高轨航天器中GPS弱信号处理及自主定轨技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS自主定轨技术可以为各类中低轨航天器提供实时的、高精度的轨道数据,至于基于GPS的高轨道航天器自主定轨技术目前国际上尚处于探索之中,有待进一步深入研究。因此开展高轨道航天器GPS自主定轨技术的研究,对于改善定轨精度,提高航天器自主导航能力具有重要的现实意义和应用价值,也为将来的实际应用打下理论基础。本文主要从基于GPS的高轨航天器自主定轨技术出发,对高轨道GPS信号特征、高轨道GPS捕获及跟踪技术、基于GPS的地球静止轨道和高偏心率轨道技术进行了研究,主要工作如下:
     研究了高轨道上GPS信号的特征。本文详细研究了轨道参数中的轨道高度、轨道偏心率、轨道倾角及接收机灵敏度对GPS信号的可见性、动态性及定轨精度的影响。仿真分析表明,在航天器运行轨道的近地点处,GPS信号强度较强、可见性好、动态性较高、定位精度高;在航天器运行的远地点处,信号强度微弱、可见性较差、动态性较低、定位精度差。在航天器运行轨道确定的情况下,为提高可见性需提高接收机的灵敏度。
     为捕获高轨GPS信号,提出了一种多普勒频移辅助的BAP(Block Averaging Pre-processing)算法。该算法根据航天器和GPS星的轨道及速度信息计当前的多普勒频移值,用该估计值对本地复制C/A码进行码补偿,以降低信号动态性的影响;围绕当前估计值±10KHz的范围搜索载波多普勒频移值,以降低捕获所需的时间。仿真结果表明,该算法可捕获高动态条件下载噪比低至21dB-Hz的GPS信号。
     为跟踪高轨位置处高动态、微弱GPS信号,提出了一种自适应两阶段改进平方根扩展卡尔曼滤波算法(AT-MSREKF)。现有的两阶段扩展卡尔曼滤波算法(AT-EKF)可以很好的解决高动态环境下伪距率及伪距率变化率统计参数不确定性的问题但当观测结果存在较大误差以及滤波过程中协方差阵的不正定将会导致定位精度不高,甚至会导致滤波发散。本文针对上述问题,提出采用在前一状态时刻线性化非线性方程,从而避免观测误差较大对滤波的影响,采用平方根卡尔曼滤波方法有效的防止滤波发散的情况。仿真结果表明在高轨位置处AT-MSREKF算法明显提高了跟踪的精度。
     本文针对大规模样本数据、模型不稳定、模型输入输出均存在噪声及在线实时更新样本计算量大等问题,提出了一种基于核模糊聚类在线NRLFSVR算法。该算法将对高轨航天器定轨中的卡尔曼滤波器进行自适应调整。仿真结果表明该算法相对于基于聚类动态LSSVM算法可有效提高计算的精度,但耗费时间稍微增多。
     针对地球静止轨道(GEO),因动态性不高,只是所接收信号较微弱,提出一种自适应积分滤波的GEO定轨算法。对高偏心率轨道(HEO)航天器,提出一种HEO轨道定轨策略,该策略利用基于核模糊聚类在线NRLFSVR算法来自适应的修正卡尔曼滤波器的过程噪声与观测噪声方差,以达到滤波稳定的目的。仿真结果表明上述两种方案可有效的为GEO和HEO轨道定轨。
Autonomous orbit determin ition with GPS could provide the real time and high precision orbit data of LEO spacecraft. High earth orbit spacecraft's autonomous orbit determination with GPS has been in research internationally, it needs to further study. So to start the research of high earth or(?)it spacecraft's orbit determination with GPS can improve the precision of orbit determination, has important practical significance and high application value. It also will be the theoreti(?)al basis for future application. Based on high earth orbit determination with GPS, this article introduces signal performance of GPS signal on the HEO, GPS acquisition and tracking, the technique for using GPS to determining HEO and GEO orbits. The main work is as follows:
     This article analsis GPS sig(?)al characteristics in high orbit. This paper studies orbit altitude, orbit eccentricity, orbit inclination and the GPS receiver's sensitivity how to influencing GPS signal charactrist(?)s. According to the simulation result, at the perigee of the orbit, receiving signals has high (?)arrier to noise ratio and more visible star number, high dynamic, and the higher precisio(?) at the apogee of the orbit, receiving signal is weak, visibility is bad, the dynamics is no(?)better than the ground users, positioning accuracy is poor. Under the fixed number of orbit,(?)n order to improve the receiver of capture and tracking performance, it needs to improve the sensitivity of the receiver.
