花生蛋白挤压组织化技术及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压组织化技术是一种较新的食品加工方法,以其高效、节能、环保等特点而广泛用于组织化植物蛋白的生产。中国是世界上花生产量和消费量最高的国家,年总产量已达1471万吨(2005),其中50%~65%用于加工食用花生油,每年产生约300多万吨脱脂花生饼粕,其中含有50%~70%的花生蛋白。花生饼粕色泽浅黄、气味芳香,其中的抗营养物质仅为大豆饼粕中的20%,是一种优质的植物蛋白资源。
     本文在研究各挤压参数对组织化花生蛋白产品质量影响的基础上,对其挤压参数进行了优化;分析了挤压参数对物料滞留时间的影响;低温脱脂花生粉原料特性对组织化花生蛋白产品质量和结构的影响;研究分析了原料中部分组分在挤压组织化过程中的变化;初步分析了低温脱脂花生粉挤压组织化过程中的美拉德反应及其产物;分析探讨了低温脱脂花生粉挤压组织化过程中纤维状组织结构的形成机理。主要结论如下:
     在低温脱脂花生粉挤压组织化过程中,挤压温度和喂料水分含量对组织化花生蛋白产品质量的影响最显著,其次是喂料速度和螺杆转速。挤压温度是低温脱脂花生粉组织化的关键因素,喂料水分含量则是影响纤维状组织化结构形成的重要因素,喂料速度和螺杆转速主要影响物料在挤压机内的滞留时间和混合。在本试验条件下,低温脱脂花生粉挤压组织化的最优参数组合为挤压温度为147.0℃~148.0℃,喂料水分含量为49.3%~50.9%,喂料量为9.5~10.4g/min,螺杆转速为95~112r/min。
     在本试验中,低温脱脂花生粉的平均滞留时间在5.28~10.56min范围内。喂料速度和喂料水分对平均滞留时间的影响最显著,其次是挤压温度和螺杆转速。挤压温度、喂料速度和喂料水分对滞留时间分布曲线的分布范围影响均较明显,螺杆转速的影响较小。物料在挤压机内的流动模式介于柱塞流动和完全混合流动两种模式之间,且随滞留时间的延长,曲线更接近于完全混合流动模式。
     在挤压组织化过程中,低温脱脂花生粉的原料特性,如蛋白质含量、粒径、pH值、油脂含量及其氮溶解指数均对组织化产品的感官质量、流变学性质及微观结构产生较明显的影响。当低温脱脂花生粉中低变性花生蛋白质含量低于40%时,不能形成具有良好纤维状组织结构的组织化花生蛋白产品。pH值4.5时,挤压产品硬度和咀嚼度达到最大; pH值7~10时,随原料碱性增强而降低。挤压物料中少量油脂(3%~6%)有利于低温脱脂花生粉组织化产品结构的改善和感官质量的提高。
     挤压后,花生蛋白的溶解性显著降低。十二烷基磺酸钠-聚丙烯酰胺凝胶电泳分析结果表明,构成花生蛋白的亚基共有12个,其相对分子质量分别为63.10、41.64、38.56、36.86、29.95、28.94、24.37、21.98、20.95、19.19、17.62和14.74kD。花生蛋白经挤压后并未发现有新的谱带生成。挤压前后的差示量热扫描图谱显示,花生蛋白起始变性温度为45.01℃,变性高峰温度为95.70℃,表明花生蛋白的热稳定性较高,其分子中可能含有较多的氢键。
     挤压组织化对低温脱脂花生粉中的碳水化合物(淀粉、小分子糖类)、油脂、氨基酸和矿物质等组分的理化性质有一定影响。在本试验条件下,淀粉除糊化外,一部分发生了降解,使其含量在挤压后有较显著地降低。随挤压温度的升高,游离脂和结合脂均会发生水解、氧化、聚合等反应,致使总脂肪含量降低。在低温脱脂花生粉的挤压过程中,损失较多的是一些含量较高的氨基酸,如谷氨酸、天冬氨酸、丙氨酸和精氨酸等,其中,赖氨酸损失不大(4.93%)。挤压后,产品中铁、锰和铜等元素含量分别增加了11.81%、2.31%和5.42%,主要是挤压过程中挤压机元件的磨损所致,其它元素的变化不大。
     低温脱脂花生粉挤压过程中美拉德反应产物的乙醚提取物经气相色谱-质谱联合分析后,共分离出33个峰,其中匹配度在60以上的峰共有23个。经分析共检出23种化合物,其中以中长碳链的脂肪酸或其酯(尤其是甲酯)为主,这些酯类物质主要来自低温脱脂花生粉中残留的油脂,也是花生制品特有香味的主要来源。
     低温脱脂花生粉中添加10%~20%的低温脱脂大豆粕对挤压产品的色度、外形和流变学特性有明显的改善作用,同时也提高了花生蛋白营养价值。氯化钙作为一种二价金属盐,在低温脱脂花生粉中的添加浓度较低时(<1.0%)会有助于挤压产品感官质量和组织结构的改善;当其浓度较高时(1.5%~2.0%)时,产品质量会迅速降低。添加0.2%~3.0%氯化钠对组织化花生蛋白产品质量和结构的影响不明显。低浓度的溴酸钾(10mg/kg)对低温脱脂花生粉的挤压组织化产品质量和结构有一定的改善效果,当浓度>30mg/kg时,挤压产品出现变形,表面变得粗糙,组织化程度降低。添加L-半胱氨酸不利于低温脱脂花生粉挤压组织化结构的形成。
     研究结果表明,非共价键结合(疏水作用和氢键)是影响花生蛋白高水分挤压组织化结构的主要化学键,其次是二硫键和离子键。在低温脱脂花生粉的挤压组织化过程中,花生蛋白质分子内原有的二硫键可能发生了少量的断裂,且高温可能会加速该反应的进行。此外,花生蛋白分子中维持一定数量的游离氨基,有助于增强蛋白质分子间的聚合作用,从而有利于组织化结构的形成。花生蛋白质中一定比例的长肽链蛋白质分子是组织化花生蛋白产品组织化结构形成所必需的。
Extrusion cooking is new processing technology in food industry, it was widely used in processing of texturized plant protein products for its high efficiency, low energy consuming, and cleaning to environment. Peanut seed contained rich oil and protein, and provided plenty of oil and protein for human. China possessed the biggest yield and consumption of peanut seed in the world. The total yield of peanut seed is up to 14,710,000 tons in 2005, and 50%~65% of it was used to extract the edible peanut oil. The byproduct, that is defatted peanut meal, contains protein around 50%~70%. The defatted peanut meal is a good resource of plant protein for its pale color, pleasant smell, and containing fewer antinutrients, about 20% that of in soy bean.
