粒子群优化算法的改进及其在航迹规划中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人飞行器航迹规划作为任务规划的重要组成部分,无论是在军用还是民用方面都越来越受到人们的重视,成为当前研究的热点。本论文对粒子群优化算法及其在无人飞行器航迹规划中的应用进行了研究。针对无人飞行器航迹规划的特点,围绕基于粒子群优化算法及其改进算法的航迹规划方法展开了深入的研究。主要研究内容包括:(1)粒子群优化算法收敛性分析;(2)基于带繁殖策略的量子粒子群优化算法的航迹规划方法研究;(3)基于相位角编码的量子粒子群优化算法的航迹规划方法研究;(4)基于差分进化量子粒子群优化算法的航迹规划方法研究。
     通过将标准粒子群优化算法参数的经验区域划分为四个子区域,研究了标准粒子群优化算法在经验区域的各个子区域内的收敛和发散行为,分析了系统特征根与算法参数的关系,得到了一系列结论。数值仿真实验展示了不同子区域内的算法参数对粒子位置和粒子速度运动轨迹的不同影响,进一步验证了所得结论的正确性。同时,给出了粒子群优化算法参数的选择策略,为后面章节仿真实验中粒子群优化算法参数的选取提供了理论依据。
     针对粒子群优化算法(PSO)存在的早熟收敛问题,通过将种群的繁殖机制引入量子粒子群优化算法(QPSO),提出了一种带繁殖机制的量子粒子群优化算法(HQPSO),并成功地将该算法应用于无人飞行器的三维航迹规划。同时,运用统计学方法,通过仿真实验比较了HQPSO算法与QPSO算法以及带动态变化惯性权系数的PSO算法的性能。仿真实验结果表明,与基于QPSO算法和基于PSO算法的三维航迹规划方法相比,基于HQPSO算法的三维航迹规划方法能以更快的收敛速度找到更优的航迹,且该方法生成的三维航迹能够有效地实现威胁回避和更好地进行地形跟随。
     通过对QPSO算法的编码方式进行改进,本文提出了相位角编码量子粒子群优化算法(θ-QPSO算法)。选用了几个常用的标准测试函数对θ-QPSO算法的性能进行了测试,并将其与GA算法、DE算法、PSO算法、θ-pso算法和QPSO算法的性能作了比较。标准测试函数仿真实验结果表明,θ-QPSO算法在选用的标准测试函数集上均表现出比其他五种算法更好的性能。此外,本文还将θ-QPSO算法成功地应用于无人飞行器航迹规划问题。以航迹规划这一实际工程应用问题为背景,在不同战场环境下比较了θ-QPSO算法和GA算法、DE算法、PSO算法、θ-PSO算法、QPSO算法五种算法的性能。仿真实验结果表明,基于θ-QPSO算法航迹规划方法比基于其他几种算法的航迹规划方法更好。
     最后,本文提出了一种DE算法和QPSO算法的混合算法,称为DEQPSO算法,并将其成功地应用于海洋环境下的无人飞行器航迹规划。为了降低问题的复杂度和提高算法的求解效率,本文提出了一种海洋环境下的地形预处理方法。该方法首先提取出岛屿的轮廓,然后用椭圆对岛屿轮廓进行拟合。鉴于传统的基于采样的威胁代价计算方法非常耗时且难于确定采样率,本文提出一种基于航迹段与威胁源位置关系的威胁代价计算方法。在不同的战场环境下(不同的发射点,不同的目标点,不同的雷达威胁),DEQPSO算法均显示出了其高效性和优越性。仿真实验结果表明,DEQPSO算法不但比GA算法、DE算法、PSO算法、DEPSO算法和QPSO算法具有更强的寻优能力,而且具有更快的收敛速度和更好的算法稳定性。
As an important component of mission planning, route planning for Unmanned Aerial Vehicles (UAV) in both military and civilian applications is getting more and more attention for researchers and has become a reasearch hopspot in recent years. The particle swarm optimization algorithm and its application in route planning for UAV is studied in this thesis. Considering the characteristics of route planning for UAV, the route planning methods based on particle swarm optimization algorithm and its improved algorithms are investigated deeply in this paper. The main contents of this paper include:(1) the convergence analysis of particle swarm optimization algorithm; (2) route planning for UAV based on quantum-behaved particle swarm optimization (QPSO) with breeding strategy; (3) route planning for UAV based on phased angle-encoed and quantum-behaved particle swarm optimization; (4) route planning for UAV based on hybrid differential evolution with QPSO.