     In order to acquire the weak and high dynamic GPS signals in high earth orbit, this paper introduces a Doppler frequency shi(?)t assisted BAP algorithm. According to the spacecraft and GPS star orbits and velocity inforn ation calculated the orbits of the rough value of Doppler frequency shift, use this value c(?)py local C/A code for yards compensation, lower the influence of dynamic; On the rough value of Doppler frequency shift±10KHz around on carrier Doppler frequency shift sea. ch, effectively reduced the time that required to acquire. The simulation results show that th s algorithm can acquire GPS signal with earrier to noise ratio to 21dB-Hz in high dynamic c(?)nditions.
     For tracking GPS signals in (?)igh orbit, this article introduces an adaptive two stages improved square root extended Ka(?)nan filtering algorithm. The existing two stage extended kalman filter algorithm(AT-EKF) can solve the problem when pseudorange rate and pseudorange rate statistical parameter uncertainty change, but when there is large error in the observations and process covariar ce matrix is not positive definite will lead to low positioning accuracy, and even cause filtering divergence. Considering the above problems, this paper proposes using the last moments state to linear the nonlinear equations, to avoid the large observation error to influence of filtering, and using the method of square root filter Kalman. filtering is effective to prevent the filter divergence. This paper deduces formula of AT-MSREKF filtering algorithms. Simulation results show that AT-MSREKF algorithm obviously improved tracking precision in high dynamic conditions
     For processing large amount datas, the noise problem of input and output data, the large amount of calculation to the real-time updating sample, this article introduces an fuzzy clustering method based on the dynamic online NRLFSVR algorithm. It will be used for adapting the kalman filter. The simulation results show this algorithm can improve the calculation precision, but needs a little more time-cosuming.
     For the geostationary orbit (GEO), the received GPS signal is weak but the dynamic is not high, so this article introduces an adaptive interger filter for determining GEO orbit. For HEO orbit, this article introduces an HEO orbit determining method. This method uses fuzzy clustering method based on the dynamic online NRLFSVR algorithm to adjust noise of process and observation, in order to achieve the purpose of filter stability. The simulation results show that the above two kinds of schemes can determining GEO and HEO orbit effective.
引文
[1]郗晓宁,王威.近地航天器轨道基础.国防科技大学出版社,2003
    [2]刘林.航天器轨道理论.国防工业出版社.北京.
    [3]秦红磊,梁敏敏.基于GNSS的高轨卫星定位技术研究.空间科学学报,2008,28(4):316-325页
    [4]刘海颖,王惠南.基于GPS的中高轨道航天器定轨研究.空间科学学报,2005,25(4):293-297页
    [5]孙宝祥,黎涌,高益军.GPS自主定姿定轨技术在新一代大型静止轨道卫星上的应用.航天控制,1999,3:20-25页
    [6]韩键,刘岩,原洪峰.星载GPS地球静止轨道卫星自主定轨技术.测绘学院学报,2005,22(3):166-168页
    [7]余江林,柳东升.卡尔曼滤波在利用GPS对GEO星定轨中的应用.全球定位系统,2000,25(3):26-29页
    [8]胡小平.自主导航理论与应用.国防科技大学出版社.湖南,长沙.2002
    [9]John T, Collins, Robert T. Conger. Mans:Autonomous Navigation and Orbit Control for Communications Satellites. AIAA International Communications Satellite Systems Conference 15th. San Diego, CA:American Institute of Aeronautics and Astronautics. 1438-1448 P
    [10]N Barbour. Inertial Components-Past, Present, and Future.2001 AIAA Guidance, Navigation and Control Conference. Montreal, Canada:American Institute of Aeronautics and Astronautics.2001.
    [11]Gounley R., White, R. and Gai, E. Autonomous Satellite Navigation by Stellar Refraction. Guidance and Control Conference 1983. American Institute of Aeronautics and Astronautics.1983:359-367 P
    [12]郝燕玲,陈实如,徐定杰.陆基增强/双星定位组合系统.哈尔滨工程大学学报,2002,23(1):47-51页
    [13]Moreau M C. GPS receiver architecture for autonomous navigation in high earth orbits. Department of Aerospace Engineering Sciences, University of Colorado at Boulder,2001.
