无人机光电载荷视轴稳定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人机光电载荷视轴稳定系统作为无人机的“眼睛”,对于空中侦察、监视等起着举足轻重的作用。该系统主要完成视轴稳定、目标跟踪两种功能,系统的核心与难点是视轴稳定的控制技术;作为系统的核心元件,MEMS惯性器件具有体积小、成本低、测量范围大、可靠性高和易于数字化等优点,适合用于小型无人机对载重较为敏感的场合。
     对于小型无人机光电载荷视轴稳定系统而言,由于空中环境的复杂性,如何有效地隔离载体的机动及外界的扰动并对光电稳定平台实现高精度、高可靠、高稳定的控制显得尤为重要。传统的控制方式建立在被控对象模型参数固定的基础上,但是在实际情况中,被控对象的参数如转动惯量、摩擦力矩等并不是保持不变的,如何采取有效的鲁棒控制方式以提高系统的视轴稳定精度及跟踪性能显得迫切需要。
     论文首先对无人机光电载荷视轴稳定系统进行了系统分析与数学建模。针对系统设计中考虑的主要问题进行了详细分析,包括系统控制器的软硬件方案,稳定轴数目的选取与运动分析,鲁棒控制必要性分析,MEMS陀螺去噪与温度补偿。针对MEMS陀螺精度受环境温度影响的问题,提出了一种MEMS陀螺全温度标定与补偿方法,得到优化的MEMS陀螺分段误差补偿模型并进行相应的补偿。实验结果表明,该方法能有效地解决MEMS陀螺温度补偿问题。
     在分析系统各环节模型不确定参数的基础上,针对三轴光电载荷视轴稳定系统的参数不确定性,提出了将定量反馈(Quantitative Feedback Theory,简称QFT)理论设计视轴稳定系统鲁棒控制器的策略。给出了无人机光电载荷视轴稳定系统的QFT模型并进行了分析,将QFT控制器与PID控制器的性能进行了比较。仿真结果表明,QFT控制器的性能要优于传统的PID控制器。采用QFT设计方法,可以解决控制系统在参数变化导致性能指标下降的情况,具有很强的鲁棒性。
     针对光电载荷视轴稳定系统的多输入多输出(MIMO)特点,进行了MIMO系统QFT控制方法研究,提出了一种MIMO系统QFT控制器的解耦及简化设计方法。首先将MIMO系统的控制问题转化为一系列MISO子系统,并采用近似不相关方法减少MISO子系统个数,在保证系统性能不受影响的前提下,简化了MIMO系统的QFT设计过程。推导过程与结果表明,该方法对于解决多输入多输出系统的QFT控制问题非常有效。
     在定量反馈理论控制器设计的基础上,提出了一种QFT/H∞组合控制器的设计方法。分析了QFT与H。的区别与关系,给出了QFT/H∞组合控制器设计的详细步骤,并且将QFT/H∞组合控制器的性能与传统QFT控制器进行了比较。仿真结果表明,该组合方法组合控制器具有更理想的性能指标,即具有更短的调节时间和更小的稳态误差。除了比传统QFT设计方法方便之外,还结合了两种控制方法的优点。
     论文最后进行了变参数条件下系统的闭环仿真,仿真结果表明,传统的控制器超调量、稳态误差较大,而QFT控制器可保证系统在模型参数摄动、负载扰动时具有较强的鲁棒性,且调节时间较短,超调很小,满足设计所要求的性能指标。
As the eye of unmanned aerial vehicle, line-of-sight stabilization system of opto-electronic load is significant in the task of aerial scouting. It has two main functions, one of them is line-of-sight stabilizing and the other is object tracking. Focus of the system is the control technology of line-of-sight stabilization. As the key device of the system, MEMS inertial device is used for the mini-type UAV because it has a lot of advantages such as tiny volume, low cost, large measurement range, better reliability and easy to be digitalized.