     The empirical region of algorithm parameters was divided into four small regions, where the convergence and divergence properties of standard particle swarm optimization (PSO) algorithm were studied. At the same time, the relationship between the characteristic roots and algorithm parameters were analyzed. A series of conclusions were deduced through rigorous mathematics derivation. Finally, numerical simulation demonstrated the different effects of different algorithm parameters on the loca of particle position and particle velocity, and further illustrated the validity of conclusions given in this paper. At the same time, the parameters selection strategy for PSO was given, which provided the theoretical basis for the selection of parameters of PSO in the simulation experiments of the following chapters.
     In view of the premature convergence problem of PSO, a hybrid quantum-behaved particle swarm optimization algorithm (HQPSO) was presented by introducing the breeding strategy into QPSO in this paper. A method of 3-D route planning for UAV was set up base on the proposed HQPSO algorithm. The performance of HQPSO was compared against the QPSO and PSO with inertial weight through using statistical method. Simulation results demonstrate that HQPSO not only has stronger global searching ability, but also achieves a faster convergence speed compared with QPSO and PSO. The path planner based on HQPSO can find better path with faster convergence speed. In addition, the 3-D path generated by HQPSO algorithm can fulfill the threat avoidance and terrain following effectively.
     Through changing the coding mode, the phase angle-encoded and quantum-behaved particle swarm optimization (0-QPSO) is proposed in this paper. Several representative benchmark functions are selected as testing functions. The real-valued genetic algorithm (GA), differential evolution (DE), PSO, phase angle-encoded particle swarm optimization (θ-PSO), QPSO, andθ-QPSO are tested and compared with each other on the selected unimodal and multimodal functions. To corroborate the results obtained on the benchmark functions, a new route planner for UAV is designed to generate a safe and flyable path in the presence of different threat environments based on theθ-QPSO algorithm. The PSO,θ-PSO, and QPSO are presented and compared with theθ-QPSO algorithm as well as GA and DE through the UAV path planning application. Experimental results demonstrated good performance of theθ-QPSO in planning a safe and flyable path for UAV when compared with the GA, DE, and three other PSO-based algorithms.
     Finally, this paper presents a hybrid DE with QPSO for the UAV route planning on the sea. A simple method of pretreatment to the terrain environment is proposed to reduce the complexity of problem and improve the computational efficiency. The terrain pretreatment includes extracting the contour of islands and fitting them by ellipses. In consideration of the conflicet between sample accuracy and computation efficiency, a new method based on the location relation of path segement and threat region is proposed. To show the high performance of the proposed method, the DEQPSO algorithm is compared with the GA, DE, PSO, hybrid particle swarm with differential evolution operator (DEPSO), and QPSO, in the presence of different threat environments, which mean different start points, endpoints, and radar threats. Experimental results demonstrated that the proposed method is capable of generating higher quality paths stably and efficiently for UAV than any other tested optimization algorithms.
引文
[1]. 丁明跃,郑昌文,周成平,严平.无人飞行器航迹规划[M].北京:电子工业出版社,2009.
    [2]. 李磊,熊涛,胡湘阳,熊俊.浅论无人机应用领域及前景[J].地理空间信息,2010,8(5):7-9.
    [3]. 邹湘伏,何清华,贺继林.无人机发展现状及相关技术[J].飞航导弹,2006(10):9-14.
    [4]. Gilmore, J.F. Autonomous vehicle planning analysis methodology[C]. in Proceedings of Association for Unmanned Vehicles Systems Conference, Washington, D.C.,1991:503-509.
    [5]. 闵昌万,袁建平.军用飞行器航迹规划综述[J].飞行力学,1998,16(4):14-19.
    [6]. 戴定川,盛怀洁,赵域.无人机任务规划系统需求分析[J].飞航导弹,2011(3):66-70.
    [7]. 刘新艳,黄显林,吴强.国外任务规划系统的发展[J].火力与指挥控制,2007,32(6):5-9.
