电气化铁路牵引供电系统综合有源补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电气化铁路的发展,由牵引负荷引起的谐波、无功、负序等电能质量问题,成为影响电力系统和电气化铁路供电系统安全、稳定运行的一个重要因素。相对普速电气化电路,高速电气化铁路的负序问题更加突出。采用有源补偿对电气化铁路牵引供电系统牵引变电所电能质量进行综合补偿,是确保电气化铁路安全有效运行的重要手段。研究有源补偿对电气化铁路的电能质量改善具有理论意义和实用价值。
     在分析电气化铁路对电力系统电能质量影响的基础上,总结了电气化铁路对电力系统谐波、无功及负序的补偿方法。有源补偿是作为解决电气化铁路电能质量问题的有效方法之一,本文探讨了电气化铁路有源补偿的分类及存在的问题。并分析探讨了各种型式牵引变压器的负序电流及不平衡度,为利用牵引变电所主变压器的接线方式来抑制负序电流提供理论依据。
     在电气化铁路单臂负荷补偿系统基础上,推导得到了电气化铁路有源补偿的拓扑数量公式,通过对补偿拓扑的进一步简化,获得电气化铁路有源基本有源补偿网络,推导得到基本补偿网络拓扑数量公式,对拓扑进行识别,并分析比较了各种拓扑结构特点及适用范围。在对电气化铁路两种有源补偿拓扑结构容量分析的基础上,提出四种新的混合有源补偿拓扑结构,进一步降低有源补偿支路的容量和电压等级。
     结合提出的拓扑结构,给出解决电气化铁路电能质量综合有源补偿方案,分析了电气化铁路电流综合有源补偿工作原理,给出在不同补偿情况下的控制电流表达式。推导得到牵引变压器原边和次边电压电流的关系式,得到了综合有源补偿电流表达式,对实际补偿电流的计算具有指导意义。
     本文基于对电气化铁路综合有源补偿输出滤波器分析的基础上,对LC输出滤波器进行了改进,且对输出滤波器参数进行了模糊优化设计。改进后的输出滤波器在补偿频率范围内有较好的滤波效果,可以更好地满足系统综合补偿的要求。通过对实际牵引变电所数据的仿真分析,该方案能够有效的补偿电气化铁路谐波、无功和负序,改善电气化铁路电能质量。
With the development of electrified railway,traction load have caused some power quality problems such as harmonic,reactive power and negative sequence,this have become an important factor which is affecting security and stable operation of power system and power supply system.Negative sequence problem in high speed electrified railway is more prominent than that in normal speed electrified railway.Using active compensation to compensate power quality of traction substation in electrified railway,is an important means to ensure safety and effective operation of electrified railway.It has the theoretical significance and practical value to study the active compensation to electrified railway power quality improvement.
     The effects of electrified railway on power quality of power system are analyzed,the compensation methods of power system harmonic,reactive power and negative sequence are summarized,the classification and existing problems of electrified railway active compensation are concluded. Various types of negative sequence current of traction transformer and unbalanced degree are analyzed.This works provide the theoretical basis for proper selection of traction transformer main connection wiring to inhibit negative sequence current.
     The formulas for electrified railway active compensation are deduced on compensation system of electrified railway single-arm load. The formulas for identifying the basic topological quantity of electrified railway active compensation are formulated, identification methods of topology is presented,structure characteristics and scope of all sorts of different topologies are analyzed and compared. Four new hybrid active compensation topologies are presented based on the analysis of electrified railway active compensation topologies.This four topologies can reduce capacity and voltage level of active component.
     Combining the topological structure are proposed solution, electrified railway power quality integrated solution active compensation scheme is gived. Operating principle electrified railway comprehensive active compensation is analyzed. The expressions of current control on various compensation conditions are presented. The primary voltage and current and the secondary voltage and current expressions of tration transformer and comprehensive active compensation currents are also presented.It has the guiding significance for the actual compensation current calculation.
     Output filter design of electrified railway active compensation is studied. LC output filter is improved based on the analysis of the common four types output filters characteristics. Output filter parameters are designed by fuzzy optimization.The improved output filter has good filtering effect in compensation frequency range, and can better meet the requirement system synthetical compensation.It is verified that this method can realize the compensation for harmonic, reactive power and negative sequence and improve the tration power quality.