     Because of the complex aerial environment, it is very important that how efficiently to isolate the shaking and disturbing and realize high accuracy, high reliability, high stability control to the optoelectronic stabilized platform. The traditional control method is based on the hypothesis that all of the parameters are constant, but in fact some of the parameters of controlled object will change such as the gimbal's moment of inertia and the friction moment. It is very important to enhance the system's stabilizing precision and tracking performance by adopting efficient robust control.
     Firstly, Line-of-sight stabilization system of opto-electronic load for UAV is analyzed and the mathematic model is built. The main problem for system design is analyzed, which includes the hardware and software plan for the system controller, the choosing of stabilizing axis number and scheme, the movement analysis of stabilized axis, the necessity analysis of robust control and the denoising and temperature compensation for MEMS gyro. According the problem of environment temperature influencing on MEMS gyro, A whole temperature range demarcating and compensation method is brought up, the temperature error is compensated after the optimal subsection error compensation model analysis. The test indicates that this method can solve the MEMS gyro temperature compensation problem effectively.
     Basing on the analysis of uncertain parameters of system model, According to the parameters uncertainty of three-axis line-of-sight stabilization system of opto-electronic load, A Quantitative Feedback Theory method is brought forward to design the robust controller for line-of-sight stabilization system. The QFT model of line-of-sight stabilization system of opto-electronic load for UAV is analyzed, the performance of QFT controller and PID controller is compared. The simulation result indicates that performance of QFT controller is better than PID controller. QFT control method has good robustness, and it can solve the problem of performance decreasing which occurs under the situation of parameters changing in the control system.
     According the characteristic of multi-input and multi-output for the line-of-sight stabilization system of opto-electronic load, the MIMO Quantitative Feedback Theory control method is studied, A decoupling and simplifying design method is put forward for the QFT controller of MIMO system, which firstly converts the MIMO system control problem to a series of MISO sub-system. Secondly adopts basically noninteracting method to reduce the number of MISO sub-system. Thus the QFT design for MIMO system is simplified and has no effect on the system performance. The analysis result indicates that this method is effective for solving the problem of controller design for MIMO system.
     Basing on the QFT controller analysis and design, a combined method is put forward which integrate the Quantitative Feedback Method and H∞control method. The difference and relationship between these two methods is analyzed and the detail procedure of integrated controller design is given, The performance result is compared between the QFT controller and the integrated controller, the simulation indicates that this integrated method has more ideal performance than QFT method, it has shorter adjust time and less steady-state error. Not only it is more convenient, but also can it combine the advantages of two kinds of different control methods.
     Finally the closed-loop simulation for the system is done under the condition of variant parameters, the simulation result indicates that traditional controller has larger overshoot and steady-state error, QFT controller has better robustness performance under the condition of model parameters changing and load disturbing, the more important thing is that QFT controller has shorter adjust time and less overshoot, it can fit the performance request of system effectively.
引文
[1]Masten, MichaelK andSebesta, HenryR.Line-Of-Sight Stabilization/Tracking Systems: Proceedings of the AmericanControl Conference.1987:p1477-1482.
    [2]C.J.Cooper, Hamilton.Sensor line-of-sight stabilization [A].SPIE Vol.1498,1991:p39-51
    [3]YAAKOV OSHMAN, Mini-UAV Attitude Estimation Using an Inertial Stabilized Payload, IEEE TRANSACTIONS ON AEROSPACE AND EIECTRONIC SYSTEMS VOL. 35, NO.4 OCTOBER 1999.
    [4]杨运桃,李开生.舰载无人机战术控制系统研究[J].舰船电子工程,2006,(2).
    [5]张秉华,张守辉.光电载荷视轴稳定系统[M].电子科技大学出版社,成都,2003.4.
    [6]宋丰华.现代空间光电系统及应用[M].国防工业出版社,2004.
    [7]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].东南大学,2006.
    [8]贾平,张葆.航空光电侦察平台关键技术及其发展[J]光学精密工程,2003,(01).
    [9]贾福利.平台稳定回路数字控制器的研究[D].哈尔滨工业大学,2006.
    [10]赖小明,刘洁瑜.光纤陀螺稳定平台调平系统设计[J].计算机测量与控制,2007年03期.