    [8]. 邢立宁,陈英武.任务规划系统研究综述[J].火力与指挥控制,2006,31(4):1-4.
    [9]. 何煦虹.飞航导弹任务规划系统的现状及发展趋势[J].飞航导弹,2009(5):15-18.
    [10]. 范洪达,马向玲,叶文.飞机低空突防航路规划技术[M].北京:国防工业出版社,2007.
    [11]. Szczerba, R.J., Galkowski, P., Glicktein, I., Ternullo, N. Robust algorithm for real-time route planning[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):869-878.
    [12]. 傅阳光,周成平,王长青,陈昭,李少华,周其忠.考虑时间约束的无人飞行器航迹规划[J].宇航学报,2011(04):749-755.
    [13]. Bhattacharya, P., Gavrilova, M.L. Voronoi diagram in optimal path planning[C]. in International Symposium on Voronoi Diagrams in Science and Engineering, 2007:38-47.
    [14]. Bhattacharya, P., Gavrilova, M.L. Roadmap-based path planning-Using the Voronoi diagram for a clearance-based shortest path[J]. IEEE Robotics & Automation Magazine,2008,15(2):58-66.
    [15]. Beard, R.W., McLain, T.W., Goodrich, M.A., Anderson, E.P. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Automation,2002,18(6):911-922.
    [16]. McLain, T.W., Beard, R.W. Coordination variables, coordination functions, and cooperative-timing missions[J]. Journal of Guidance Control and Dynamics,2005, 28(1):150-161.
    [17]. Eppstein, D. Finding the k shortest paths[J]. SIAM Journal of Compuing,1999, 28(2):652-673.
    [18]. Overmars, M. A random approach to path planning[J]. Technical Report, RUU-CS-92-32, Ultrecht University,1992.
    [19]. Pettersson, P.O., Doherty, P. Probabilistic roadmap based path planning for an autonomous unmanned helicopter[J]. Journal of Intelligent and Fuzzy Systems, 2006,17(4):395-405.
    [20].严平,丁明跃,周成平.航迹规划的一种路线图方法[J].计算机工程与应用,2004,40(17):218-221.
    [21]. Hart, P.E., Nilsson, N.J., Raphael, B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107.
    [22]. 李春华,郑昌文,周成平,丁明跃,袁鸿翼,金惠香.一种三维航迹快速搜索方法[J].宇航学报,2002,23(3):13-17.
    [23]. 周成平,陈前洋,秦筱械.基于稀疏A*算法的三维航迹并行规划算法[J].华中科技大学学报(自然科学版),2005,33(5):42-45.
    [24]. 郑昌文,丁明跃,周成平,李春华.一种飞行器在线航迹重规划算法[J].华中科技大学学报(自然科学版),2003,31(2):90-92.
    [25]. 赵明元,周军.基于A*算法的四维实时航迹规划算法[J].火力与指挥控制,2008,33(8):98-111.
    [26]. Stentz, A. Optimal and efficient path planning for partially-known environments [C]. in Proceedings of IEEE International Conference on Robotics and Automation,1994:3310-3317.
    [27]. 李春华,周成平,丁明跃,郑昌文,苏康.动态环境中的飞行器实时三维航迹规划方法研究[J].宇航学报,2003,24(1):38-42.
    [28]. Kuffner, J.J., Jr., LaValle, S.M. RRT-connect:An efficient approach to single-query path planning[C]. in IEEE International Conference on Robotics and Automation,2000:995-1001.
    [29]. Michalewicz, Z. Genetic Algorithms+ Data Structures= Evolution Programs [M]. Berlin:Springer-Verlag,1996.
    [30]. Yi, M., Ding, M., Zhou, C.3D route planning using genetic algorithm[C]. in Proceedings of SPIE International Symposium on Multispectral Image Processing, Wuhan, China,1998:92-95.
    [31]. 马云红,周德云.基于遗传算法的无人机航路规划[J].电光与控制,2005,12(5):24-27.
    [32]. 徐正军,唐硕.基于改进遗传算法的飞行航迹规划[J].宇航学报,2008,29(5):1540-1545.
    [33]. 孙阳光,丁明跃,周成平,傅阳光,蔡超.基于量子遗传算法的无人飞行器航迹规划[J].宇航学报,2010,31(3):648-654.