    [14]Elliott D Kaplan, Christopher J Hegarty. Understanding GPS Principles and Applications (Second Edition). Artech House, INC,2006.
    [15]William Banford, Luke Winternitz. Spacecraft Navigator-Autonomous GPS Positioning at High Earth Orbits. GPS WORLD,2006.
    [16]Michael C Moreau, Edward P Davis, J Russell Carpenter, David Ketbel, George W Davis, Penina Axdtad. Results from the GPS flight experiment on the high earth orbit AMSAT-OSCAR 40 spacecraft. ION GPS 2002. Portland.2002:122-133 P
    [17]Simpson, J., et al., Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver. Proceedings of the Institute of Navigation GPS 1999 Conference, Nashville, TN, September 1999.:865-873P
    [18]Wu, S.C., T.P. Yunck, S.M. Lichten, B.J. Haines, R.P. Malla, "GPS Based Precise Tracking of Earth Satellites from Very Low to Geosynchronous Orbits," National Telesystems Conference,1992.
    [19]Kronman J D et al. Experience using GPS for orbit determination of a geosynchronous satellite. In:Proceedings of the Institute of Navigation GPS 2000 Conference, Salt Lake City:2000:1622-1626 P
    [20]余江林,刘东升.利用GPS对地球静止轨道卫星定轨的可行性.空间科学学报,2000,(4):36-40页
    [21]俞朔春,高益军.基于GPS的静止轨道卫星自主定轨技术研究.航天控制,2005,23(4):35-40页
    [22]贺凯飞,徐天河.基于Kalman滤波的GEO卫星运动学定轨.大地测量与地球动力学.2009,29(6).109-112P
    [23]Jorgensen P. Autonomous Navigation of Geosynchronous Satellites Using the NAVSTAR Global Positioning System National Telesystems Conference, Galveston,TX,1982.
    [24]Eissfeller B, O Balbach, U Rosbach. GPS Navigation on the HEO Satellite Mission EQUATOR-S, Results of the Feasibility Study. Proceedings of the Institute of Navigation GPS 96 Conference, Kan sas City, MO,1996:1331-1340 P
    [25]Ferrage P, J L Issler, G. Campan, J C Durand. GPS Techniques for Navigation of Geostationary Satellites. Proceedings of the Institute of Navigation GPS 95 Conference, Salt Lake City, UT, September 1995:257-268 P
    [26]Potti J, P Bernedo, APasetti. Applicability of GPS-based Orbit Determination Systems to a Wide Range of HEO Missions. Proceedings of the Institute of Navigation GPS 95 Conference, Salt Lake City, UT, September 1995:589-598 P
    [27]王杰娟,刁华飞,董正宏.32颗GPS卫星星座空间覆盖特性建模与仿真.航天控制.2009,27(6):52-55页
    [28]Psiaki M. L. Block Acquisition of Weak GPS Signals in a software Reciever. Proceedings of the ION GPS 2001. Salt Lake City, Utah:2838-2850 P
    [29]Gregory W Heckler, James L Garrison. Implementation and testing of an Unaided method for the acquisition of weak GPS C/A code signals. Navigation,2009,56(4),241-259P
    [30]Psiaki M L, Jung H. Extended Kalman Filter Methods for Tracking Weak GPS Signals. Proceedings of the ION GPS 2002. Portland OR:2539-2553 P
    [31]谢钢.GPS原理与接收机设计.电子工业出版社.北京,2009.
    [32]Mao WeiLung, Chen AnBang. New code delay compensation algorithm for weak GPS signal acquisition. Int J Electron Commun(AEU),2008
    [33]董叙荣,唐斌,蒋德.卫星导航软件接收机原理与设计.国防工业出版社.北京.2008
    [34]田明坤.高动态GPS接收机设计中几个关键问题的研究.北京航空航天大学.2002.