    [11]吕继宇,张绚丽,雷宏.机载SAR天线稳定平台的DSP数字控制器设计[J].微计算机信息,2006年29期.
    [12]谭鸽伟,邓云凯,张志敏.DSP在天线平台控制系统中的应用[J].微计算机信息,2005,(25).
    [13]沈宏海,刘晶红,张葆.航空光电成像平台角位置陀螺和角速率陀螺的稳定效果分析[J].光学精密工程,2007,(08).
    [14]胡浩军,毛耀,马佳光.稳定平台对基座角速率扰动的抑制能力[J].电机与控制学报,2007,(01).
    [15]贾平,张葆,孙辉.航空成像像移模糊恢复技术[J].光学精密工程,2006,(04).
    [16]罗诗途,王艳玲,张玘.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,(01).
    [17]杨常清,王孝通,徐晓刚.基于尺度变化的图像灰度投影算法[J].光电工程,2007,(09).
    [18]孙辉,张葆,刘晶红,李仕,李志强.航空光电成像电子稳像技术[J].光学精密工程,2007,(08).
    [19]朱慧.智能交通系统中基于TMS320DM642的电子稳像算法实现[J].电脑知识与技术,2007,(05).
    [20]刘明,赵跃进,周渝斌.电子稳像中的运动补偿矢量处理方法的研究[J].光学技术,2005,(03).
    [21]Zhang Zhiyong,Fan Dapeng,Sheng Dejun.The Design of Antenna Stabilization System on Motion Vechickes,Based on Micromachined Inertial Sensors[A].Proceedings of the second international conference on PRECISION ENGINEERING AND NANO TECHONOLOGY,ICPN'2002:p235-237
    [22]Zhang Zhiyong,Fan Dapeng,Ming Dexiang.MEMS Gyros and Its Application in Sattelite Antenna Stabilzation System on Motion Carriers[A].ISTM/2005,6th International Symposium on Test and Measurement,Vol.3:p2120-2123
    [23]李新刚,袁建平.微机电陀螺的发展现状[J].力学进展,2003,8(3):p289-301.
    [24]张文博,范大鹏,张智永.光电稳定跟踪装置中微机电陀螺应用研究[J].光学精密工程.2006.14(4):p689-696.
    [25]Dr. Joel G. Hanse, Honeywell MEMS Inertial Technology&Product Status, Honeywell Defense& Space Electronic Systems,2003
    [26]K. James Held& Brendan H. Robinson,TIER II Plus Airborne EO Sensor LOS Control and Image Geolocation, Hughes Aircraft Company,IEEE,1997
    [27]J.M. Hilkert,A comparison of inertial line-of-sight stabilization techniques using mirrors, Acquisition, Tracking, and Pointing XVIII, edited by Michael K. Masten, Larry A. Stockum, Proceedings of SPIE Vol.5430 (SPIE, Bellingham, WA,2004)·
    [28]Kennedy, Peter J.Kennedy, Rhonda L.Direct versus indirect Line-of-sight stabilization[J].IEEE Transactions on Control Systems Technology,Vol.11,n1,2003:p3-15
    [29]石佼,李晋惠.电子稳像技术算法研究[J].国外电子测量技术,2007,(03).
    [30]姬伟,李奇.陀螺稳定平台伺服系统非线性特性补偿控制[J].电气传动,2005年07期.
    [31]郑翔,黄一,吕俊芳.机载光电跟瞄平台三轴环架模型的建立[J].飞机设计2003,(04).
    [32]Lee,Ho-Pyeong;Hwang,Hong-Yeon.Two-degree-of-freedom robust control of a seeker scan loop system[R].AIAA.A96-35789
    [33]柳朝军,廖晓钟.捷联式三轴稳定跟踪系统的运动学建模与仿真[J].北京理工大学学报,2000,20(3):313-316.
    [34]田自耘,郭素云.计算机辅助陀螺稳定系统分析与设计[M].哈尔滨工业大学出版社,哈尔滨,1991.7.