    [34]. 郑昌文,丁明跃,周成平,苏康,袁鸿翼,金惠香.多飞行器协调航迹规划方法[J].宇航学报,2003,24(2):115-120.
    [35]. Zheng, C., Ding, M., Zhou, C. An Evolutionary Real-Time 3D Route Planner for Aircraft[J]. Journal of Systems Engineering and Electronics,2003,14(1):47-53.
    [36]. Zheng, C., Ding, M., Zhou, C. Real-time route planning for unmanned air vehicle with an evolutionary algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence,2003,17(1):63-81.
    [37]. Zheng, C., Ding, M., Zhou, C., Li, L. Coevolving and cooperating path planner for multiple unmanned air vehicles[J]. Engineering Applications of Artificial Intelligence,2004,17(8):887-896.
    [38]. 郑昌文,李磊,徐帆江,丁明跃,苏康.基于进化计算的无人飞行器多航迹规划[J].宇航学报,2005,26(2):223-227.
    [39]. Zheng, C., Li, L., Xu, F., Sun, F., Ding, M. Evolutionary route planner for unmanned air vehicles[J]. IEEE Transactions on Robotics,2005,21(4):609-620.
    [40]. Nikolos, I.K., Tsourveloudis, N., Valavanis, K.P. Evolutionary algorithm based 3-D path planner for UAV navigation[C]. in Proceeding of 9th Mediterranean Conference Control Automation, Dubrovnik, Croatia,2001:1-6.
    [41]. Nikolos, I., Valavanis, K., Tsourveloudis, N., Kostaras, A. Evolutionary algorithm based offline/online path planner for UAV navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2003,33(6):898-912.
    [42]. Nikolos, I., Zografos, E., Brintaki, A. UAV path planning using evolutionary algorithms[J]. Innovations in Intelligent Machines,2007:77-111.
    [43].严平,丁明跃,郑昌文.基于Nash均衡与进化计算的协调航迹规划(英文)[J].中国航空学报(英文版),2006,19(1):18-23.
    [44].严江江,丁明跃,周成平.基于进化算法的多飞行器四维航迹规划方法[J].系统仿真学报,2009,21(4):1125-1129.
    [45]. Colorni, A., Dorigo, M., Maniezzo, V. Distributed optimization by ant colonies[C]. in Proceedings of the First European Conferenceon Artificial Life,1991:134-142.
    [46]. Kennedy, J., Eberhart, R.C. Particle swarm optimization[C]. in Proceedings of IEEE International Conference on Neural Networks,1995:1942-1948.
    [47]. 柳长安,李为吉,王和平.基于蚁群算法的无人机航路规划[J].空军工程大学学报(自然科学版),2004,5(2):9-12.
    [48]. 叶文,马登武,范洪达.基于改进蚁群算法的飞机低空突防航路规划[J].中国航空学报(英文版),2005,18(4):304-309.
    [49]. 李栋,曹义华,苏媛,冯婷.基于改进蚁群算法的低空突防航迹规划[J].北京航空航天大学学报,2006,32(3):258-262.
    [50]. 李士勇,杨丹.基于改进蚁群算法的巡航导弹航迹规划[J].宇航学报,2007,28(4):903-907.
    [51]. 任波,于雷,韩李勋.自适应蚁群算法的无人机航迹规划方法[J].电光与控制,2007,14(6):36-39.
    [52]. 陈谋,肖健,姜长生.基于改进蚁群算法的无人机三维航路规划[J].吉林大学学报(工学版),2008,38(4):991-995.
    [53]. 孙涛,谢晓方,乔勇军.基于二维自由空间蚁群算法的反舰导弹航路规划仿真[J].系统仿真学报,2008,20(13):3586-3588.
    [54]. Cen, Y., Song, C., Xie, N., Wang, L. Path planning method for mobile robot based on ant colony optimization algorithm[C]. in 3rd IEEE Conference on Industrial Electronics and Applications,2008:298-301.
    [55]. 唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036.
    [56]. Lei, K., Qiu, Y., He, Y. A novel path planning for mobile robots using modified particle swarm optimizer[C]. in 1st International Symposium on Systems and Control in Aerospace and Astronautics,2006:981-984.