引文
[1]程浩忠,艾芊,张志刚等.电能质量[M].北京:清华大学出版社,2006.
    [2]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社,2006.
    [3]Tristan A,Kneschke.Control of Utility System Unbalance Caused by Single-phase Electric Traction[J]. IEEE Transactions on Industry Applications.1985,21 (6):1559-1569.
    [4]姜齐荣,谢小荣,陈建业.电力系统并联补偿—结构、原理、控制与应用[M].北京:机械工业出版社,2004.
    [5]李群湛.牵引变电所供电分析及综合补偿技术[M].北京:中国铁道出版社,2006.
    [6]刘弢,郭知彼,蒋家久.牵引变电所静止无功补偿方案综述[J].机车电传动.2005,(6):12-14.
    [7]焦剑扬,刘明光.牵引变电所无功补偿方式综述[J].电气开关.2006,(6):1-4.
    [8]贺建闽,黄治清,李群湛等.晶闸管投切电容补偿测控系统[J].铁道学报.1998,20(5):53-57.
    [9]张丽,李群湛.TSC在牵引变电所无功补偿中的应用[J].铁道学报.2000,22(4):66-70.
    [10]张亚迪,陈伯超.双级饱和磁控SVC补偿电铁牵引不平衡负荷的研究[J].电气传动.2007,37(8):51-55.
    [11]钱建华,陈柏超.基于磁阀式可控电抗器的无功补偿系统[J].电力系统及其自动化学报.2003,15(2):66-70.
    [12]韦炳干,王卫安.动态无功补偿装置在电气化铁路上的应用[J].机车电传动.2006,(2):17-19.
    [13]Laszlo GyUgyi. Power electronics in electric utilities:static var compensators[J].Proeeedings of the IEEE.1988,76(4):483-494.
    [14]C.W.Edwards,K.E.Mattem,E.J.Stacey,et al. Advaneed static var generator emplying GTO thyristors[J]. IEEE Transactions on power delivery.1988,3 (4):1622-1627.
    [15]Kuehnlw M R, Peeken H, Troeder C et al. Benefits for GTO based compensation systems for eleetric utility applications[J]. IEEE Transactions on Power Delivery.1992,7(4):2056-2063.
    [16]C.Sehauder,M.Genlhart,E.StaCey et al.Development of a±100MVAR static condenser for voltage control of transmission systems[J].IEEE Transactions on power delivery.1994,10(3):1486-1496.
    [17]GeZa Joos,Luis Moran,Phoivos Ziogas. Performance analysis of a PWM inverter VAR compensator [J].IEEE Transactions on power electronics.1991,6(3):380-391.
    [18]张小瑜,吴俊勇.电气化铁路接入电力系统的电压等级问题[J].电网技术.2007,31(7):12-17.
    [19]孙卓,朱东起.牵引变电所新型电能质量调节器的研究[J].电力系统自动化.2002,26(19):41-44.
    [20]贺威俊,高仕斌.电力牵引供变电技术[M].成都:西南交通大学出版社,1998.
    [21]Tristan A. Kneschke. Control of Utility System Unbalance Caused by Single-phase Electric Traction[J]. IEEE Transactions on Industry Applications.1985,21 (6):1559-1569.
    [22]温建民.宜万线牵引变电所无功补偿方案研究[J].电气化铁道.2006,(1):1-4.
    [23]张亚迪,陈伯超.双级饱和磁控SVC补偿电铁牵引不平衡负荷的研究[J].电气传动.2007,37(8):51-55.
    [24]钱建华,陈柏超.基于磁阀式可控电抗器的无功补偿系统[J].电力系统及其自动化学报.2003,15(2):66-70.
    [25]贺建闽,李群湛.用于同相供电系统的对称补偿技术[J].铁道学报.1998,20(6):47-51.
    [26]李群湛,贺建闽.电气化铁路的同相供电系统与对称补偿技术[J].电力系统自动化.1996,20(4):9-11.