    [35]王承瑶.陀螺稳定系统[M].国防工业出版社,北京,1985.6.
    [36]郭富强,于波,汪叔华.陀螺稳定装置及其应用[M].西北工业大学出版社,西安,1995.12.
    [37]王明佳,金光,钟平,张炜.实用电子稳像技术原理及方法[J].光机电信息2003(2):29-30.
    [38]赵红颖,金宏,熊经武.电子稳像技术概述[J].光学精密工程,2001,(04).
    [39]Ho Dong Seok,Joon Lyou.Digital image stabilization using simple estimation of the rotational and translational motion[A].SPIE Vol.5810,2005:p170-181
    [40]Ping Zhong.Research on methods of motion estimation and compensation in electronic image stabilization technique[A].SPIE Vol.5637,2005:p182-188
    [41]Jenkins,Steven T.Hilkert,J.M.Line of sight stabilization using imamge motion compensation [A].SPIE Vol.1111,1989:p98-115
    [42]Vella,F;Castorina,A;Mancuso,M;Messina,G.Digital image stabilization by adaptive block motion vectors filtering[J].IEEE Transactions on Consumer Electronics,2002:p796-801
    [43]沈宏海,刘晶红,贾平,刘洵,李兴华.摄像稳定技术[J].光学精密工程,2001,(02)
    [44]孙辉.快速灰度投影算法及其在电子稳像中的应用[J].光学精密工程,2007年03期.
    [45]李博,王孝通,杨常青,金良安.电子稳像的灰度投影三点局域自适应搜索算法[J].光电工程,2004,(09).
    [46]车宏,卢广山.模糊控制在机载光电跟踪系统中的应用[J].电光与控制,2001,84:15-20.
    [47]Krishna Moorty, J.A.R.Marathe.Fuzzy controller for line-of-sight stabilization system[J]. OpticalEngineering,v43,n,June,2004,p 1394-1400
    [48]Wei Ji, Qi Li, Design Study of Adaptive Fuzzy PID Controller for LOS Stabilized System, Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06)
    [49]耿延洛,姜长生,张宏.机载光电跟踪系统基于遗传算法的模糊控制器优化设计研究[J].南京航空航天大学学报,2001年04期.
    [50]Marathe, Rajeev. Krishna Moorty, J.A.R.Sule.Hoo control law for line-of-sight stabilization for mobile land vehicles [J].Optical Engineering,Vol 41,11,November,2002: p2935-2944
    [51]Schmitendorf,W.E.;Kao,Y.K.;Hwang,H-Y.Robust H-infinity tracking controllers for a seeker scan loop system[R].AIAA.A96-35582
    [52]黄显林,尹航.高精度陀螺稳定跟踪系统神经网络预测控制[J].系统工程与电子技术,2000,22(12):p63-65.
    [53]陈澜,王鹏,安锦文.无人侦察机目标跟踪系统控制模型[J].火力与指挥控制,2005年01期.
    [54]陈澜,吴梅,安锦文.无人侦察机目标跟踪系统鲁棒控制[J].测控技术,2005,(05).
    [55]刘向,王连明,葛文奇.用线性加速度计实现无陀螺平台稳定的理论研究[J].光学精密工程,2004年01期.
    [56]Marcel C. Algrain,Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking Systems, Second IEEE Conference on Control Applications, September 13-16,1993 Vancouver, B.C.
    [57]张智永.光电稳定伺服机构的关键测控问题研究[D].国防科学技术大学,2006.
    [58]姚秀娟,张永科,彭晓乐,刘涛.速率陀螺稳定电视导引头平台数字控制器设计[J].电光与控制,2006年03期.
    [59]张景旭,王洋.动载体光学图像视轴稳定技术[J].光电技术应用,2007年01期.
    [60]张智永,范大鹏,范世殉.光电稳定跟踪装置的控制系统设计[J].光学精密工程,2006,(04).
    [61]姬伟,李奇.陀螺稳定平台伺服系统非线性特性补偿控制[J].电气传动,2005年07期.
    [62]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].东南大学,2006.