    [57]. 孙彪,朱凡.采用粒子群优化算法的无人机实时航迹规划[J].电光与控制,2008,15(1):35-38.
    [58]. 张雷,王道波,段海滨.基于粒子群优化算法的无人战斗机路径规划方法[J].系统工程与电子技术,2008,30(3):506-510.
    [59]. Zhu, H., Zheng, C., Hu, X., Li, X. Path planner for unmanned aerial vehicles based on modified PSO algorithm[C]. in International Conference on Information and Automation,2008:541-544.
    [60]. 黄国荣,张吉广,刘华伟.基于自适应变异粒子群算法的无人机航迹规划[J].电光与控制,2009,16(4):18-21.
    [61]. Kennedy, J.F., Eberhart, R.C., Shi, Y. Swarm Intelligence[M]. San Francisco: Morgan Kaufmann,2001.
    [62]. 纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009.
    [63]. del Valle, Y, Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G. Particle swarm optimization:basic concepts, variants and applications in power systems[J]. IEEE Transactions on Evolutionary Computation,2008,12(2): 171-195.
    [64]. Storn, R., Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11(4):341-359.
    [65]. Price, K., Storn, R., Lampinen, J. Differential evolution:a practical approach to global optimization[M]. Berlin, Germany:Springer Verlag,2005.
    [66]. Dorigo, M., Maniezzo, V., Colorni, A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1996,26(1):29-41.
    [67]. Larranaga, P., Lozano, J. Estimation of distribution algorithms:A new tool for evolutionary computation[M]. Dordrecht, The Netherlands:Kluwer,2002.
    [68]. Eberhart, R.C., Shi, Y. Comparison between genetic algorithms and particle swarm optimization [J]. Evolutionary Programming Ⅶ,1998:611-616.
    [69]. Angeline, P.J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences[J]. Evolutionary Programming Ⅶ,1998: 601-610.
    [70]. Shi, Y., Eberhart, R.C. Empirical study of particle swarm optimization[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,1999: 1945-1950.
    [71]. Shi, Y., Eberhart, R.C. A modified particle swarm optimizer[C]. in Proceedings of IEEE World Congress on Computational Intelligence,1998:69-73.
    [72]. Eberhart, R.C., Shi, Y. Particle swarm optimization:developments, applications and resources[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,2001:81-86
    [73]. Eberhart, R.C., Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,2000:84-88.
    [74]. Clerc, M., Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [75]. Shi, Y., Eberhart, R.C. Parameter selection in particle swarm optimization[J]. Evolutionary Programming Ⅶ,1998:591-600.
    [76]. Holland, J.H. Adaptation in Natural and Artificial Systems[M]. Ann Harbor: University of Michigan Press,1975.
    [77]. Shi, Y, Eberhart, R.C Fuzzy adaptive particle swarm optimization[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,2001:101-106.
    [78]. Eberhart, R.C., Shi, Y. Tracking and optimizing dynamic systems with particle swarms[C]. in Proceedings of the IEEE Congress on Evolutionary Computation, 2001:94-100.
    [79]. Eberhart, R.C., Kennedy, J. A new optimizer using particle swarm theory[C]. in Proceedings of the Sixth International Symposium on Micro Machine and Human Science,1995:39-43.
    [80]. Kennedy, J., Mendes, R. Population structure and particle swarm performance[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,2002: 1671-1676.
    [81]. Kennedy, J. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,1999:1931-1938.
    [82]. Mendes, R., Kennedy, J., Neves, J. The fully informed particle swarm:simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation,2004,8(3): 204-210.
    [83]. Kennedy, J., Mendes, R. Neighborhood topologies in fully informed and best-of-neighborhood particle swarms[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2006,36(4):515-519.
    [84]. Angeline, P.J. Using selection to improve particle swarm optimization[C]. in IEEE World Congress on Computational Intelligence,1998:84-89.
    [85]. Lovbjerg, M., Rasmussen, T., Krink, T. Hybrid particle swarm optimiser with breeding and subpopulations[C]. in Proceedings of the third Genetic and Evolutionary Computation Conference,2001:469-476.
    [86]. Stacey, A., Jancic, M., Grundy, I. Particle swarm optimization with mutation[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,2003: 1425-1430.