    [27]魏光,李群湛,黄军等.新型同相牵引供电系统方案[J].电力系统自动化.2008,32(10):80-83.
    [28]周建佳,胡成,杨苏飞.基于UPQC的电气化铁路同相供电方案的研究[J].电气技术.2010,(1):14-17.
    [29]吕晓琴,张秀峰.基于有源滤波器和V/x结线的同相牵引供电系统[J].电力系统自动化.2006,18(6):73-78.
    [30]张秀峰,李群湛,吕晓琴.基于有源滤波器的V,v接同相供电系统[J].中国铁道科学.2006,27(2):98-103.
    [31]兎束 哲夫,池戸 昭治.新幹線用電压变动补偿装置の実用化[J].铁道総研报告.2005,19(7):41-46.
    [32]S Senini,PJ Wolfs.Hybrid active filter for harmonically unbalanced three phase threewire railway traction loads[J].IEEE Transactions on power electronics.2000,15(4):702-710.
    [33]S.T.Senini, P.J.Wolfs.Novel topology for correction of unbalanced load in single phase electric traction systems[C].Power Electronics Specialists Conference,IEEE 33rd Annual,2002:1208-1212.
    [34]Morimoto H,Ando M,Mochinaga Y.Development of railway static power conditioner used at substation for Shinkansen[C].Proceedings of the Power Conversion Conference,Osaka,2002:1108-1111.
    [35]Tristan A,Kneschke.Control of Utility System Unbalance Caused by Single-phase Electric Traction[J]. IEEE Transactions on industry applications.1985,21(6):1559-1569.
    [36]B.M.Bird,J F Marsh,PR Mclellan.Hannonic reduction in multiplex convertors by triple-frequeney current injection[J].Proceedings of the IEE.1969,116(10):1730-1734.
    [37]Sasaki H,Machida T.A new method to eliminate ac harmonic currents by magnetic compensation consideration on basic design[J].IEEE transactions on apparatus and systems.1971,90(5):2009-2019.
    [38]FangZheng Peng.Application issues of active power filters[J].IEEE Industry Applications Magazine.1998,4(5):21-30.
    [39]Hirofumi Akagi,Yoshihira Kanazawa,Akira Nabae.Instantaneous reactive power compensators comprising switching devices without energy storage components[J].IEEE Transactions on industry applications.1984,.IA-20(3):625-630.
    [40]K.S.Smith,L.Ran.Active filter used as a Controlled reactance to prevent harmonic resonance in interconnected offshore power systems[J].IEE Proceedings-Generation,Transmission and Distribution. 1999,146(4):393-399.
    [41]Bhim Singh,Kamal Al-Haddad,Ambrish Chandra.A review of active filters for power quality improvement[J].IEEE Transactions on industrial electronics.1999,46(5):960-970.
    [42]M. El-Habrouk,M.K.Darwish,P.Mehta. Active power filters:a review[J]. IEE Proceedings. Part B, Electric Power Applications.2000,147(5):403-413.
    [43]Norman Mariun, Ahsanul Alam,Senan Mahmod et al. Review of control strategies for power quality conditioners[C]. Power and Energy Conference,PECon 2004,Proceedings National 2004:109-115.
    [44]Peng,F.Z.Harmonic sources and filtering approaches[J].IEEE on Industry Applications Magazine. 2001,7(4):18-25.
    [45]Akagi, H.New trends in active filters for power conditioning[J].IEEE Transactions on Industry Applications.1996,32(6):1312-1322.
    [46]Shen J,Butterworth N.Analysis and design of a three-level PWM converter system for railway-traction applications[J]. IEE Proceeding-Electric Power Applications.1997,144(5):357-371.
    [47]Manon G, Delarue P,Bausiere R,et.al. Design of a unified power flow controller for implementation into a micronetwork[C]. Proceedings of European Power Electronics conference,EPE-97,Trondheim, Norway,1997:1390-1395.
    [48]Libano F,Simonetti D,Uceda J. Frequency characteristics of hybrid filter systems[C]. Proceedings of Power Electronics Specialists conference, PESC'96,Baveno,Italy,1996:1142-1148.