    [63]Borghesani C, Chait Y and Yaniv O. The QFT frequency domain control design toolbox for use with Matlab[Z]. Terasoft, Inc.,2003.
    [64]Zhao Yongdong. An H, formulation of the QFT approach to robust performanceunder significant uncertainties[Z]. Ph. D. Texas A&M University,1993.
    [65]Moreno, Carlos J, Alfonso B ect. Improvement s on the computation of boundaries in QFT[J]. International Journal of Robust and Nonlinear Control,2006,16 (12):575-597.
    [66]王增会,陈增强,孙青林.定量反馈理论发展综述[J].控制理论及应用,2006,23(3):403-410.
    [67]F N Bailey, J W Helton, O M erino. Alternative Process in Frequency Domain Design of Single Loop Feedback Systems with Plant Uncertain. Proceeding of the American Control Conference,1994,1:345-349
    [68]Y D Zhao, Tayasurige, Suhada. Robust Stability of Close-Loop Systems Resulting from Nonsequential-MIMO-QFT Design. Journal of Dynamic System s, Measurement, and Control,1996,118 (12):753-756
    [69]J M Rodrigues, Y Chait, C V Hollet. An Efficient Algorithm for Computing QFT Bounds. Journal of Dynamic Systems, Measurement, and Control,1997,119 (9):548-552
    [70]S A Snell, P W Stout. Flight Control Law Using Nonlinear Dynamic Inversion Combined with Quantitative Feedback Theory. Journal of Dynamic Systems, Measurement, and Control,1998,120 (7):208-215
    [71]S A Snell, P W Stout. Quantitative Feedback Theory with A Scheduled Gain for Full Envelope Longitudinal Control. Journal of Guidance, Control, and Dynamics,1996,19 (5):1095-1101
    [72]C H Yau, J E Gallagher. A Model Reference Quantitative Feedback Design Theory with App lication to Turbo machinery. International Journal of Robust and Nonlinear Control, 1994,4(1):181-210
    [73]M W Logan, M Pachter. Model-Based Fuzzy Logic Control of A Nonlinear Plant. International Journal of Robust and Nonlinear Control,1997,7 (6):643 - 660
    [74]C H Houpis, R R Sating. MIMO QFT CAD Package (Version3). International Journal of Robust and Nonlinear Control,1997,7 (6) 533-550
    [75]G Daniel, Benshabat, C. Yossi. Application of Quantitative Feedback Theory to A Class of Missiles. Journal of Guidance, Control, and Dynamics,1993,16 (1):47-52
    [76]S N Phillips, M Pachter. A QFT Subsonic Envelope Flight Control System Design. NA ECON (1995):537-544
    [77]C H Houpis, R R Sating, S Rasmussen, S Sheldon. Quantitative Feedback Theory Technique and Applications. International Journal of Control,1994,59 (1):699-706
    [78]S J Rasmussen, C H Houpis. Development, Implementation and Flight Test of A MIMO Digital Flight Control System for An Unmanned Research Vehicle Designed U sing Quantitative Feedback Theory. International Journal of Robust and Nonlinear Control, 1997,7 (6) 629-642
    [79]R A Hess, P J Gorder. Quantitative Feedback Theory Applied to the Design of A Rotorcraft Flight Control System. Journal of Guidance, Control, and Dynamics,1996, 16 (4):748-753P
    [80]Rossret E David. Design of Robust Quantitative Feedback Theory Controllers for Pitch Attitude Hold System s. Journal of Guidance, Control, and Dynamics,1994,17 (1) 217-218P
    [81]M Pachter, C H Houpis, D W Trosen. Design of An Air-to-Air Automatic Flight Control System Using Quantitative Feedback Theory. International Journal of Robust and Nonlinear Control,1997,7 (6):561-580
    [82]Y Chait, M S Park, M Steinbuch. Design and Implementation of A QFT Controller for A Compact Disc Player. Proceeding of the American Control Conference,1994,3:3204-3208
    [83]A E Bentley. Quantitative Feedback Theory with Applications in Welding. International Journal of Robust and Nonlinear Control,1994,4 (1):119-160
    [84]O Yaniv. Robustness to Speed of 4WS Vehicles for Yaw and Lateral Dynamics. Vehicle System Dynamics,1997,27(4):221-234
    [85]C H Houpis, K Kang. Modeling and Control of Electro-Hydro static Actuator. International Journal of Robust and Nonlinear Control,1997,7 (6):591-608
    [86]G K Hamilton, JrM A Franchek. Robust Controller Design and Experimental Verification of I. C. Engine Speed Control. International Journal of Robust and Nonlinear Control, 1997,7 (6):609-628
    [87]Marcel Sidi. A Combined QFT/H ∞ design technique for TDOF uncertain feedback systems[A].Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa[C].Israel-J une 28-30,1999.