     In this paper, the extrusion parameters for processing the texturized peanut protein (TPP) products were optimized through analyzing the effects of extrusion parameters on the quality of TPP, at first. Then, the effects of extrusion parameters on the resident time of feed in extruder were investigated. The effects of material characteristics on the qualities and structures of TPP products were studied in detail. The changes of some constituents in feed during the extrusion cooking processing of defatted peanut flour (PF) were also determined and analyzed. About the Maillard reaction and its products formed in extrusion cooking of PF were primarily investigated, too. The mechanisms of the fibrous structures formation during extrusion cooking of PF were analyzed and discussed The main conclusions of above researches as follows:
     Extrusion temperature and moisture content in feed have the most significant effects on the qualities of TPP products during the extrusion cooking of PF, and the effects of feed rate and screw speed are second. Extrusion temperature is the key parameter for PF can be texturized or not. While the effects of moisture content in feed is important condition for the texturized quality of TPP products. The roles of feed rate and screw speed are mainly about to the resident time of feed in the extruder, and therefore bring effects on the texturized structures and sensory qualities of TPP products. In the test conditions, the optimal extrusion parameters is 147.0℃~148.0℃, 49.3%~50.9%moisture content in feed, feed rate at9.5~10.4g/min and the screw speed at 95~112r/min.
     The mean residence time (MRT) is in the range of 5.28~10.56 min during the extrusion cooking of PF. the effects of feed rate and moisture content on the MRT is the most significant, and the effects of extrusion temperature and screw speed is the second. Extrusion temperature, feed rate and moisture content have more effects on the curve breadth of residence time distribution (RTD), the effect of screw speed is less. The MRT would be prolonged and get broader curve of RTD when decreasing feed rate and screw speed or increasing the extrusion temperature and moisture content in feed. There are evident interaction effects on MRT between extrusion temperature and moisture content, extrusion temperature and screw speed. The flow mode of the melt in extruder is between plug flow mode and perfect mixing flow mode, and the curve of RTD would be close to the perfect mixing flow mode with increasing the residence time of feed in extruder..
     The material characteristics of PF, such as protein content, size diameter, pH value, oil content and the nitrogen solubility index (NSI)of protein in feed have significantly effects on the sensory qualities, rheological properties and microstructures of TPP products. The TPP products don’t possess the good fibrous structure when protein content lower than 40% in feed. The TPP would keep proper hardness and chewiness, and have good texturized structures when PF size diameters in the range of 0.2~0.3mm. The hardness and chewiness of TPP products would be the highest at the pH 4.5; in the range of pH value 7~10, its would be lower increasing the pH value. Few of oil content (3%~6%) in feed is helpful to improving the structure and sensory qualities of TPP products. It is not proper to extrusion cooking when the NSI lower than 20% in PF.
     The solubility, structure of submits and thermodynamic property of peanut protein were obviously affected by the extrusion processing. The solubility of peanut protein sharply decreased after extrusion. The results of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that peanut protein molecule is composed of 12 submits, and its molecule weight were 63.10, 41.64, 38.56, 36.86, 29.95, 28.94, 24.37, 21.98, 20.95, 19.19, 17.62kD and14.74kD, respectively. Some of low molecule weight submits would be degraded at high extrusion temperature, such as 155℃. But there is no new brand present in the results of SDS-PAGE. The results of differential scanning calorimetry (DSC) of peanut protein before and after extrusion showed that the onset denature temperature of peanut protein is 45.01℃, top denature temperature is 95.70℃, and the results indicated that peanut protein possessed high stability and would be much hydrogen bonds in its molecules. The physicochemical characteristics of the carbohydrates (starch and small molecule sugars), lipids, amino acids and minerals in PF are also affected by the extrusion processing. In the test conditions, some starch molecules were degraded besides gelatinizing during extrusion, so the starch content in PF decreased significantly after extrusion. Some of small molecules sugars started to degrade even at low temperature (120℃), part of it changed into reducing sugars, and other part of it would be decomposed into smaller molecules, such as pigment or flavor substances. Free lipids and combined lipids in PF would be hydrolyzed, oxidized and aggregated, and lead to their content decreased in TPP products at high extrusion temperature. The amino acids losing much in extrusion are the high content amino acids in PF, such as glutamic acid, asparaginic acid, alanine and arginine et al. While the lysine losing is relatively little, only lose 4.93%, may be caused by the high moisture content (50%) in feed during extrusion. Some minerals, such as iron, manganese and copper, their contents increased 11.81%, 2.31% and 5.42%, respectively, after extrusion, which mainly originated from the extruder and screws. And the other minerals contents has no change. Moreover, the minerals content from elements of extruder would increase with the extrusion temperature increasing.
     Ether extractions from different extrusion samples were detected and analyzed by gas chromatographs-mass spectrometer (GC-MS) system. The results showed that the extractions exhibit 33 peaks, in which there are 23 peaks their match quality above 60, and 23 kinds of compounds were analyzed by GC-MS. The results indicated that the ether extraction are mainly composed of middle and long chain fatty acids or its esters, especially methyl esters. These esters mainly originate from the lipids in PF, and they play a main role in the special fragrant of peanut seed and its products.
     The 10%~20% addition of defatted soy meal in PF could improve the color, morphology and rheological properties of TPP products during extrusion cooking of PF, as well as increase the nutritional value of peanut protein of TPP products. As a kind of bivalent salts, lower level calcium chloride addition (<1.0%) is benefit to the sensory quality and structures of TPP products, but higher level addition (1.5%~2.0%) is harmful and make the sharply qualities decreased of TPP products. While, in the range of 0.2%~3.0% sodium chloride addition in PF have little effect on the quality of the TPP products. Low concentration potassium bromate (10mg/kg) addition in feed has definite effect on the quality and structure of TPP products. While, the TPP products appeared distortion in morphology, roughness in surface, and poor texturized degree when the potassium bromate addition above 30mg/kg. As well as addition of L-cysine in feed, even very low (0.01%), is harmful to the teturization of PF. The results indicated that the electrovalent and disulfide bonds may be not important to the formation of fibrous structure during PF extrusion cooking.
     The results of solubility test of peanut protein in different solvents showed that noncovalent bonds (hydrophobic interaction and hydrogen bond) play important roles in the formation of fibrous structures during PF high moisture extrusion cooking, and the effects of disulfide and electrovalent bonds are the second. Some of the disulfide bonds in the peanut protein molecules would be ruptured during extrusion texturization of PF, and the reaction would be accelerated at higher temperature. The total sulfhydryl group content in TPP products shows little change increasing the extrusion temperature. Moreover, it is benefit for enhancing the aggregation between protein molecules that possess certain number of free amino groups in the protein molecules, and this also helpful to the information of fibrous structure in TPP products. The results of SDS-PAGE indicated that it is necessary to the information of fibrous structure in TPP products that contain proper rate of long chain protein molecules in peanut protein material.