    [49]Peng F Z,Akagi H,Nabae A.Compensation characteristics of the combined system of shunt passive and series active filters[J].IEEE Transactions on Industry Applications.1993,29(l):144-152.
    [50]J.Hiifner,M Aredes,K Heumann.Utilization of a Small-Rated Shunt Active Power Filter Combined with a Conventional Passive Filter for Large Power Systems[C] Proceedings of PEMC,Warsaw, Poland,1994:190-195.
    [51]Fukuda S, Endoh T. Control method for a combined active filter system employing a current source converter and a high pass filter[J].IEEE Transactions on Industry Applications.1995,31(3):590-597.
    [52]Fujita H,Akagi H.The unified power quality conditioner, the integration of series active filters and shunt active filters[C].Power Electronics Specialists Conference PESC'96 Record.27th Annual IEEE. Baveno,Italy,1996:494-501.
    [53]Van Zyl A,Enslin,J,Spee R. Converter-based solution to power quality problems on radial distribution lines[J].IEEE Transactions on Industry Applications.1996,32(6):1323-1330.
    [54]Rastogi M,Mohan N,Edris A. Hybrid-active filtering of harmonic currents in power systems[J].IEEE Transactions on Power Delivery.1995,10(4):1994-2000.
    [55]Bhattacharya S,Po-Tai Cheng,Divan D M. Hybrid solutions for improving passive filter performance in high power applications[J].IEEE Transactions on Industry Applications.1997,33(3):732-747.
    [56]Viriya P,Matsuse K.Low harmonic GTO converter for fundamental power factor compensation[J]. IEEE Transactions on Power Electronics.1991,6(3):371-379.
    [57]Cho G C,Jung G H,Choi N S,et.al. Analysis and controller design of static VAr compensator using three-level GTO inverter[J].IEEE Transactions on Power Electronics.1996,11(1):57-65.
    [58]Ooi B T,Dai S Z. Series-type solid-state static VAR compensator[J]. IEEE Transactions on Power Electronics.1996,8(2):164-169.
    [59]Joos G,Moran L,Ziogas P.Performance analysis of a PWM inverter VAr compensator[J].IEEE Transactions on Power Electronics.1991,6(3):380-391.
    [60]Shirahama H,Sakurai Y,Matsuda Y. Instantaneous control method with a GTO converter for active and reactive powers in superconducting magnetic energy storage[J].IEEE Transactions on Power Electronics.1994,9(1):1-6.
    [61]Enslin J,Van Wyk J D.Measurement and compensation of fictitious power under nonsinusoidal voltage and current conditions[J] IEEE Transactions on Instrumentation and Measurement.1988,37(3): 403-408.
    [62]Enslin J,Van Wyk J D. A new control philosophy for power electronic converters as fictitious power compensators[J].IEEE Transactions on Power Electronics.1990,5(1):88-97.
    [63]Hayashi Y,Sato N Takahashi K. A novel control of a current-source active filter for AC power system harmonic compensation[J]. IEEE Transactions on Industry Applications.1991,27(2):380-384.
    [64]Peng F Z.Akagi H,Nabae A. Compensation characteristics of the combined system of shunt passive and series active filters[J].IEEE Transactions on Industry Applications.1993,29(l):144-152.
    [65]Aredes M, Hafner J, Heumann K. Three-phase four-wire shunt active filter control strategies[J]. IEEE Transactions on Power Electronics.1997,12(2):311-318.
    [66]Cavallini A,Montanari G C.Compensation strategies for shunt active-filter control[J].IEEE Transactions on Power Electronics.1994,9(6):587-593.
    [67]Jou H-L.Performance comparison of the three-phase active-power-filter algorithms[J].IEE Proceedings on Generation, Transmission and Distribution.1995,142(6):646-652.
    [68]Welsh M,Mehta P,Darwish M K.Genetic algorithm and extended analysis optimisation techniques for switched capacitor active filters-comparative study[J].IEE Proceedings on Electric Power Applications. 2000,147(1):21-26.
    [69]Hsu C Y,Wu H Y.A new single-phase active power filter with reduced energy storage capacitor[J].IEE Proceedings on Power applications.1996,143(1):25-30.