    [88]J W Lee, Yossi Chait, Maarten Steinbuch. On QFT tuning of multivariable μ controllers[J]. Automatica,2000,36:1701-1708.
    [89]秦永元.国际惯性器件发展现状和趋势[J].航空制造技术,2008年第9期.
    [90]Weinberg M., Bernstein J., Cho S., King A.T., Kourepenis A., Maciel P, "A Micro machined Comb-Drive Tuning Fork rate Gyroscope ", Proceedings of the Institute of Navigation 49th Annual Meeting, Cambridge, MA, June 21-23,1993, P595-602.
    [91]Helsel M., Gassner G., Robinson M. and Woodruff J.A., "A Navigation Grade Micro-Machined Silicon Accelerometer", Proceedings IEEE 1994 Position, Location and Navigation Symposium, Las Vegas, NV, April 11-15,1994, P 51-58.
    [92]Warren K.,"Electro statically Force-Balanced Silicon Accelerometer", NAVIGATION, Journal of The Institute of Navigation,Vol.38,No.1,1991, P91-99.
    [93]Kourepenis A., Petrovich A. and Weinberg M., "Low Cost Quartz Resonant Accelerometer for Aircraft inertial Navigation", Proceedings of the IEEE International Conference on Solid State Sensors and Actuators, June 24-28,1991
    [94]Davis B.S., Using low-cost MEMS accelerometers and gyroscopes as strapdown IMUs on rolling projectiles, Aerospace& Electronics Systems Society,1998, P594-601
    [95]Jun L., Kejie L., Summarize of research based on MIMU integration storage test system, Proceedings of the International Symposium on Test and Measurement,2004,P61-63.
    [96]胡云中.陀螺稳定平台漂移误差参数的辨识方法研究[J].航天控制,2004年02期.
    [97]Ashokaraj,I.;Silson,P.;Tsourdos,A.Application of an extended Kalman filter to multiple low cost navigation sensors in wheeled mobile robots[A].Proceedings of IEEE on Sensor,s,2002,Vol.2:p1660-1664
    [98]Guo JiChang;Teng Jianfu;Li Qiang;Zhang Yaqi.The de-noising of gyro signals by bi-orthogonal wavelet transform[A].IEEE CCECE 2003.Canadian Conference on Electrical and Computer Engineering,2003,Vol.3:p1985-1988
    [99]刘鲁源,陈玉柱.基于小波变换的陀螺漂移建模与实验研究[J].中国惯性技术学报,2004,12(1):61-65页
    [100]万彦辉.小波分析在陀螺信号滤波中的研究[J].压电与声光.2005,27(4):p455-457.
    [101]李建利,房建成.改进的MEMS陀螺静态误差模型及标定方法[J].宇航学报,2007,28(6):1614-1618页.
    [102]王淑娟,吴广玉.惯性器件温度误差补偿方法综述[J].中国惯性技术学报,1998,6(3):44-49.
    [103]SHCHEGLOV K, EVANS C, GUTIERREZ R, et al. Temperature dependent characteristics of the JPL silicon MEMS gyroscope[C] IEEE Aerospace Conference Proceedings,Montana,USA,2000:403-411.