引文
[1] 山东省花生研究所,万书波 主编.中国花生栽培学[M].上海:上海科学技术出版社,2003.
    [2] 孙大容 主编. 花生育种学[M]. 北京:中国农业出版社,1998.
    [3] 廖伯寿 编著. 花生优质高产栽培技术[M]. 北京:中国农业科技出版社,2001.
    [4] 刘玉兰 主编. 植物油脂生产与综合利用[M]. 北京:中国轻工业出版社,1999.
    [5] 项秀兰,李楠. 花生蛋白的提取与利用[J]. 江西教育学院学报(自然科学)(J),1996,17 (6):48-49.
    [6] 张世宏. 低变性花生蛋白粉生产工艺的研究[J]. 武汉工业学院学报,2003,22(2):11-12,18.
    [7] 葛珠福,王利火. 花生蛋白饮料的研制[J]. 食品与发酵工业,1991(5):45-48.
    [8] R.C.E. Guy. Raw materials for extrusion cooking processes. In: N. D. Frame edited. The Technology of Extrusion Cooking[C]. London; New York: Blackie Academic & Professional, 1994.
    [9](日)渡边笃二 主编. 周奇文,丁纯孝 译. 新蛋白食品知识[M]. 北京:中国食品出版社,1987. [10(]美)A.J.圣安吉洛等 著. 山东省花生研究所 译.花生栽培与利用[M]. 山东科学技术出版社,1981.
    [11] Namsoo Kim, Young Jin Kim, and Young Jung Nam. Characteristics and Functional Properties of Protein Isolates from Various Peanut ( Arachis hypogaea L.) Culticars[J]. Journal of Food Science, 1992,57,20:406-409.
    [12] Sheikh M. Basha. Separation of Peanut Proteins by Capillary Electrophoresis[J]. Journal of Agricultural and Food Chemistry,1997,45(2):400-402.
    [13] Hifza Mazhar, Sheikh M. Basha. Effects of desiccation on peanut (Arachis hypogaea L.) seed protein composition[J]. Environment and Experimental Botany, 2002,47(1):67-75.
    [14] 胡晓军, 姜延程. 花生分离蛋白质基础研究[J]. 郑州粮食学院学报,1998,19(1):13-17.
    [15] 韦一能, 陈元发, 陈国汉等. 花生蛋白质的亚基组成及分子量研究[J]. 广西师范大学学报(自然科学版), 1998, 16(1):71-78.
    [16] 杨晓泉, 陈中, 赵谋民. 花生蛋白的分离及部分性质研究[J]. 中国粮油学报,2001,16(5):25-28.
    [17] 王瑛瑶, 王璋. 水酶法从花生中提取蛋白质和油[J]. 食品科技,2002(7):6-8.
    [18](苏)B.托斯托古佐夫 著. 王树桐 译. 人造营养食品[M]. 农业出版社,1985.
    [19] 董贝森, 朱海涛, 于跃芹. 花生蛋白粉溶液流变学特性及功能性的研究[J]. 农业工程学报,1999,15(1):251-252.
    [20] 张维农, 刘大川, 胡小泓. 花生蛋白产品功能特性的研究[J]. 中国油脂,2002,27(5):60-65.
    [21] 刘志强, 刘擘, 曾云龙. 酶法有限水解对花生蛋白功能特性的影响[J]. 食品科学,2004,25(1):69-72.
    [22] Jianmei Yu, Mohamed Ahmedna, Ipek Goktepe. Peanut Protein Concentrate: Production and Functional Properties as Affected by Processing[J]. Food Chemistry, 2007, 103 (1): 121-129.
    [23] 俞国铣, 张爱芹. 花生粕的综合利用-花生蛋白饮料的研制[J]. 无锡轻工大学学报,1995,14(3):192-197.
    [24] 蒋家新,彭绍英.凝乳形花生蛋白饮料的研究[J].中国乳品工业,1996,24(6):9-12.
    [25] 蔡云升. 花生蛋白粉在冰其淋生产中的应用[J]. 上海轻工业高等专科学校学报,1999,20(2):1-3.
    [26] 郝确. 花生饼粕制作酱油的工艺研究[J]. 中国酿造,1990(4):31-33.
    [27] Suknark K., Mcwatters K.H., Phillips R.D.. Acceptance by American and Asian Comsumer of Extruded Fish and Peanut Snack Products[J]. Journal of Food Science,1998,63(4):721-725.
    [28] Suknark K., Phillips R.D., Huang Y.W.. Tapioca-Fish and Tapioca-peanut Snacks by Twin-Screw Extrusion and Deep-fat Frying[J]. Journal of Food Science,1999,64(2):303-308.
    [29] Cheewapramong P., Riaz M.N., Rooney L.W., Lusas E.W. Use of Partially Defatted Peanut Flour in Breakfast Cereal Flakes[J]. Cereal Chemistry,2002,79(4):586-592.
    [30] Aguilera J.M., Rossi F.. Development and Evaluation of an Extrusion-Texturized Peanut Protein[J]. Journal of Food Science,1980,45(2);246-247.
    [31] Alid G.. Nutritive Value of an Extrusion-Texturized Peanut Protein[J]. Journal of Food Science, 1981, 46 (4): 948-949.
    [32] Li Mei, Lee Tung-Ching. Relationship of the Extrusion Temperature and the Solubility and Disulfide Bond Distribution of Wheat Protein[J]. Journal of Agriculture and Food Chemistry, 1997,45:2711-2717.
    [33] Thomas Fishcher. Effect of extrusion cooking on protein modification in wheat flour[J]. European Food Research and Technology, 2003.10.22 published online.
    [34] R.Alonso, E.Orue, M.J.Zabalza, et al. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins[J].J.Sci.Food Agric.,2000,80(2):397-403.
    [35] R. Alonso, L. A. Rubio, M. Muzquiz, F. Marzo. The effect of extrusion cooking on mineral bioavailability in pea and kidney bean seed meals[J]. Animal Feed Science and Technology, 2001,94(1):1-13.
    [36] Galen J.Rokey. Single-Screw Extruders. In: Mian N. Riaz, Ph.D. edited. Extruders in Food Application[C]. New York, Technomic Publishing Company, 2000.25-45.
    [37] John R.Mitchell, J.A.G.Areas. Structural Changes in Biopolymers During Extrusion. In: Jozef L. Kokini, Chi-Tang Ho, Mukund V. Karwe edited. Food Extrusion Science and Technology[C]. New York, N.Y.:Marcel Dekker Inc.1992.345-360.