    [87]. Robinson, J., Sinton, S., Rahmat-Samii, Y. Particle swarm, genetic algorithm, and their hybrids:optimization of a profiled corrugated horn antenna[C]. in IEEE Antennas and Propagation Society International Symposium,2002:314-317.
    [88]. Shi, X.H., Wan, L.M., Lee, H.P., Yang, X.W., Wang, L.M., Liang, Y.C. An improved genetic algorithm with variable population-size and a PSO-GA based hybrid evolutionary algorithm[C]. in International Conference on Machine Learning and Cybernetics,2003:1735-1740.
    [89]. Shi, X.H., Lu, Y.H., Zhou, C.G., Lee, H.P., Lin, W.Z., Liang, Y.C. Hybrid evolutionary algorithms based on PSO and GA[C]. in IEEE Congress on Evolutionary Computation,2003:2393-2399.
    [90]. Shi, X., Liang, Y, Lee, H., Lu, C., Wang, L. An improved GA and a novel PSO-GA-based hybrid algorithm[J]. Information Processing Letters,2005,93(5): 255-261.
    [91]. Liu, B., Wang, L., Jin, Y, Tang, F., Huang, D. Improved particle swarm optimization combined with chaos[J]. Chaos, Solitons & Fractals,2005,25(5): 1261-1271.
    [92]. Xi-Huai, W., Jun-Jun, L. Hybrid particle swarm optimization with simulated annealing[C]. in Proceedings of International Conference on Machine Learning and Cybernetics,2004:2402-2405.
    [93]. Van den Bergh, F., Engelbrecht, A.P. A cooperative approach to particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(3): 225-239.
    [94]. Shinn-Ying, H., Hung-Sui, L., Weei-Hurng, L., Shinn-Jang, H. OPSO:Orthogonal particle swarm optimization and its application to task assignment problems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2008,38(2):288-298.
    [95]. Parsopoulos, K.E., Vrahatis, M.N. On the computation of all global minimizers through particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):211-224.
    [96]. Poli, R. Analysis of the publications on the applications of particle swarm optimisation[J]. Journal of Artificial Evolution and Applications,2008,2008(1): 1-10.
    [97]. 曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004.
    [98]. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[J]. IIT, Kanpur, India, NTU, Singapore and KanGAL Tech. Rep.2005 005, May 2005,2005.
    [99]. Wang, C., Zeng, M., Li, J. Solving traveling salesman problems with time windows by genetic particle swarm optimization[C]. in IEEE Congress on Evolutionary Computation,2008:1752-1755.
    [100].张长胜,孙吉贵,欧阳丹彤.一种自适应离散粒子群算法及其应用研究[J].电子学报,2009,37(2):299-304.
    [101].王潇.改进粒子群优化算法及其在组合优化问题中的应用[D].广州:暨南大学,2008.
    [102].郭文忠,陈国龙,彭少君.求解VLSI电路划分问题的混合粒子群优化算法[J].软件学报,2011,22(5):833-842.
    [103].李博.粒子群优化算法及其在神经网络中的应用[D].大连:大连理工大学,2005.
    [104].劳玲英.微粒群优化算法及其在人工神经网络中的应用[D].重庆:重庆大学,2008.
    [105]. Van den Bergh, F., Engelbrecht, A.P. Cooperative learning in neural networks using particle swarm optimizers [J]. South African Computer Journal,2000,26: 84-90.
    [106]. Cheng-Jian, L., Cheng-Hung, C., Chin-Teng, L. A Hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2009,39(1):55-68.
    [107]. Paoli, A., Melgani, F., Pasolli, E. Clustering of hyperspectral images based on multiobjective particle swarm optimization [J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):4175-4188.
    [108]. Zhenbin, G, Xiangye, Z., Jingyi, W., Jianfei, L. FPGA implementation of adaptive IIR filters with particle swarm optimization algorithm[C]. in 11th IEEE Singapore International Conference on Communication Systems,2008:1364-1367.
    [109]. Mukherjee, V., Ghoshal, S.P. Craziness based and velocity relaxed swarm optimized intelligent PID controlled AVR system [C]. in Joint International Conference on Power System Technology and IEEE Power India Conference, 2008:1-8.
