1999,34(2):319-339
    35 H S Yan,H.H.Chen.Geometry design of globoidal cams with generalized meshing turret-rollers[J],Journal of Mechanical Design,1996,118(2):243-249
    36 H S Yan,H H Chen.Geometry design of roller gear cams with hyperboloid rollers[J],International Journal of Mathematical and Computer Modeling,1995,22(8):107-117
    37 D M Tsay,H M Wei.Design and machining of cylindrical cams with translating conical followers[J].Computer Aided Design,1993,25(10):655-661
    38 D M Tsay,G S Hwang.Application of the Theory of Envelope to the Determination of Camoid Profiles With Translating Followers[J].Journal of Mechanical Design,1994,116(1):320-325
    39 D M Tsay,H M Wei.A general approach to the determination of planar and spatial cam profiles[J].Journal of Mechanical Design,1996,118(1):259-265
    40 D M Tsay,H C Ho.Consideration of manufacturing parameters in the design of grooved globoidal cam indexing mechanisms[J].Journal of Mechanical Engineering Science,2001,215(1):95-103
    41 葛正浩,蔡小霞,王月华等.应用包络面理论建立弧面凸轮廓面方程[J].机械设计,2004,21(2):27-29
    42 何有钧,邹慧君,郭为忠等.圆柱子从动件凸轮廓面的等距曲面自动综合[J].机械设计,2000,17(5):32-34
    43 郭为忠,邹慧君.共轭曲面自适应综合的离散解析原理[J].机械工程学报,1999,35(4):11-14
    44 郭为忠,邹慧君,王石刚.共轭曲面自适应分析的离散解析原理[J].机械工程学报,2000,36(2):36-39
    45 郭为忠,王石刚,邹慧君等.凸轮CAD/CAM中廓面自适应生成的共扼曲面离散解析原理[J].机械设计与研究,1998,14(S1):79-80,76
    46 郭为忠,邹慧君,王石刚等.凸轮廓面特性自适应分析的共轭曲面离散解析原理[J].机械设计与研究,1999,15(1):40-42
    47 王其超.点接触式高速弧面分度凸轮机构的设计[J].大连轻工业学院学报,1992,11(3):85-89
    48 王其超,马骊敏,肖正扬.新型点啮合式弧面分度凸轮机构的设计与制造[J].机械科学与技术,1996,15(2):203-206
    49 陶学恒,王其超,肖正扬.点啮合弧面分度凸轮机构装置性能的实验研究[J].机械科学与技术,1997,16(2):315-318
    50 王其超,陶学恒,肖正扬.新型球面包络蜗杆分度凸轮机构的研究[J].机械科学与技术,1999,18(2):252-254
    51 曹西京,杨芙莲,曹巨江.一种全新型弧面球包络凸轮分度机构的研究[J].机械设计与研究,2003,19(1):36-38
    52 陶学恒,刘健,肖正扬等.包络蜗杆分度凸轮机构的啮合原理及分析[J].大连理工大学学报,1999,39(5):662-666
    53 陶学恒,肖正扬,王其超.新型平面包络蜗杆式分度凸轮机构的原理与分析[J].机械科学与技术,2000,19(2):174-176
    54 赵雪妮,张文林,曹巨江.球锥子弧面分度凸轮机构及其可控点啮合的实现[J].机械设计,2002,19(7):15-17
    55 曹巨江,徐光中,王茜.空间凸轮机构子从动件研究[J].机械科学技术,2006,25(10):1238-1240
    56 刘明涛,张策,杨玉琥.新型行星分度凸轮机构的原理及廓线[J].机械工程学报,2006,42(2):18-21
    57 张策,刘明涛,杨玉琥.新型行星分度凸轮廓线设计及仿真[J].天津大学学报,2006,39(1):100-103
    58 刘明涛,张策,杨玉琥.行星分度凸轮机构瞬心线的研究[J].中国机械工程,2005,16(19):1766-1768
    59 Jie Shing Lo,Ching Haun Tseng.A study on the bearing contact of roller gear cams[J].Computer methods in applied mechanics and engineering,2001,190(35):4649-4662
    60 李圣怡,范大鹏,梁建成.智能制造技术基础[M].长沙:国防科学技术大学出版社,1995
    61 陈立群.NT-XK5001专用数控立式铣床的研制、安装调试及其应用软件的开发[D].西安:陕西科技大学硕士学位论文,1992
    62 曹巨江,赵云龙.弧面凸轮加工专用数控铣床设计[J].制造技术与机床,2003,(12):26-28
    63 赵云龙.弧面凸轮加工专用数控铣床设计[D].西安:陕西科技大学硕士学位论文,2003