    [70]Torrey D A,A1-Zamel A M A M. Single-phase active power filters for multiple nonlinear loads[J]. IEEE Transactions on Power Electronics.1995,10(3):263-272.
    [71]Furuhashi T.,Okuma S,Uchikawa Y. A study on the theory of instantaneous reactive power[J].IEEE Transactions on Industrial Electronics.1990,37(1):86-90.
    [72]Malesani L, Rossetto L, Tenti P. Active power filter with hybrid energy storage [J]. IEEE Transactions on power Electronics.1991,6(3):392-397.
    [73]Grady W M,Samotyj M J,Noyola A H. Survey of active power line conditioning methodologies[J]. IEEE Transactions on Power Delivery.1990,5(3):1536-1542.
    [74]Moran L A,Dixon J W,Wallace R R. A three-phase active power filter operating with fixed switching frequency for reactive power and current harmonic compensation[J].IEEE Transactions on Industrial Electronics.1995,42(4):402-408.
    [75]Ooi B T,Dai S Z. Series-type solid-state static VAR compensator[J]. IEEE Transactions on Power Electronics.1993,8(2):164-169.
    [76]Enslin J H R,Van Wyk J D. A new control philosophy for power electronic converters as fictitious power compensators[J].IEEE Transactions on Power Electronics.1990,5(1):88-97.
    [77]Bhattacharya S,Divan D. Synchronous frame based controller implementation for a hybrid series active filter system[C]. Industry Applications Conference Thirtieth IAS Annual Meeting,IAS'95, Orlando,FL,USA,1995:2531-2540.
    [78]Gyu-Ha Choe, Min-Ho Park. Analysis and control of active power filter with optimized injection[J]. IEEE Transactions on Power Electronics.1989,4(4):427-423.
    [79]陆廷信,毛晓波.有源型谐波抑制无功补偿装置计算机仿真及实验研究[J].电气传动.1989,6:41-49.
    [80]叶忠明.无功功率测量与有源电力滤波器研究[D].上海:上海交通大学硕士学位论文,1995.
    [81]杨君.谐波和无功电流检测方法及并联型电力有源滤波器的研究[D].西安:西安交通大学博士学位论文,1996.
    [82]吕征宇,钱照明,T C Green并联有源电力滤波器的神经网络预测控制[J].中国电机工程学报.1999,19(12):22-26.
    [83]Zhaoan Wang,Qun Wang,Weizheng Yao,et al.A series active power filter adopting hybrid control approach[J].IEEE Transactions on Power Electronics.2001,16(3):301-310.
    [84]李夏青,李力.牵引供电系统采用SVG实现有源无功补偿方法研究与仿真[J].铁道学报.1999,21(2):46-49.
    [85]刘凡,杨洪耕,马文营等.单相并联型有源滤波器在电铁谐波抑制中的研究[J].电力系统及其自动化学报.2002,14(6):60-62.
    [86]唐卓尧,任震,高明振等Harmonic suppression with passive active hybrid filters for electrified railways[J]华南理工大学学报(自然科学版).1999,27(4):13-19.
    [87]Peng F Z, H Akagi, A Nabae.A new approach to harmonic compensation in Power Systems:A Combined System of Shunt Passive and Series Active Filters[J].IEEE Transactions on industry applications.1990,26(6):983-990.
    [88]赵成勇.基于电铁牵引变电站的单相混合型谐波补偿系统研究[D].北京:华北电力大学博士学位论文,2001.
    [89]唐卓尧,任震.并联型混合滤波器及其滤波特性分析[J].中国电机工程学报.2000,20(5):25-29.
    [90]王跃,杨君,王兆安等.电气化铁路用有源电力滤波器的控制系统[J].电力电子技术.2003,37(1):1-3.
    [91]葛加伍.电气化铁路牵引变电站综合补偿研究[D].武汉:华中科技大学硕士学位论文,2007.
    [92]张定华,桂卫华,王卫安等.新型电气化铁道电能质量综合补偿系统的研究及工程应用[J].电工技术学报.2009,24(3):189-194.
    [93]陈晓国,白尧,杨楚明等.一种高压大容量混合式电力滤波器的研究[J].电力电子技术.2009,43(3):12-13.