    [110]. Robinson, J., Rahmat-Samii, Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation,2004,52(2): 397-407.
    [111]. Li, G, Shi, H. Path planning for mobile robot based on particle swarm optimization[C]. in Chinese Control and Decision Conference,2008:3290-3294.
    [112]. Li, L., Dunwei, G. Robot path planning in unknown environments using particle swarm optimization[C]. in Fourth International Conference on Natural Computation,2008:422-426.
    [113]. Talbi, H., Batouche, M. Hybrid particle swarm with differential evolution for multimodal image registration[C]. in IEEE International Conference on Industrial Technology,2004:1567-1572.
    [114]. Chandramouli, K., Izquierdo, E. Image classification using chaotic particle swarm optimization[C]. in IEEE International Conference on Image Processing,2006: 3001-3004.
    [115]. Yen-Wei, C., Chen-Lun, L., Mimori, A. Multimodal medical image registration using particle swarm optimization[C]. in Eighth International Conference on Intelligent Systems Design and Applications,2008:127-131.
    [116]. Kwok, N.M., Ha, Q.P., Dikai, L., Gu, F. Contrast enhancement and intensity preservation for gray-level images using multiobjective particle swarm optimization[J]. IEEE Transactions on Automation Science and Engineering,2009, 6(1):145-155.
    [117]. Paterlini, S., Krink, T. Differential evolution and particle swarm optimisation in partitional clustering[J]. Computational Statistics & Data Analysis,2006,50(5): 1220-1247.
    [118]. Ozcan, E., Mohan, C. Analysis of a simple particle swarm optimization system[J]. Intelligent Engineering Systems Through Artificial Neural Networks,1998,8: 253-258.
    [119]. Ozcan, E., Mohan, C. Particle swarm optimization:Surfing the waves[C]. in Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ, 1999:1939-1944.
    [120]. Van den Bergh, F. An analysis of particle swarm optimizers [D]. Pretoria: University of Pretoria,2001.
    [121]. Trelea, I.C. The particle swarm optimization algorithm:convergence analysis and parameter selection[J]. Information Processing Letters,2003,85(6):317-325.
    [122]. Jiang, M., Luo, Y.P., Yang, S.Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J]. Information Processing Letters,2007,102(1):8-16.
    [123]. Rapaic, M.R., Kanovic, Z. Time-varying PSO-convergence analysis, convergence-related parameterization and new parameter adjustment schemes[J]. Information Processing Letters,2009,109(11):548-552.
    [124]. Sun, J., Feng, B., Xu, W. Particle swarm optimization with particles having quantum behavior[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,2004:325-331.
    [125]. Sun, J., Xu, W., Feng, B. A global search strategy of quantum-behaved particle swarm optimization[C]. in Proceedings of IEEE Conference on Cybernetics and Intelligent Systems,2004:111-116.
    [126]. Kennedy, J. Some issues and practices for particle swarms [C]. in Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007),2007:162-169.
    [127]. Coelho, L.d.S., Mariani, V.C. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects[J]. Energy Conversion and Management,2008,49(11): 3080-3085.
    [128]. Sun, J., Fang, W., Wang, D., Xu, W. Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method[J]. Energy Conversion and Management,2009,50(12):2967-2975.
    [129].王坤.基于量子粒子群算法的移动机器人的路径规划的研究[D].无锡:江南大学,2009.
    [130]. Sabat, S.L., Coelho, L.d.S., Abraham, A. MESFET DC model parameter extraction using Quantum Particle Swarm Optimization[J]. Microelectronics Reliability,2009,49(6):660-666.
    [131].李晓.基于粒子群算法和量子粒子群算法的电力系统故障诊断[D].长沙:湖南大学,2010.
    [132]. Omkar, S.N., Khandelwal, R., Ananth, T.V.S., Narayana Naik, G., Gopalakrishnan, S. Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures [J]. Expert Systems with Applications, 2009,36(8):11312-11322.
    [133]. Sun, J., Wu, X., Fang, W., Ding, Y, Long, H., Xu, W. Multiple sequence alignment using the Hidden Markov Model trained by an improved quantum-behaved particle swarm optimization[J]. Information Sciences,2010, In Press, Corrected Proof.