    64 田新成,常宏敏,孙丰.弧面分度凸轮的CAM系统[J].农业机械学报,1994,25(S1):25-27
    65 陈立群,王海军,刘兴国.弧面凸轮加工方法研究[J].制造技术与机床,2002,(2):24-27
    66 陈立群,王海军,刘兴国.大中心距弧面凸轮的数控加工[J].西北轻工业学院学报,2001,19(1):4-5
    67 彭国勋.弧面凸轮精密磨装置研制成功[J].轻工机械,1995,(3):25
    68 刘华群,常宏敏,金作成.空间分度凸轮数控磨及其控制[C].吉林工业大学学报,凸轮与机械专辑,2000
    69 常宏敏,左文泉.空间分度凸轮数控磨系统研究[J].组合机床与自动化加工技术,2003,(5):54-55
    70 周定伍,王建强.弧面凸轮五轴联动数控行星磨设备应用[J].航空制造技术,2001,(S1):52-54
    71 H S Yan,H H Chen.Geometry design and machining of Roller gear cams with cylindrical rollers[J].Mechanism and Machine Theory,1994,29(6):803-812
    72 相恒富.弧面分度凸轮开放式CNC创成系统开发[J].济南:山东大学硕士学位论文,2002
    73 张延波.基于PC的开放式圆柱凸轮数控系统研究[J].济南:山东大学硕士学位论文,2005
    74 胡滨.异型功能曲面的数字化闭环创成技术的研究[J].济南:山东大学硕士学位论文,2007
    75 郭为忠.空间凸轮廓面非等价加工的基本原理[J].三峡大学学报,2001,23(2):159-162
    76 程金石.弧面凸轮单侧加工原理初探[J].大连轻工业学院院报,1998,17(2):35-39
    77 Chen-hua She.A study of the machining of spatial cam using the sculpturing method [J].Journal of Da-yeh University,2001,10(1):29-39
    78 杜厚金.平面二次包络环面蜗杆传动制造工艺[M].成都:四川科学技术出版社,1988
    79 张敏红,张一同,周定伍.空间凸轮的行星磨和行星磨头[J].机械工程师,2006,(11):106-107
    80 何有钧.空间凸轮廓面的等距曲面设计理论及两重包络加工方法的研究[D].上海:上海交通大学博士论文,2000
    81 西同雅夫,松藤久良.立体力ヵムの輪郭制御[J].日本横械学会输文集(C编),1994,60(5):285-288
    82 西岡雅夫.円筒ヵムの工具径補正と補正误差[J].日本機械学会論文集(C编),2003,69(12):263-269
    83 Zhang Yitong,Lu Ling,Yin Mingfu.Optimal control principle of profile errors for machining of cylinder cam[J].Chinese Journal of Mechanical Engineering,1997,10(3):176-181,194
    84 郭为忠.凸轮CAD/CAM中廓面自动设计与创成的离散建模理论及其应用[D].上海:上海交通大学博士论文,1999
    85 刘常春,金作成.空间分度凸轮机构动态测试速度及其误差研究[J].农业机械学报,1994,25(S1):28-31
    86 杨玉虎,陈飚,张宝兴等.高精密分度机构检测系统[J].天津大学学报,1994,27(5):567-571
    87 郝卫国.弧面分度凸轮轮廓曲面的三坐标机测量技术的研究[D].长春:吉林工业大学硕士学位论文,1991
    88 尚锐.圆柱凸轮分度机构检测原理和检测技术研究[D].长春:吉林工业大学硕士学位论文,1995
    89 胡秉辰,王夕生,李为等.弧面分度凸轮轮廓曲面检测方法的新构思[J].机械工程学报,1992,18(5):72-76
    90 胡秉臣,郝卫国,陈彤等.在三坐标机上确定弧面分度凸轮廓面起始点的最佳逼近法[J].农业机械学报,1994,25(S1):22-24
    91 于晓,王家礼,郭俊杰.坐标测量机对凸轮曲线的测量与拟合及其评价[J].计量学报,2005,26(4):316-319
    92 郭为忠,王石刚,邹慧君等.基于反求技术的摆动从动件空间凸轮CAD[J].计算机 辅助设计与图形学学报,1999,11(2):159-162
    93 葛正浩,徐峰,陈石峰等.空间凸轮精密测量及运动规律反求研究[J].机械设计与研究,2007,23(2):26-29
    94 尹明富,褚金奎,吕传毅.空间凸轮廓面检测的接触点回归法与误差评定的数学解析[J].计量学报,2003,24(4):267-270
    95 王海燕.弧面分度凸轮集成质量控制系统的研究[D].西安:西安交通大学博士学位论文,1999
    96 邹慧君,张毅.凸轮机构考虑间隙时动力响应的研究[J].上海交通大学学报,1992,26(1):122-127
    97 蔡正敏,刘华.弧面分度凸轮机构的动力学分析[J].机械传动,1999,23(1):2-5
    98 吴义忠,李广安.弧面分度凸轮机构动力学特性的研究[J].机械设计,1998,15(8):12-14
    99 贺炜,彭国勋,胡亚平等.弧面分度凸轮机构传动系统非线性动力学特性研究[J].机械工程学报,2000,36(11):33-38
    100 Chang Zongyu,Zhang Ce.Dynamic response of roller gear indexing cam system considering mechanical clearance and motor characteristic[J].Chinese Journal of Mechanical Engineering,2001,14(2):189-192