    [94]赵伟,罗安,曹一家等.三相-两相牵引变电所用无功动态补偿与谐波治理混合系统的研究[J].中国电机工程学报.2009,29(28):107-114.
    [95]赵伟,涂春鸣,罗安等.适用于电气化铁路的单相注入式混合有源滤波器[J].中国电机工程学报.2008,28(21):51-56.
    [96]范瑞祥,罗安,周柯等.并联混合型有源电力滤波器的建模和控制策略分析[J].中国电机工程学报.2006,26(12):51-61.
    [97]李群湛,张进思,贺威俊.适于重载电力牵引的新型供电系统的研究[J].铁道学报.1988(4):23-31.
    [98]李群湛.同相供电系统的对称补偿[J].铁道学报(铁道牵引电气化与自动化专辑).1991.
    [99]解绍锋,李群湛,贺建闽等.同相供电系统对称补偿装置控制策略研究[J].铁道学报.2002,24(2):109-113.
    [100]谢杰,张秀峰,孙吉等.基于Y,d11接线变压器的同相供电技术方案[J].电网技术.2010,34(6):149-153.
    [101]曾国宏,郝荣泰.采用有源滤波器实现平衡变换的供电系统研究[J].铁道学报.2003,25(1):48-53.
    [102]曾国宏,郝荣泰.基于有源滤波器和阻抗匹配平衡[J].铁道学报.2003,25(3):49-54.
    [103]曾国宏,郝荣泰.基于有源滤波器和斯科特变压器的同相牵引供电系统[J].北方交通大学学报.2003,27(4):84-90.
    [104]张秀峰.高速铁路同相AT牵引供电系统研究[D].成都:西南交通大学博士学位论文,2006.
    [105]张秀峰,连级三,高仕斌.基于三相变四相变压器的新型同相牵引供电系统[J].中国电机工程学报.2006,26(15):19-23.
    [106]皮俊波,姜齐荣,魏应冬.一种基于链式结构UPQC的电气化铁路同相供电方案研究[J].电力设备.2008,9(10):4-9.
    [107]张秀峰,李群湛,吕晓琴,等.基于有源滤波器的V,v接线同相供电系统[J].中国铁道科学.2006,27(2):98-103.
    [108]吴萍.电气化铁路同相供电技术研究[D].成都:西南交通大学硕士学位论文,2008.
    [109]夏焰坤,李群湛,邹大云.一种基于有源滤波器的同相牵引供电方案[J].电网技术.2010,34(10):131-134.
    [110]曹建猷.电气化铁道供电系统[M].北京:中国铁道出版社,1983.
    [111]周勇,刘中元,王绪雄.牵引变压器负序电流分析[J].变压器.2003,40(2):11-13.
    [112]张丽艳,李群湛.YNd1 l接线牵引变压器负序分析[J].变压器.2006,43(1):21-25.
    [113]王风华.三相—两相牵引变电所和网络的系统变换[J].铁道学报.1981,3(2):52-60.
    [114]吴命利,范瑜,辛成山Scott接线牵引变压器运行特性与等值模型研究[J].电工技术学报.2003,18(4):75-80.
    [115]吴命利,吴利仁Scott接线平衡变压器数学模型与阻抗匹配的实验验证[J].铁道学报.2007,29(2):39-44.
    [116]刘福生,左辰.阻抗匹配平衡变压器牵引负荷的负序电流和谐波分析[J].电网技术.1989(1):26-32.
    [117]张丽艳,李群湛,余丹.阻抗匹配平衡牵引变压器负序分析[J].电力系统及其自动化学报.2005,17(6):80-83.
    [118]冯林桥,张志文,刘福生.两种接线平衡变压器的对比分析[J].变压器.1999,36(6):16-20.
    [119]李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社,1993.
    [120]李群湛.我国高速铁路牵引供电发展的若干关键技术问题[J].铁道学报.2010,32(4):119-124.
    [121]S.T. Senini,P.J. Wolfs. Systematic identification and review of hybrid active filter topologies[C].IEEE 33rd Annual on Power Electronics Specialists Conference,Cairns,Queensland,Australia,2002:394-399.