    [38] 高福成 主编. 现代食品工程高新技术[M]. 北京:中国轻工业出版社:1997.
    [39] Mian N. Riaz. Introduction to Extruders and Their Principles. In: Mian N. Riaz, Ph.D. edited. Extruders in Food Application[C]. New York, Technomic Publishing Company, 2000.2-20.
    [40] Govindasamy S., Campanella O.H., Oates C.G.. High moisture twin-screw extrusion of sago starch: Ⅰ .Influence on granule morphology and structure[J]. Carbohydrate Polymers,1996,30:275-286.
    [41] Govindasamy S., Campanella O.H., Oates C.G.. High moisture twin screw extrusion of sago starch.Ⅱ .Saccharification as influenced by thermomechanical history[J]. Carbohydrate Polymers, 1997, 32: 267 – 274.
    [42] Fichtali J., van de Voort,F. R., Diosady. L. I. Performance evaluation of acid casein neutralization process by twin-screw extrusion[J]. Journal of Food Engineering,1995, 26:301-319.
    [43] Beckett S.T., Craig M.A., Gurney R.J., Ingleby B.S., Mackley M.R., Parsons T.C.L. The cold extrusion of chocolate[J]. Institution of Chemical Engineers,1994, Part C, 72:47-54.
    [44] Mulji N.C., Mique M.E.l, Hall L.D., Mackley M.R.. Microstructure and Mechanical Property Changes in Cold-Extruded Chocolate[J]. Institution of Chemical Engineers, 2003, Part C,81:97-105.
    [45] Mary Ellen Camire. Chemical and Nutritional Changes in Food during Extrusion. In: Mian N. Riaz, Ph.D. edited. Extruders in Food Application[C]. New York, Technomic Publishing Company, 2000.127-142.
    [46] Ho Chi-Tang, Mark T. Izzo. Lipid-Protein and Lipid-Carbohydrate Interactions During Extrusion. In: Jozef L. Kokini, Chi-Tang Ho, Mukund V. Karwe edited. Food Extrusion Science and Technology[C]. New York, N.Y.:Marcel Dekker Inc.1992. 415-425.
    [47] George Strauss, Suzanne M. Gibson, and Janice D. Adachi. Molecular Restructuring and Complexation During Extrusion of Cornmeal. In: Jozef L. Kokini, Chi-Tang Ho, Mukund V. Karwe edited. Food Extrusion Science and Technology[C]. New York, N.Y.:Marcel Dekker Inc.1992. 437-448.
    [48] Naofumi Kitabatake, Etsushiro Doi. Denaturation and Texturization of Food Protein by Extrusion Cooking. In: Jozef L. Kokini, Chi-Tang Ho, Mukund V. Karwe edited. Food Extrusion Science and Technology[C]. New York, N.Y.:Marcel Dekker Inc.1992.361-371.
    [49] Stanley D.W.. Protein Reactions During Extrusion Processing. In: C. Mercier, P. Linko, J. M. Harper edited. Extrusion Cooking[C]. Published by the American Association of Cereal Chemists, Inc. St. Paul, Minnesota, USA. 1986.321-339.
    [50] Ilo S., Berghofer E.. Kinetics of Lysine and Other Amino Acids Loss During Extrusion Cooking of Maize Grits[J]. Food Engineering and Physical Properties,2003,68(2):496-502.
    [51] 郑建仙. 蛋白质在挤压蒸煮过程中的变化(续)[J]. 食品与发酵工业,1994(5):76-81.
    [52] Iwe M.O., Zuilichem D.J. van, Stolp W., Ngoddy P.O.. Effect of extrusion cooking of soy-sweet potato mixtures on available lysine content and browning index of extrudates[J]. Journal of Food Engineering, 2004,62:143-150.
    [53] R. Alonso, A. Aguirre, F.Marzo. Effects of Extrusion and Traditional Processing Methods on Antinutrients and in Vitro Digestibility of Protein and Starch in Faba and Kidney Beans[J]. Food Chemistry, 2000,68(1):159-165.
    [54] Iwe M.O., van Zuilichem D.J., Ngoddy P.O., Wim Lammers. Amino acid and protein dispersibility index (PDI) of mixtures of extruded soy and sweet potato flours[J]. Lebensm.-Wiss.u.-Technol.,2001,34:71-75.
    [55] Tayeb J., Vergnes B., Della Valle G. A basic model for a twin-screw extruder[J]. Journal of Food Science, 1989,54:1047-1056.
    [56]Anastase Hagenimana, Xiaolin Ding, Tao Fang. Evaluation of rice flour modified by extrusion cooking[J]. Journal of Cereal Science, 2006,43:38-46.
    [57] Rhee K.C., Kuo C.K., Lusas E.W.. Texturization. In:John P. Cherry .Protein Functionality in Foods[C]. ACS Symposium Series 147.Southern Reginal Research Center,USDA. 1980. 51-89.
    [58] William E.Artz, S.K.Rao, Robert M.Sauer, Jr. Lipid Oxidation in Extruded Products During Storage as Affected by Extrusion Temperature and Selected Antioxidants. In: Jozef L. Kokini, Chi-Tang Ho, Mukund V. Karwe edited. Food Extrusion Science and Technology[C]. New York, N.Y.:Marcel Dekker Inc.1992. 449-461.
    [59] Bhattacharga M., Hanna M. A.. Effect of Lipids on the Properties of Extruded Products[J]. Journal of Food Science,1988,53(4):1230-1231.
    [60] Rao S. K., Artz W. E.. Effect of Extrusion on Lipid Oxidation[J]. Journal of Food Science, 1989, 54(6):1580-1583.
    [61] 王洪武,马榴强,周建国等.大豆蛋白质原料体系对挤压组织化的影响[J].中国食品学报, 2002, 2(1):33-38.
    [62] 刘俊荣,汪秋宽,叶于明等.鱼肉脱脂对双轴挤压组织化的影响[J].水产学报,1999,23(3):283-289.
    [63] Nelofar Athar, Allan Hardacre, Grant Taylor, Suzanne Clark, Rebecca Harding, Jason Melanghlin. Vitamin retention in extruded food products[J]. Journal of Food Composition and Analysis, 2006, 19: 379-383.
    [64] Moore D., Sanei A., Van Hecke E., et al. Effect of Ingredients,on Physical/Structural Properties of Extrudates[J]. Journal of Food Science,1990,55(5):1383-1387.
    [65] Bhesh Bhandari, Bruce D’Arcy & Gordon Yong. Flavor retention during high temperature short time extrusion cooking process: a review[J]. International Journal of Food Science and Technology, 2001,36:453-461.