    [104]Liu R Y, Adams G, Lindquist E, Atherton L. Test results from a tactical grade IMU using fiber optic gyros and quartz accelerometers [C] Proceedings of the 1996 IEEE Position, Location and Navigation Symposium, Atlanta, USA,1996:42-48.
    [105]Michael A H, Jose A R, Jin S. Dynamic attitude measurement sensor and method. [P].USA,2002,US Patent:6 421 622.
    [106]郭鹏飞,任章,杨云春.一种低精度惯性测量单元的精确标定技术[J].中国惯性技术学报,2007,15(1):20-23.
    [107]田蔚风,金志华.陀螺漂移模型变量的最优选择[J].中国惯性技术学报,1996,4(2):22-26.
    [108]李杰,洪惠惠,张文栋MEMS微惯性测量组合标定技术研究[J].传感技术学报,2008,21(7):1169-1173
    [109]Z F SYED, P AGGARWAL, C GOOD ALL. A new multi-position calibration method for MEMS inertial navigation systems[J]. Measurement Science and Technology,2007, No.18:1897-1907
    [110]Balas, G. J., J. C. Doyle, Glover, K., Packard, A., and Smith, R., u-Analysis and Synthesis Toolbox For Use with MATLAB, Terasoft, Inc.,2001.
    [111]Borghesani, C., Chait, Y., and Yaniv, O., The QFT Frequency Domain Control Design Toolbox For Use with MATLAB, Terasoft, Inc.,2001.
    [112]Doyle, J. C., K. Glover, P.P. Khargonekar, and B. A. Francis, "State-space solutions to standard H2 and H∞ IEEE Trans. Automatic Control, Vol.AC-34, No.8, pp.831-847, 1989. Also see 1988 American Control Conference,Atlanta, June 1988.
    [113]Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to H∞ Control" Int. J. Robust and Nonlinear Control, Vol.4, pp.421-448,1993.
    [114]Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M., LMI Control Toolbox For Use with MATLAB, Terasoft, Inc.,1995.
    [115]Horowitz, I. M., Synthesis of Feedback Systems, Academic Press, New York,1963.
    [116]Horowitz, I. M., and Sidi, M., "Synthesis of Feedback Systems with Large Plant Ignorance for Prescribed Time-Domain," J. of Control, Vol.16, No.2, pp.287-309,1972.
    [117]Horowitz, I. M., Quantitative Feedback Design Theory (QFT), QFT Publishers, Colorado,1992.
    [118]Houpis, C. H., and Rasmussen, S. J., Quantitative Feedback Theory Fundamentals and Applications, Marcel Dekker, Inc., New York,1999.
    [119]Kuo, B. C., Automatic Control Systems,7th Edition, Prentice Hall,1995.
    [120]Lin, T. C., Wang, C. H., Teng, C. C., and Lee, T. T., "Design of Sampled-Data Systems with Large Plant Uncertainty Using Quantitative Feedback Theory," Int. J. of Systems Science, Vol.32, No.3, pp.273-285,2001.
    [121]Maciejowski, J. M., Multivariable Feedback Design, Addison-Wesley Publishing Company, Massachusetts,1989.
    [122]Morris, K. A., Introduction to Feedback Control, Academic Press, Massachusetts,2001.
    [123]Sidi, M., "A Combined QFT/Hoo Design Technique for TDOF Uncertain Feedback Systems," Int. J. Control, Vol.75, No.7, pp.475-489,2002.
    [124]Wang, B. C., Synthesis of Multiple Loops Control System, Hsin Jyh Book Company, Taipei,1993.
    [125]Yaniv, O., Quantitative Feedback Design of Linear and Nonlinear Control Systems, Kluwer Academic Publishers, Massachusetts,1999.
    [126]Zhao, Y., and Jayasuriya, S., "An H∞ Formulation of Quantitative Feedback Theory,' Journal of Dynamic Systems, Measurement, and Control, Vol.120, pp.305-313,1998.
    [127]Zhou, K., and J. C. Doyle, Essentials of Robust Control, Prentice Hall, Upper Saddle River, New Jersey,1998.
    [128]Zhou, K., J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, New Jersey,1998.