    [122]Moran L A,et al.A Simple and Low-cost Control Strategy for Active Power Filters Connected in Cascade[J].IEEE Trans. on Industrial Electronics.1997,44(5):621-629.
    [123]Raju N R, Venkata S S, Sastry V V.The Use of Decoupled Converters to Optimize the Power Electronics of Shunt and Series AC System Controllers[J].IEEE Trans on Power Delivery.1997, 12(2):895-900.
    [124]Akagi H, et al. A New Power Line Conditioner for Harmonic Compensation in Power Systems[J].IEEE Trans, on PWRD.1995,10(3):1570-1575.
    [125]M takeda, K Ikeda, etc. Harmonic compensation with active filters[C].The 32nd Univertsities Power Engineering Conference,Manchester,UK,1997:651-654.
    [126]Tanaka T, Akagi H.A new combined system of series active and shunt passive filter aiming at harmonic for large capacity thyristor converters[C].The international conference on Industrial Electronics, Control and Instrumentation,Kobe,Japan,1991:723-728.
    [127]欧阳帆,周有庆,郭自勇.基于平衡变压器的电流平衡补偿方法[J].电工技术学报.2007,22(5):53-57.
    [128]李心广,赖声礼,秦华标等.电网的无功及三相不平衡综合补偿研究[J].电网技术.2001,25(10):30-33
    [129]徐永海,肖湘宁,杨以涵等.低成本混合滤波方案及特性分析[J].中国电机工程学报.1999,19(12):5-8.
    [130]Fujita H, Akagi H. A Practical Approach to Harmonic Compensation in Power Systems-Series Connection of Passive and Active Filters[C].IEEE Transactons on Industry Applications.1991,27(6): 1020-1025.
    [131]Po-Tai Cheng, Bhattacharya S, Divan D.Experimental verification of dominant harmonic active filter for high-power applications[J].IEEE Transactons on Industry Application.2000,36(2):567-577.
    [132]Rival D,Moran L,Dixon J,et al, A simple control scheme for hybrid active power filter[J]. IEE Proceedings-Generation, Transmission and Distribution.2002,149(4):485-490.
    [133]Rivas D, Moran L, Dixon J W et al. Improving passive filter compensation performance with active techniques[J].IEEE Transactions on Industrial Electronics.2003,50(1):161-170.
    [134]邓占峰,朱东起,姜新建.降低有源支路容量的混合电力滤波器[J].清华大学学报.2003,43(3):293-295.
    [135]郑琼林,路国锋,郝荣泰.能降低端电压和容量的有源电力滤波器并联混合补偿拓扑结构研究[J].北方交通大学学报.1999,23(2):45-48.
    [136]Dirk Detjen,Joep Jacobs,Rik W De Doncker,et al.A New Hybrid Filter to Dampen Resonances and Compensate Harmonic Currents in Industrial Power Systems With Power Factor Correction Equipment[J]. IEEE Transactions on Power Electronics.2001,16(6):821-827.
    [137]Ye Z M, Dong B, Qian Z M. A novel active power filter for high voltage application[C].29th Annual IEEE Power Electronics Specialists Conference PESC 98 Record,Fukuoka Japan,1998:1429-1435.
    [138]Peng F Z, Akagi H, Nabae A. A new approach to harmonic compensation in power system-series connection of passive and active filters[C].IEEE IAS Annual Meeting Conference Record,1990:1107-1575.
    [139]Jen-Hung Chen,Wei-Jen Lee,Mo-Shing Chen.Using a static var compensator to balance a distribution system[J] IEEE Transactons on Industry Application.1999,35(2):298-304.
    [140]万庆祝.牵引供电系统负序问题研究[D].北京:清华大学博士学位论文,2008.
    [141]王兆安,李民,卓放.三相电路瞬时无功功率理论的研究[J].电工技术学报.1992,7(3):55-59.
    [142]刘进军.瞬时无功功率理论和串联混合型单相有源滤波器研究[D].西安:西安交通大学博士学位论文,1997.
    [143]王群,吴宁.一种适用于有源电力滤波器的电流检测方法[C].第五届全国电路理论及应用学术会议研讨会论文集,1997:137-140.