    [66] Qi, H.Z. & Hedges, A.R. Use of cyclodextrins for ˉavours. In: Flavour Technology, Physical Chemistry[C]. Chi-Tang Ho, Chee-Teck Tan & Chao-Hsiang Tong edited. Modi?cation and Process. Washington: American Chemical Society. 1995. 231-242.
    [67] Lasekan O.O., Lasekan W., Idown M.A., et al. Effect of Extrusion Cooking Conditions on the Nutritional Value,Stability and Sensory Characteristics of a Maize-Based Snack Food[J]. Journal of Cereal Science, 1996, 24(1):79-85.
    [68] Thava Vasanthan, Jiang Gaosong, Judy Yeung, Jihong Li. Dietary fiber profile of barley flour as affected by extrusion cooking[J]. Food Chemistry, 2002,71:35-40.
    [69] Poltronieri F., Areas J.A.G., Collin C.. Extrusion and iron bioavailability in chickpea (Cicer arietinumL.) [J]. Food Chemistry, 2000,70:175-180.
    [70] 黄先纬 编著.种子毒物[M]. 西安: 陕西科学技术出版社,1986.
    [71] Stanley T.Omaye edited. Food and Nutritional Toxicology[C]. by CRC Press LLC, Bcca Raton London New York Washington, D.C. 2004. 195-203.
    [72] Huang S., Liang M., Lardy G., Huff H.E., Kerley M.S., Hsieh F.. Extrusion processing of rapeseed meal for reducing glucosinolates[J]. Animal Feed Science Technology, 1995,56:1-9.
    [73] Darroch C.S., Bell J.M., Keith M.O., The effects of moist heat and ammonia on the chemical composition and feeding value of extruded canola screenings for mice[J]. Can. J. Anim. Sci., 1990, 70: 267-277.
    [74] Anderson-Hafermann J.C., Zhang Y. & Parsons C.M. Effects of Processing on the Nutritional Quality of Canola Meal[J]. Poultry Science, 1993,72:326-333.
    [75] Ismail Y.S.Rustom. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods[J]. Food Chemistry, 1997,59(1):57-67.
    [76] Hameed H.G. Extrusion and Chemical Treatments for Destruction of Aflatoxin in Naturally-Contaminated Corn[D]. Dissert. Abstr. Int., B.54.11. 5607, 1994.
    [77] Firibu Kwesi Saalia. Degradation of Aflatoxins in Peanut Meal by Extrusion Cooking in the Presence of Nucleophiles[D]. A Dissertation Submitted to the Graduate Faculty of the University of Georgia in Partial Fulfillment of the Requirements for the Degree: Doctor of Philosophy. 2001.
    [78] Cazzaniga D., Basilico J.C., Gonzalez R.J., Torres R.L., Greef D.M. de. Mycotoxins inactivation by extrusion cooking of corn Four[J]. Letters in Applied Microbiology, 2001, 33: 144-147.
    [79] Kirsten Beyer, Ellen Morrow, Xiu-Min Li, et al. Effects of Cooking Methods on Peanut[J]. Allergenicity. J.Allergy Clin. Immunol.,2001,107:1077-1081.
    [80] Chen LingYun. Reduction of Peanut Allergenicity by Extrusion Cooking[D]. A dissertation Submitted to the Graduate Faculty of the University of Georgia in Partial Fulfillment of the Requirements for the Degree: Doctor of Philosophy. Athens, Geogia, 2001.
    [81] Hout R.Vanden, Jonkers J., Vliet T. van, Zuilichem D.J.van, Triet K.van. Influence of Extrusion Shear Forces on the Inactivation of Trypsin Inhibitors in Soy Flour[J]. Institution of Chemical Engineers,1998, Part C,76:155-161.
    [82] Akinori Noguchi. Extrusion Cooking of High-Moisture Protein Foods. In: C. Mercier, P. Linko, J. M. Harper edited. Extrusion Cooking[C]. Published by the American Association of Cereal Chemists, Inc. St. Paul, Minnesota, USA.1986.342-370.
    [83] Vincenzo Fogliano, Simona Maria Monti, Teresa Musella, Giacomino Randazzo, Alberto Ritieni. Formation of coloured Maillard reaction products in a gluten-glucose model system[J]. Food Chemistry, 1999, 66:293-299.
    [84] Lei Hanwu, Gary Fulcher R., Roger Ruan, Bernhard van Lengerich. Assessment of color developmentdue to twin-screw extrusion of rice-glucose-lysine blend using image analysis[J]. LWT,2006, doi:10.1016/j.iwt. 2006.08.016
    [85] Driscoll R. H., & Madamba P. S. Modeling the browning kinetics of garlic[J]. Food Australia, 1994,46, 66–71.
    [86] Rapusas R.S.,&Driscoll R.H. Kinetics of non-enzymatic browning in onion slices during isothermal heating[J]. Journal of Food Engineering, 1995,24:417-429.
    [87] Meuser F., Pfaller W., Lengerich B.Van. Thchnological Aspects Regarding Specific Changes to the Characteristic Properties of Extrudates by HTST-Extrusion. In: Colm O’Commor edited. Extrusion Technology for the Food Industry[C]. Dublin, Republic of Ireland , 1987.35-52.
    [88] 郑建仙. 编译.蛋白质在挤压蒸煮过程中的变化[J]. 食品与发酵工业,1994(4):78-82.
    [89] Pfannhauser W. Volatiles formed during extrusion cooking of cereals[J]. Flavour and Frangrance Journal, 1993,8:109-113.
    [90] Sjovall O., Lapvetelainen A., Johansson A., &Kallio H. Analysis of volatiles formed during oxidation of extrudate oats[J]. Journal of Agricultural and Food Chemistry, 1997,45(11):4452-4455.
    [91] Hofmann T. Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques[J]. J. Agric. Food Chem. 1998,46(13):3891-3895.
    [92] Gerrard J. A., Brown P. K., Fayle S. E.. Maillard crosslinking of food protein Ⅰ: the reactions of glutaraldehyole, formaldehyde and glyceraldehydes with ribonuclease[J]. Food Chemistry, 2002, 79 (2): 343-349.
    [93] Leong L.P., Wedzicha B.L. A critical appraisal of the kinetic model for the Maillard browning of glucose with glycine[J]. Food Chemistry, 2000,68:21-28.
    [94] Cheftel J.C. Nutritional Effects of Extrusion Cooking[J]. Food Chemistry, 1986,20:263-283.
    [95] Asp N.G., &Bjorck I. Nutritional Properties of Extruded Flours. In:C.Mercier, P.Linko, &J.M.Harper edited, Extrusion Cooking[M], 1989, St. Paul: American Association of Cereal Chemists Inc. p339-433.
    [96] O’Bnen J., & Morrissey P.A. Nutritional and Toxicological Aspects of the Maillard Browning Reaction in Foods[J]. Critical Review in Food Science and Nutrition, 1989,28:211-248.