    101 代洁.空间弧面分度凸轮机构机电耦合动力学特性研究[D].济南:山东大学硕士学位论文,2002
    102 郭培全.分度凸轮虚拟切加工系统研究[D].济南:山东大学博士学位论文,2004
    103 肖正杨,熊第霖,凸轮机构动力学前沿的若干问题[J].机械科学与技术,1994,13(4):59-64
    104 施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2005
    105 Piegl L.Modifying the shape of rational B-splines,Part 1[J].Computer Aided Design,1989,21(8):509-518
    106 Piegl L.Modifying the shape of rational B-splines,Part 2[J].Computer Aided Design,1989,21(9):538-546
    107 K.Kanzaki,K.Itao.Polydyne Cam Mechanisms for Typehead Positioning[J].Journal of Engineering for Industry,1972,(2):250-254
    108 #12 1報,ヵム曲線の評価基準)[J].日本横械学会論文集(C编),1998,64(11):4345-4352
    109 #12
    110 陈卫东,蔡萌林,于诗源.工程优化方法[M].哈尔滨:哈尔滨工程大学出版社,2006
    111 Abdullah Konaka,David W.Coitb,Alice E.Smith.Multi-objective optimization using genetic algorithms:A tutorial[J],Reliability Engineering & System Safety,2006,Vol.91:992-1007
    112 Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal et al..A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-Ⅱ[J].IEEE Transactions on evolutionary computation,2002,6(2):182-198
    113 复旦大学曲线与曲面编写组.曲线与曲面[M].北京:科学出版社,1977
    114 唐续俞,蒋鲲.等距曲面、斜等距曲面及其应用[J].黑龙江大学自然科学学报,1998,15(3):31-33
    115 朱国文,彭芳瑜,周云飞.宽槽圆柱凸轮数控加工的研究[J].机械工艺师,2000,(4):30-31
    116 冯显英.特型齿轮的创成技术和全闭环开放式数控齿系统研究与开放[D].济南:山东大学博士学位论文,1998
    117 刘雄伟.数控加工理论与编程技术[M].北京:机械工业出版社,2000
    118 Liu X W.Five-axis NC cylindrical milling of sculptured surfaces[J].Computer-Aided Design,1995,27(12):887-894
    119 于源,赖天琴,员敏等.基于特征的直纹面5轴侧铣精加工刀位计算方法[J].机械工程学报,2002,38(6):130-133
    120 赖天琴,李峰,孔德治等.计算机辅助加工直纹面的新方法[J].西安交通大学学报,1996,30(2):61-67
    121 陈睹晖,刘华明,孙春华等.发动机叶轮侧铣数控加工方法及误差计算[J].机械工程学报,2003,39(7):143-145
    122 Redonnet J M,Rubio W,Dessein G.Side milling of ruled surfaces:Optimum positioning of the milling cutter and calculation of interference[J].International Journal for Advanced Manufacturing Technology,1998,14:459-465
    123 Gong Hu,Cao Lixin,Liu Jian.Improved Positioning of Cylindrical cutter for flank milling ruled surfaces[J].Computer-Aided Design,2005,37(12):1205-1213
    124 尹明富,赵镇宏.弧面分度凸轮单侧面加工原理及刀位控制方法研究[J].中国机械工程,2005,116(2):127-130
    125 郝猛,肖田元,韩向利.五轴加工中刀具扫描体的构造和显示[J].机械科学与技术,2003,22(4):535-537
    126 孙全平,廖文和.叶轮曲面5轴高速铣加工刀轨生成算法,东南大学学报(自然科学版),2005,35(3):386-390
    127 唐荣锡.计算机辅助飞机制造[M],北京:航空工业出版社,1993
    128 Yau H T,Kuo M J.NURBS Machining and Feed Rate Adjustment for High-speed Cutting of Complex Sculptured Surfaces[J].International Journal of Production Research,2001,39(1):21-41