    [35]Soloviev A, Craas F V, Cunawardena A. Ixnplexnentation of deeply integrated CPS/low cost IMU for reacquisition and tracking of low CNR CPS signals. Proceedings of the National Technical Meeting of the Institute of Navigation. San Diego, USA,2004. 923-936
    [36]Gebre Egziabher D, Razavi A, Enge P, Gautier J, Puller S, Pervan B S, Akos D M. Sensitivity and performance analysis of doppler-aided GPS carrier-tracking loops. Navigation,2005,52(2):49-60
    [37]张伯川,张其善.高动态接收机的关键问题研究.电子学报,2003,31(12):1844-1846P
    [38]程乃平,任宇飞,吕金飞.高动态扩频信号的载波跟踪技术研究.电子学报,2003,31(12A).2147—2150P
    [39]向洋,胡修林.基于最大似然估计的高动态GPS载波跟踪环.电子学报.2010.38(7).1563-1567P
    [40]Miao Jianfeng, Chen Wu, Sun Yongrong, Liu Jianye. Adaptively Robust Phase Lock Loop for Low C/N Carrier Tracking in a GPS Software Receiver. Acta Automatica Sinica,2011,37(1):52-60P
    [41]Kwang-Hoon Kim, Gyu-In Jee, Jong-Hwa Song, Sung-Hyuck Sung. The adaptive combined receiver tracking filter design for high dynamic situations.203-209P
    [42]王甫红.星载GPS自主定轨理论及其软件实现.武汉大学.2006
    [43]Yoon J C, Lee B S, Choi K H. Spaceraft orbit determination using GPS navigation solutions. Aerosp. Sci. Technol.4,2000.215-221P
    [44]Son Hong Truong. A robust and self-tuning Kalman filer for autonomous spacecraft navigation[D].George Washington University,2001,8
    [45]Nesreen I. Ziedan. GNSS Receivers for Weak Signals. Boston:Artech House Publishers, 2006.
    [46]Akos D M., Normark P L, Lee J T, Gromov K G, Tsui J B Y, Schamus J. Low Power Global Navigation Satellite System(GNSS) Signal Detection and Processing. Proceedings of the ION GPS 2000, Salt Lake City, UT,2000:784-791 P
    [47]Starzyk J.A, Zhu Z. Averaging Correlation for C/A Code Acquisition and tracking in Frequency Domain. Midwest Symposium on Circuits and Systems, Fairbora, Ohio, 2001:905-909 P
    [48]Zhu Z. Averaging Correlation for Weak Global Positioning System Signal Processing. Ohio:Ohio University,2002.
    [49]D M Lin, J B Y Tsui. An Efficient Weak Signal Acquisition Algorithm for a Software GPS Receiver. ION GPS 2001,Salt Lake City, UT,2001:115-119 P
    [50]M Chansarkar, L Garin, Acquisition of GPS Signals at Very Low Signal to Noise Ratio. ION NTM 2000, Anaheim, CA,2000:731-737 P
    [51]John L. Shewfelt Robert Nishikawa, Chuck Norman, Geoffrey F. Cox. Enhanced Sensitivity for Acquisition in Weak Signal Environments through the Use of Extended Dwell Times. ION GPS 2001,Salt Lake City, UT,2001
    [52]N I Ziedan, J L Garrison. Bit Synchronization and Doppler Frequency Removal at Very Law Carrier to Noise Ratio Using a Combination of the Viterbi Algorithm with an Extended Kalman Filter. ION GPS/GNSS 2003, Portland, OR,2003.
    [53]薛文芳,邵定蓉,李署坚.GPS接收机中伪随机码快速捕获技术的研究.北京航空航天大学学报,2003(6).
    [54]孙礼,张其善.GPS.数字接收机中C/A码搜索算法与实现.北京航空航天大学学报,1998(5).
    [55]吕艳梅,井荣华,吴国庆等.基于UKF的高动态GPS信号参数估计研究.系统仿真学报,2008,20(1):169-172页
    [56]付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用.科学出版社,北京,2003.