    [97] Laura S. Malec, Ricardo Allosa, Gabriela B. Naranjo, et al. Loss of available lysine during processing of different dulce de leche formulations[J]. International Journal of Dairy Technology, 2005,58(3):164-168.
    [98] Pavlovic S, Santos R C, Gloria M B A. Maillard reaction during the processing of doce de leite [J]. Journal of the Science of Food and Agriculture, 1994,66:129-132.
    [99] Pauletti M S, Matta E J, Castelao E L, Rozycki D S. Color in concentrated milk proteins with high sucrose as affected by glucose replacement[J]. Journal of Food Science, 1998,63:90-92.
    [100] Pauletti M S, Matta E J, Rozycki D S. Kinetics of heat-induced browning in concentrated milk with sucrose as affected by pH and temperature[J]. Food Science and Technology International, 1999,5:407-413.
    [101] Garitta L, Hough G, Sanchez R. Sensory shelf life of dulce de leche[J]. Journal of Dairy Science, 2004,87:1601-1607.
    [102] 阚建全,陈宗道,石轶松等.豆豉非透析类黑精抗氧化和抑制亚硝胺合成的研究[J].营养学报,1999,21(3):349-351.
    [103] Marica Solina, Robert L. Johnson, Frank B. Whitfield. Effects of glucose and acid-hydrolysed vegetable protein on the volatile components of extruded wheat starch[J]. Food Chemistry, 2007, 100:678-692.
    [104] Gerrard J. A., Brown P. K., Fayle S. E.. Maillard crosslinking of food protein Ⅱ: the reactions of glutaraldehyole, formaldehyde and glyceraldehydes with wheat protein in vitro and in situ[J]. Food Chemistry, 2003,80(1):35-43 .
    [105] Gerrard J. A., Brown P. K., Fayle S. E.. Maillard crosslinking of food protein Ⅱ : the effects of glutaraldehyde, formaldehyde and glyceraldehyde upon bread and croissants[J]. Food Chemistry, 2003, 80(1):45-50.
    [106] Ames J. M., Arnoldi A., Bates L., Negroni M. Analysis of the methanol-extractable non volatile maillard reaction products of a model extrusion-cooked cereal product[J]. J. Agricultural and Food Chemistry, 1997,45:1256-1263.
    [107]Raija-Liisa Heinio, Kati Katina, Annika Wilhelmson, Olavi Myllymaki, Tiina Rajamaki, et al. Relationship between sensory perception and flavour-active volatile compounds of germinated, sourdough fermented and native rye following the extrusion process[J]. Lebensm.-Wiss.u.-Technol., 2003,36:533-545.
    [108] Hulya Akdogan. High moisture food extrusion[J]. International Journal of Food Science & Technology, 1999,34(3):195-207.
    [109] 陈莹. 无锡轻工业学院博士学位论文: 醇法大豆浓缩蛋白挤压组织化的研究[C],导师:刘复光.1991.
    [110] Sandra H. Prudencio-Ferreira, Jose A. G. Areas. Protein-Protein Interactions in the Extrusion of Soya at Various Temperatures and Moisture Contents[J]. Journal of Food Science, 1993, 58(2):378-381.
    [111] 陈莹, 俞俊棠, 沈蓓英等. 蛋白质的挤压组织化改性[J]. 华东理工大学学报,1994,20(6):758-763.
    [112] Guy R. C. E., Osborne B. G., Robert P.. The application of near infrared reflectance spectroscopy to measure the degree of processing in extrusion cooking processes[J]. Journal of Food Engineering, 1996, 27(3):241-258.
    [113] Cheftel J.C., Kitagawa M., Quegniner C. New protein texturization processes by extrusion cooking at high moisture levels[J]. Food Reviews International, 1992,8:235-275.
    [114] Lin S., Huff H. E., Hsieh F.. Texture and Chemical Characteristics of Soy Protein Meat Analog Extruded at High Moisture[J]. Journal of Food Science, 2000, 65 (2):264-269.
    [115] Lin S., Huff H. E., Hsieh F.. Extrusion Process Parameters, Sensory Characteristics and Structural Properties of a High Moisture Soy Protein Meat Analog[J]. Journal of Food Science, 2002, 67(3):1066-1072.
    [116] Witoon Prinyawiwatkul. Modeling the Effects of Peanutflour, Feed Moisture Content, and Extrusion Temperature on Physical Properties of an Extruded Snack Product[J]. International J. of Food Science and Technology, 1995,30(1):37-44.
    [117] Hagan R. C., Dahl S. R., Villota R., et al. Texturization of Co-Precipitated Soybean and Peanut Proteins by Twin-Screw Extrusion[J]. Journal of Food Science, 1986,51(2):367-370.
    [118] 李超 著. 植物蛋白科研论文选集[C]. 科学技术文献出版社, 1987.81-105.
    [119] Yao G., Liu K. S., Hsieh E.. A New Method for Characterizing Fiber Formation in Meat Analogs during High-moisture Extrusion[J]. Journal of Food Science, 2004, 67(7):E303-E307.
    [120] 李里特 著.食品物性学[M].北京:中国农业出版社,2001.
    [121] Sy-Yu Shiau, An-I Yeh. On-line measurement of rheological properties of wheat flour extrudates with added oxido-reductants, acid, and alkali[J]. Journal of Food Engineering, 2004,62:193-202.
    [122] Harris P.L., Cuppett S.L.. A Scanning Electron Microscope Study of Maize Gluten Meal and Soy Coextrudates[J].Cereal Chemistry,1998,65(3):228-232.
    [123] 吴谋成 主编.食品分析与感官评定.北京:中国农业出版社,2002.
    [124] Hulya Akdogan. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents[J]. Food Research International , 1996,29: 423-429.
    [125] Hulya Akdogan, Rui L. Tomas, Jorge C. Oliweira. Rheological Properties of Rice Starch at High Moisture Contents during Twin-screw Extrusion[J]. Lebensmittel-Wissenschaft und-Technologies, 1997,30(5):488-496.
    [126] Li Chin-Hsien. Modeling Extrusion Cooking[J]. Institution of Chemical Engineers, 1999, Part C, 77:55-63.
    [127] 张 裕 中 , 张 文 明 . 物 料 在 双 螺 杆 挤 压 机 中 停 留 时 间 分 布 的 研 究 [J]. 粮 食 与 饲 料 工业,2000(12):48-50.
    [128] Emine Unlu, James F. Faller. RTD in twin-screw food extrusion[J]. Journal of Food Engineering, 2002,53:115-131.
    [129] Marsman G.J.P., Gruppen H., van Zuilichem D.J., Resink J.W. & Voragen A.G.J.. The Influence of Screw Configuration on the In Vitro Digestibility and Protein Solubility of Soybean and Rapeseed Meals[J]. Journal of Food Engineering,1995,26:13-28.