    129 Ming-Tzong Lin,Meng-Shiun Tsai,.Hong-Tzong Yau.Development of a dynamics based NURBS interpolator with real-time look-ahead algorithm[J].International Journal of Machine Tools and Manufacture,2007,47(15):2246-2262
    130 M.C.Tsai,C.W.Cheng,M.Y.Cheng.A real-time NURBS surface interpolator for precision three-axis CNC machining[J].International Journal of Machine Tools and Manufacture.2003,43(12):1217-1227
    131 孙玉文,吴宏基.基于NURBS的自由曲面精确拟合方法研究[J].机械工程学报,2004,40(3):10-14
    132 Park H,Kim K,Lee S C.A method for approximate NURBS curve compatibility based on multiple curves refitting[J].Computer Aided Design,2000,32(2):237-252
    133 Ma W Y,Kruth J P.Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces.Computer Aided Design,1995,27(9):663-675
    134 海克斯康专家组.实用坐标测量技术.海克斯康测量技术(青岛)有限公司,2004
    135 梁荣茗.三坐标测量机的设计、使用、维修与检定[M].北京:中国计量出版社,2001
    136 董学军,付辉,李新.基于QUINDOS测量系统规范检测方法的研究[J],工业计量,2004,(4):
    137 GLOBAL系列三坐标测量机,模具制造,2002,9
    138 QUINDOS测量软件介绍.www.Leitz-metrology.com
    139 陈丽萍,姜歌东,王小椿.一种高效的自由曲面求交算法,西安交通大学学报,2000,34(3):70-77
    140 董明晓,郑康平,许伯彦等.一种快速求取空间点到曲面最短距离的算法,组合机床与自动化加工技术,2004(9):11-12
    141 张冲,汪方宝,朱春临.基于VERICUT的虚拟制造技术应用.合肥工业大学学报(自然科学版).2004,27(1):109-112
    [1] H.J. Zou, W.Z. Guo and Y.J. He: Journal of Mechanical Transmission (in Chinese) Vol. 23(4) (1992), p. 32
    
    [2] M. Nishioka: Transactions of the Japan Society of Mechanical Engineers 69-C (in Japanese) Vol. 562(12) (2003), p. 3403
    
    [3] H Gong, L.X. Cao and J.Liu: Computer-Aided Design Vol. 37(12) (2005), p. 1205
    
    [4] R.Y. Ge, X.Y. Feng and B. Hu: 5th International Conference on e-Engineering & Digital Enterprise Technology (China Science & Technology Press, China 2006).
    
    [5] Y.W. Sun, H.J. Wu and J. Liu: Chinese Journal of Mechanical Engineering (in Chinese) Vol. 40(3) (2004), p. 10
    [1]Feng Xianying,Zhang Yanbo.Developing of NC Mach-ining System for Cylindrical Cam Based Motion Card of PCI Bus[J].Modular Machine Tool & Automatic Manufacturing Technique,2005,374(4):59-63
    [2]Fang Shaoen.Cylindrical Cam Profile Analysis Method[J].Journal of Shanghai University of Engineering Science,1996,10(1):29-33
    [3]D.M.Tsay,H.M.Wei.Design and Machining of Cylindrical Cams with Translating Conical Followers[J].Computer Aided Design,1993,25(10):655-661
    [4]DerMin Tsay,H.M.Wei.A General Approach to the Determination of Planar and Spatial Cam Profiles[J].Journal of Mechanical Design,1996,118(6):259 -263
    [5]Peng Guoxun,Xiao Zhenyang.Design of Cam Mecha-nisms[M].China Machine Press,1990
    [6]Su Buqing,Practical Differential Geometry Introduc-tion[M].Science Press,1986