    [57]Jee G I, Kim H S, Lee Y J, A GPS C/A Code Tracking Loop Based on Extended Kalman Filter with Multipath Mitigation. In Proceeding of ION conference GPS 2002, Portland, USA:The Institute of Navigation,2002:446-451 P
    [58]Kwang hoon kim, Jang GYU lee, Chan Gook Park. Adaptive two-stage extended Kalman filter for fault-tolerant INS-GPS Loosely Coupled system.IEEE transactions on aerospace and electronic systems,2009,45(1):125-137 P
    [59]Izadpanah A, GPS Multipath Parameterization using the Extended Kalman Filter and a Dual LHCP/RHCP Antenna, In Proceedings of the ION GNSS 2008. Savannah, GA, USA:The Institute of Navigation,2008:689-697 P
    [60]Lakhzouri A, Lohan E S, Hamila R, Extended Kalman Filter Channel Estimation for Line-of-Sight Detection in WCDMA Mobile Positioning. EURASIP Journal on Applied Signal Processing,2003:1268-1278 P
    [61]Iltis R A, An EKF-Based Joint Estimator for Interference, Multipath, and Code Delay in a DS Spread-Spectrum Receiver.IEEE Transactions on Communications,1994, vol 42:1288-1299P
    [62]Keller J Y, Darouach M. Optimal two-stage Kalman filter in the presence of random bias. Automatica,1997,33(9).1745-1748P
    [63]Kwang-Hoon Kim, Jang Gyu Lee, Chan Gook Park. Adaptive Two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system. IEEE transaction on aerospace and electronic systems.2009.45(1).125-137P
    [64]G.I.Jee,"GNSS receiver tracking loop optimization for combined phase,Frequency and Delay Locked Loop",ENC-GNSS 2005,July 2005
    [65]G.I.Jee,"Optimal code and carrier tracking loop design for Galileo BOC(1,1)",ION GNSS 2007,September 2007.
    [66]吴志华,丁杨斌,申功勋.一种新的星载GPS定轨滤波算法.北京航空航天大学学报,2008,34(11):1311-1314页
    [67]孙红星,李德仁.非线性系统中卡尔曼滤波的一种新线性化方法.武汉大学学报.信息科学版,2004,29(4):346-348页
    [68]Vapnik V N. The nature of statistical learning theory. New York:Springer-Verlag,1995.
    [69]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters,1999 (3):293-3005页
    [70]Lin C F, Wang S D. Fuzzy support vector machines. IEEE Trans on neural networks, 2002,13(3),466-471P
    [71]Reshma K, Jayadeva, Suresh C. Regularized least squares fuzzy support vector regression for financial time series forecasting. Expert Systems with Applications,2009,36: 132-138 P
    [72]张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法.计算机学报,2006,29(3):400-406页
    [73]李卫,杨煜普,王娜.基于核模糊的多模型LSSVM回归建模.控制与决策,2008,5(23),560-566页
    [74]孙玉坤,王博,黄永红,嵇小辅.基于聚类动态LS-SVM的L-赖氨酸发酵过程的软测量方法,仪器仪表学报,2010,31(2),405-409页
    [75]张永.基于模糊支持向量机的多类分类算法研究,大连理工大学,2007.12
    [76]Xinjun Peng, Yifei Wang. A normal least squares support vector machine and its learning algorithm. Neurocomputing,2009:3734-3741 P
    [77]Raghu K, James M K.A possibilistic Approach to clustering. IEEE Transactions on fuzzy systems,1993:98-110P
    [78]Guoqi Li, Changyun Wen, Guangbin Huang, Yan Chen. Error tolerance based support vector machine for regression. Neurocomputing,2011:771-782 P
    [79]张永.基于模糊支持向量机的多类分类算法研究,大连理工大学.2008.
    [80]哈明虎,彭桂兵,赵秋焕等.一种新的模糊支持向量机.计算机工程与应用.2009,45(25).151-153
    [81]吴青,刘三阳,杜喆.回归型模糊最小二乘支持向量机.西安电子科技大学学报.2007,34(5),773-778P
    [82]杜兰.GEO卫星精密定轨技术研究.解放军信息工程大学,2006.
    [83]Chiaradia A P M, Kuga H K, Prado A F B A. Single frequency GPS measurements in real-time artificial satellite orbit determination. Acta Astronaut.2003:123-133 P
    [84]Zhou N, Feng Y. Simplified precise orbital determination approaches and results from GPS measurements onboard low Earth orbiting satellites, in:Proceedings of the ION GNSS.2005:1180-1190P
    [85]Zhou N. Onboard Orbit Determination using GPS Measurements Low Earth Orbit Satellites. Ph.D. Thesis. Queensland University Technology, Australia,2004.
    [86]Mittnacht M, W Fichter, Real Time On-board Orbit Determination of GEO Satellites Using Software or Hardware Correlation. Proceedings of the Institute of Navigation GPS 2000 Conference, Salt Lake City, UT,2000.