    [130] 王洪武,林炳鉴.复合组织蛋白挤压加工工艺的初步研究[J]. 农业工程学报,2004,20(4):216-219.
    [131] Dahl S. R., Villota R..Twin-Screw Extrusion Texturization of Acid and Alkali Denatured Soy Proteins[J]. Journal of Food Science,1991,56(4):1002-1007.
    [132] 王洪武 , 周建国 , 林炳鉴 . 双螺杆挤压机工艺参数对组织蛋白的影响 [J]. 中国粮油学 报,2001,16(2):54-57.
    [133] Ben-Hdech H., Gallant D.J., Robert P.& Gueguen J. Use of near infrared spectroscopy to evaluate the intensity of extrusion-cooking processing of pea flour[J]. International Journal of Food Science and Technology, 1993,28:1-12.
    [134] Ajay Kumar, Girish M. Ganjyal, David D. Jones, Milford A. Hanna. Digital image processing for measurement of residence time distribution in a laboratory extruder[J]. Journal of Food Engineering, 2006, 75:237-244.
    [135] Lee S. J., McCarthy K.L. Effect of screw configuration and speed on RTD and expansion of rice extrudate[J]. Journal of Food Process Engineering,1996,19:153-170.
    [136] Seker M. Residence time distributions of starch with high moisture content in a single-screw extruder[J]. Journal of Food Engineering, 2005,67:317-324.
    [137] Gogoi B.K., Yam K.L. Relationship between residence time and process variables in a co-rotating twin-screw extruder[J]. Journal of Food Engineering, 1994,21:177-196.
    [138] Yeh A.I., &Jaw Y.M. Modeling residence time distribution for single-screw extrusion process[J]. Journal of Food Engineering,1998,35:211-232.
    [139] Apruzzese F., Pato J., Balke S. T., Diosady L. L. In-line measurement of residence time distribution in a co-rotating twin-screw extruder[J]. Food Research International, 2003,36:461-467.
    [140] Plunkett A., Ainsworth P.. The influence of barrel temperature and screw speed on the retention of L-ascorbic acid in an extruded rice based snack product.[J]Journal of Food Engineering, 2007, 78 (4): 1127-1133.
    [141] Paul Ainsworth, Senol Ibanoglu & George D.Hayes. Influence of Process Variables on Residence Time Distribution and Flow Patterns of Tarhana in a Twin-Screw Extruder[J]. Journal of Food Engineering,1997,32:101-108.
    [142] Lin J.K; Armstrong D.J. Process variables affecting residence time distributions of cereals in intermeshing, counter-rotating, twin-screw extruder [J].Transactions of the ASAE, 1990, 33 (6): 1971-1978.
    [143] Bounie D.. Modeling of the flow pattern in a twin-screw extruder through residence-time distribution experiments[J]. Journal of Food Engineering, 1988,7(3):223-246.
    [144] George Chao-Chi Chuang, An-I Yeh. Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking[J]. Journal of Food Engineering, 2004,63:21-31.
    [145] 刘文生, 邹永康, 胡执中, 张文敏. 同向双螺杆食品挤压机中传热模型的研究[J]. 轻工机械,2005(2):27-29.
    [146]Antonio Ficarella, Marco Milanese, Domenico Laforgia. Numerical Study of the Exrusion Process in Cereals Productuon: Part Ⅰ . Fluid-Dynamic Analysis of the Extrusion System[J]. Journal of Food Engineering, 2006,73:103-111.
    [147] Altomare R.E., Ghossi P. An analysis of residence time distribution patterns in a twin screw cooking extruder[J]. Biotechnology Progress,1986,2(3):157-163.
    [148] Barres C., Vergnes B., Tayyeb J.,&Della valle G. Transformation of wheat flour by extrusion cooking[J]. Cereal Chemistry,1990,67:427-433.
    [149] Tomer G., Newton J.M.. Water movement evaluation during extrusion fractions[J]. International Journal of Pharmaceutics,1999,182(1):71-77.
    [150] Kazemzadeh M., Diehl K. C., JR., Rhee K. C., Dahm P. F.. Mechanical and Structural Evaluation of Texturized Soy Proteins of Varying Protein Content[J]. Cereal Chemistry, 1986, 63 (4): 304-310.
    [151] Bradley S.Strahm. Preconditioning. In: Mian N. Riaz, Ph.D. edited. Extruders in Food Application[C]. New York, Technomic Publishing Company, 2000.115-119.
    [152] Lin S., Hsieh F., Huff H.E.. Effects of lipids and processing conditions on degree of starch gelatinization of extruded dry pet food[J]. Lebensm.-Wiss.u.-Thchnol., 1997,30:754-761.
    [153] Nibedita Mukhopadhyay, Sukumar Bandyopadhyay. Extrusion cooking technology employed to reduce the anti-nutritional factor tannin in sesame (Sesamum indicum) meal[J]. Journal of Food Engineering, 2003,56:201-202.
    [154] 汪家政,范明 主编.蛋白质技术手册[M].北京:科学出版社,2000.
    [155] Laemmli U. K. Cleabage of Structural Proteins During the Assembly of the Head of Bacteriophage T4[J]. Nature, 1979,227:680-685.
    [156] 俞一夫 等编著.粮油食品分析与检验[M].中国轻工业出版社,1992.
    [157] 宋达顺 主编.食品标准大全[M].辽宁大学出版社,1992.
    [158] 张水华 主编.食品分析[M].中国轻工业出版社,2004.
    [159] 陈毓荃 主编.生物化学实验方法和技术[M].北京:科学出版社,2002.
    [160] 罗明泉 编译.王秉瑞 校.食品营养成份分析[M].北京:中国食品出版社,1987.
    [161]王邦宁,谈夫.β-乳球蛋白 B 变性的 DSC 法研究[J].中国科学(B),1994,24(10):1009-1013.
    [162] Kitabatake N., Megaro D., Cheftel J. C.. Continuous Gel Formation by HTST Extrusion-Cooking: Soy Proteins[J]. Journal of Food Science, 1985, 50(5):1260-1265.
    [163] 阚建全 主编.食品化学[M].北京:中国农业大学出版社,2002.
    [164] Camire M.E., Camire A., & Krumhar K. Chemical and nutritional changes in foods during extrusion. Critical Rev[J]. Food Science and Nutrition, 1990,29:35-57.
    [165] Mercier C. Nutritional appraisal of extruded foods[J]. Food Science and Nutrition, 1993,S44:45-53.
    [166] Pinto T.A., Colli C., & Areas J.A.G.. Effect of Processing on Iron Bioavailability of Extruded Bovine Lung[J]. Food Chemistry, 1997,60(4):459-463.