    [144]孙曙光,王景芹.单相电路谐波及无功电流实时检测的研究[J].电测与仪表.2008,45(505):4-7.
    [145]陆秀玲,张松华,曹才开等.单相电路谐波及无功电流新型检测方法[J].高电压技术.2007,33(3):163-166.
    [146]黄忠霖,黄京.电力电子技术的MATLAB实践[M].北京:国防工业出版社,2009.
    [147]孙宜峰,阮新波.级联型多电平逆变器的功率均衡控制策略[J].中国电机工程学报.2006,26(4):126-133.
    [148]陆秀令,周腊吾,张松华.并联混合型APF输出滤波器的研究[J].华东电力.2008,36(6):43-46.
    [149]姜艳妹,马洪飞,陈希有等.一种新颖的用于减小电机终端共模dv/dt的逆变输出滤波器[J].电机与控制学报.2002,6(2):123-127.
    [150]唐欣,罗安,涂春鸣.有源滤波器中输出滤波器的参数设计及优化[J].电力电子技术.2005,39(5):91-94.
    [151]Thmothy CY Wang,Zhihong Ye,Gautam Sinha et al.Output filter design for a grid-interconnected three-phase inverter[C].IEEE 34th Annual Power Electronics Specialist Conference,2003:779-784.
    [152]Hyosung Kim,Janghwan Kim,Seung Ksiu. A design consideration of output filters for dynamic voltage restorers[C].Annual IEEE Power Electronics Specialists Conference,Aachen,Germany,2004: 4268-4272.
    [153]荣飞,罗安,汤赐等STATCOM输出滤波器结构设计及参数优化[J].电工技术学报.2008,23(4):137-142.
    [154]荣飞,罗安,盘宏斌等.LC输出滤波器的改进及在STATCOM应用中优化设计[J].电力自动化设备.2007,27(9):83-87.
    [155]Marco Liserre,Frede Blaabjerg,Steffan Hansen.Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier[J].IEEE Transactions on Industry Applications.2005,41(5):1281-1291.
    [156]武健,徐殿国,何娜.并联有源滤波器输出LCL滤波器研究[J].电力自动化设备.2007,27(1):17-20.
    [157]陈希有,颜斌,徐殿国等.变频器输出滤波器的模糊优化设计[J].中国电机工程学报.2003,23(8):71-75.
    [158]陈希有,颜斌,邓辉等.变频器输出滤波器的灵敏度分析与优化设计[J].哈尔滨工业大学学报.2003,35(8):966-969.
    [159]欧阳帆.基于平衡变压器的三相—单相变换供电方式研究[D].长沙:湖南大学博士学位论文,2008.
    [160]李达义.基于基波磁通补偿的串联混合型有源滤波器研究[D].武汉:华中科技大学博士论文,2005.
    [161]高大威.电力系统谐波、无功和负序电流综合补偿的研究[D].北京:华北电力大学博士论文,2001.
    [162]常鹏飞,曾继伦,王彤等.三相四线有源电力滤波器直流侧电压控制方法[J].电力系统自动化.2005,29(8):75-78.
    [163]梅军,郑建勇,胡敏强等.基于单周控制的三相四线制APF直流侧电压控制的分析与研究.电力系统保护与控制.2008,36(13):21-25.
    [164]胡凯,申群太.基于微粒群算法优化PI参数的单相有源电力滤波器.电力系统保护与控制.2009,37(18):51-56.
    [165]陈众,徐国禹,颜伟等UPQC直流侧电容电压弱控制策略研究.电工技术学报.2004,19(1):49-53.
    [166]魏文辉,刘文华,倪镭等.链式STATCOM直流侧电容稳态分析及参数设计[J].电力系统自动化.2004,28(4):28-30.
    [167]王仲鸿,姜齐荣,沈东.关于新型静止无功发生器模型参数及暂态控制模型选择的讨论[J].电力系统自动化.1999,23(24):43-45.
    [168]王良.三相不平衡有源无功与高次谐波补偿器的研究[D].北京:北方交通大学博士学位论文,1991.
    [169]罗世国.有源电力滤波器的研究[D].重庆:重庆大学博士学位论文,1993.