    [87]Lauricliesse D et al. Use of GNSS-Based pseudo-acceleration measurement and orbital constraints to initialize spaceborne receiver orbit solution. Navigation,2003,50 (2):95-101 P
    [88]柳丽,董绪荣,郑坤,王威.星载GNSS确定GEO卫星轨道的积分滤波方法.中国空间科学技术.2011,70-75P
    [89]Carolipio E, Pandya N. GEO orbit determination via covariance analysis with a known clock error. ION GPS 2001, salt Lake City,UT.2001.
    [90]Grewal M. Comparison of GEO and GPS orbit determination. ION GPS 2002,9, Portland OR.
    [91]许其凤.空间大地测量学-卫星导航与精密定位.北京,解放军出版社,2001.
    [92]张瑜,房建成.基于摄动轨道的卫星自主天文导航仿真研究.中国空间科学技术.2003, 5.57-63P
    [93]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安,西北工业大学出版社,1998,42-48P
    [94]范利涛.自动转移飞行器自主导航方法研究[D].国防科技大学,2009:61-80页
    [95]Laurichesse D et al. Use of GNSS-Based pseudo- acceleration measurement and orbital constraints to initialize spaceborne receiver orbit solution. Navigation,2003,50 (2):95-101 P
    [96]Sahmoudi M, Amin M G, Acquisition of Weak GNSS Signals Using a New Block Averaging Pre-Processing[C]. In Proceeding of the IEEE/ION PLANS 2008. California, USA. The Institute of Navigation,2008:1362-1372 P
    [97]Tusi J B Y. Fundaments of Global Positioning System Receivers. A Software Approach. New York:Wiley & Sons,2000:133-164 P
    [98]Lakhzouri A, Lohan E S, Hamila R, Extended Kalman Filter Channel Estimation for Line-of-Sight Detection in WCDMA Mobile Positioning. EURASIP Journal on Applied Signal Processing,2003, vol 13,1268-1278 P
    [99]Mark L Psiaki, Shan Mohiudinn. Modeling Analysis and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation [C]. AIAA Guidance Navigation, and Control Conference and Exhibit 2005. San Francisco:American Institute of Aeronautics and Astronautics
    [100]王惠南.GPS导航原理与应用.科学出版社.2006.
    [101]杨春宝,尤政,张勇.航天GPS接收机信号搜索捕获策略.北京航空航天大学学报.31(12):1269-1273页
    [102]Tsui, J B Y. Global Positioning System Receivers:A Software Approach. New York: John Wiley & Sons,2000
    [103]Thomas D. Powell, Philip D Marten, Steven B Sedlaeek, Chia-Chun Chao. GPS signals in a geosynchronous transfer orbit:" Falcon Gold" data processing. ADA367240. 1999.
    [104]M. Bandecchi, W.J.Ockels. The TEAMSAT experience. ESA bulletin 95,August 1998.
    [105]N Welts, J Eves. The RV1 microsatellite series:exploiting the geosynchronous transfer orbit.
    [106]Mark L. Psiaki and Shan Mohiudinn. Modeling Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation[A]. AIAA Guidance Navigation, and Control Conference and Exhibit 2005.
    [107]Oliver Balbach, Bernd Eissfeller and Gunter W. Hein. Tracking GPS above GPS Satellite Altitude:First Results of the GPS Experiment on the HEO Mission Equator-S[J]. IEEE,1998:243-249 P
    [108]Ward, P., "Satellite Signal Acquisition and Tracking," Chapter 5 in E. Kaplan (editor), Understanding GPS:Principles and Applications, Artech House Publishers,1996.
    [109]Ward, P., "Effects of RF Interference on GPS Satellite Signal Receiver Tracking," Chapter 6 in E.D. Kaplan (editor), Understanding GPS:Principles and Applications, Artech House Publishers,1996.
    [110]Wu, S.C., "Differential GPS Approaches to Orbit Determination of High-Altitude Earth Satellites," Proceedings of the AAS/AIAA Astrodynamics Conference, Vail, CO, Aug1985:1203-1219P
    [111]Potti, J., P. Bernedo, A. Pasetti, "Applicability of GPS-based Orbit Determination Systems to a Wide Range of HEO Missions," Proceedings of the Institute of Navigation GPS 95 Conference, Salt Lake City, UT, September 1995:589-598 P
    [112]Powell, T.D., W.A. Feess, M.D. Menn, "Evaluation of GPS Architecture for High Altitude Spaceborne Users," Proceedings of the Institute of Navigation National Technical Meeting,1998.