    [167] Poltronieri F., Areas J.A.G., Collin C.Extrusion and iron bioavailability in chickpea (Cicer arietinum L.) [J]. Food Chemistry, 2000,70:175-180.
    [168] Carline M.J. Brands, Bronek L. Wedzicha, Martinus A.J.S. et al. Quantification of Melanoidin Concentration in Sugar-Casein System[J]. J.Agric. Food Chem. 2002,50(5):1178-1183.
    [169] 仇厚援,王志勇,贺利民.气质联用法分析对虾头酶解液与木薯淀粉糖浆美拉德反应物[J].食品科学,2003,24(2):121-123.
    [170] Rehman Zia-Ur, Shah W.H. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes[J]. Food Chemistry, 2005,91(2):327-331.
    [171]肖玲,龚月生.染料结合法测定豆粕中有效赖氨酸[J].饲料工业,2001,22(4):33-34.
    [172] 莫重文.大豆膨化浸出及提高粕饲用效价技术[J].郑州工程学院学报,2000,21(4):53-58.
    [173] Malec L S, Llosa R A, Vigo M S. Sugar formulation effect on available lysine content of dulce de leche[J]. Journal of Dairy Research, 1999, 66:335-339.
    [174] Carlos W.P.Carvalho & John R.Mitchell. Effect of Suger on the Extrusion of Maize Grits and Wheat Flour[J]. International Journal of Food Science and Technology, 2000,35:569-576.
    [175] 孙崇荣,李玉民 编著.蛋白质化学导论[M].复旦大学出版社,1991.
    [176] Lai C.S., Guetzlaff J., &Hoseney R.C. Role of Sodium Bicarbonate and Trapped Air in Extrusion[J]. Cereal Chemistry,1989,66:69-73.
    [177] Singh N., Sharma S., &Singh B. The effects of sodium bicarbonate and glycerol monostearate addition on the extrusion behavior of maize grits[J]. Journal of Food Engineering, 2000,34:71-75.
    [178] Chung-wen Su. Effects of eggshell powder addition on the extrusion behaviors of rice[J]. Journal of Food Engineering, 2007,79:607-612.
    [179] Teresa De Pilli, Barbara F. Carbone, Anna G. Fiore, Carla Severini. Effect of some emulsifiers on the structure of extrudates with high content of fat[J]. Journal of Food Engineering, 2007, 79:1351-1358.
    [180] Galloway G.I., Biliaderis C.G., &Stanley D.W. Properties and Structures of Amylose-glyceryl Monostearate Complexes Formed in Solution or on Extrusion of Wheat Flour[J]. Journal of Food Science,1989,54:950-957.
    [181] Alvarez V.B., Smith D.M., Morgan R.G., Booren A.M. Restructuring of mechanically deboned chicken and nonmeat binders in twin-screw extruder[J]. Journal of Food Science, 1990,55:942-946.
    [182] Hsieh F., Peng I.C., Clarke A.D., Mulvaney S.J., Huff H.E. Restructuring of Mechanically Deboned Turkey by Extrusion Processing Using Cereal Flours as the Binder[J]. Lebensmittel-Wissenschaft und-Technologie, 1991,24:139-144.
    [183] Aslaksen M. A., Romarheim O. H., Storebakken T., et al. Evaluation of content and digestibility of disulfide bonds and free thiols in unextruded and extruded diets containing fish meal and soybean protein sources[J]. Animal Feed Science and Technology, 2006,128:320-330.
    [184] Maryse Thiebaud, Eliane Dumay, Jean Claude Cheftel. Influence of Process Variables on theCharacteristics of a High Moisture Fish Soy Protein Mix Texturized by Extrusion Cooking[J]. Lebensmittel-Wissenschaft und-Technologies, 1996,29(5):526-535.
    [185] Narpinder Singh, Naoyoshi Inouchi, Katsuyoshi Nishinari. Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize[J]. Food Hydrocolloids, 2005,1:1-13.
    [186] Badding Smithey S.L., Huff H.E., Hsieh F.. Processing Parameters and Product Properties of Extruded Beef with Nonmeat Cereal Binders[J]. Lebensm.-Wiss.u.-Technol., 1995,28:386-394.
    [187] 罗明江,罗春霞,吴赣香等.Ellman’s 试剂比色法测定食品中蛋白质的巯基和二硫键[J].郑州粮食学院学报,1986,23(1):92-95.
    [188] Olayide S. Lawal . Functionality of native and succinylated Lablab bean (Lablab purpureus) protein concentrate[J]. Food Hydrocolloids2005, 19 (1): 63-72.
    [189] Allaoua Achouri, Wang Zhang. Effect of succinylation on the physicochemical properties of soy protein hydrolysate[J]. Food Research International, 2001,34(2):507-514.
    [190] Olayide S. Lawal. Functionality of native and succinylated Lablab bean (Lablab purpureus) protein concentrate[J]. Food Hydrocolloids, 2005,19: 63–72.
    [191] 张红印,朱加进 , 郑晓冬等. 小麦面筋蛋白琥珀酰化改性研究[J]. 中国农业科学,2003, 36(3):313-317.
    [192] Irakoze Pierre Claver, Huiming Zhou. Enzymatic Hydrolysis of Defatted Wheat Germ by Proteases and the Effect on the Functional Properties of Resulting Protein Hydrolysates[J]. Journal of Food Biochemistry, 2005, 29: 13-26.
    [193] 黄伟坤 等编著.食品检验与分析[M].中国轻工业出版社,1997.
    [194] D R Stevens, J C Burns, D S Fisher, J H Eisemann. The influence of high-nitrogen forages on the voluntary feed intake of sheep[J]. Journal of Animal Science, 2004,82 (5):1536-1542.
    [195] 于世林,李寅蔚 主编.波谱分析法[M].重庆:重庆大学出版社,1994.
    [196]YraiPro Quema Cordeiro, Julia Kraineva, Marisa Carvalho Suarez, et al. Fourier Transform Infrared Spectroscopy Provides a Fingerprint for the Tetramer and for the Aggregates of Transthyretin[J]. Biophysical Journal,2006,91(3);957-967.
    [197] Henry S Lam, Andrew Proctor, John Nyalala, Manford D Morris, W Grady Smith. Fourier Transform Infrared Spectroscopy Evaluation of Low Density Lipoprotein Oxidation in the Presence of Quercetin, Catechin, and [alpha]-Tocopherol[J]. Lipids,2005,40:569-574.
    [198] David Taylor. Investigation of the Effect of Sulfitolysis on the Functional Proteins and Extrusion Performance of Whey Protein Concentrate[D]. A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy. Utah State University. Logan, Utah,2004.