    [134]. Sun, J., Fang, W., Wu, X., Xie, Z., Xu, W. QoS multicast routing using a quantum-behaved particle swarm optimization algorithm[J]. Engineering Applications of Artificial Intelligence,2011,24(1):123-131.
    [135]. Coelho, L.d.S. A quantum particle swarm optimizer with chaotic mutation operator[J]. Chaos, Solitons & Fractals,2008,37(5):1409-1418.
    [136]. Coelho, L.d.S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems[J]. Expert Systems with Applications,2010,37(2):1676-1683.
    [137].方伟,孙俊,须文波.基于自适应量子粒子群算法的FIR滤波器设计[J].系统工程与电子技术,2008,30(7):1378-1381.
    [138].吕强,陈如清,俞金寿.量子连续粒子群优化算法及其应用[J].系统工程理论与实践,2008,28(5):122-130.
    [139]. Mikki, S.M., Kishk, A.A. Quantum Particle Swarm Optimization for Electromagnetics [J]. IEEE Transactions on Antennas and Propagation,2006, 54(10):2764-2775.
    [140]. Mikki, S., Kishk, A.A. Investigation of the quantum particle swarm optimization technique for electromagnetic applications[C]. in IEEE Antennas and Propagation Society International Symposium,2005:45-48.
    [141]. Levin, F.S. An Introduction to Quantum Theory[M]. New York:Cambridge University Press,2002.
    [142].孙俊.量子行为粒子群优化算法研究[D].无锡:江南大学,2009.
    [143]. Fu, Y., Ding, M., Zhou, C., Cai, C., Sun, Y Path planning for UAV based on quantum-behaved particle swarm optimization[C]. in Proceedings of SPIE International Symposium on Multispectral Image Processing and Pattern Recognition, Wuhan, China,2009:74970B-1-74970B-7.
    [144]. Holland, J.H. Adaption in Natural and Artificial Systems:an Introduction Analysis with Applications to Biology, Ctrol, and Artificial Intelligence[M]. Massachusetts:MIT Press,1994.
    [145]. Kennedy, J., Eberhart, R.C. A discrete binary version of the particle swarm algorithm[C]. in IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ,1997:4104-4108.
    [146]. Wang, Y., Feng, X.-Y., Huang, Y.-X., Pu, D.-B., Zhou, W.-G., Liang, Y.-C, Zhou, C.-G. A novel quantum swarm evolutionary algorithm and its applications[J]. Neurocomputing,2007,70(4-6):633-640.
    [147]. Moore, M., Narayanan, A. Quantum-inspired computing[J]. Dept. Comput. Sci., Univ. Exeter, Exeter, UK,1995.
    [148]. Kuk-Hyun, H., Jong-Hwan, K. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation,2002,6(6):580-593.
    [149]. Yun-Won, J., Jong-Bae, P., Se-Hwan, J., Lee, K.Y. A new quantum-inspired binary PSO:application to unit commitment problems for power systems[J]. IEEE Transactions on Power Systems,2010,25(3):1486-1495.
    [150]. Zhong, W., Li, S., Qian, F.θ-PSO:a new strategy of particle swarm optimization[J]. Journal of Zhejiang University (Science A:An International Applied Physics & Engineering Journal),2008,9(6):786-790.
    [151].施光燕,董加礼.最优化方法[M].北京:高等教育出版社,1999.
    [152]. Zheng, Y.-L., Ma, L.-H., Zhang, L.-Y., Qian, J.-X. On the convergence analysis and parameter selection in particle swarm optimization[J]. International Conference on Machine Learning and Cybernetics,2003,3:1802-1807.
    [153]. Suganthan, P.N. Particle swarm optimiser with neighbourhood operator[C]. in Proceedings of the IEEE Congress on Evolutionary Computation,1999: 1958-1962.
    [154]. Higashi, N., Iba, H. Particle swarm optimization with Gaussian mutation[C]. in Proceedings of IEEE Swarm Intelligence Symposium,2003:72-79.
    [155].吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.
    [156].傅阳光,周成平,丁明跃.基于混合量子粒子群优化算法的三维航迹规划[J].宇航学报,2010,31(12):2657-2664.
    [157].刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729.
    [158].周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-5.
    [159]. Chakraborty, J., Konar, A., Chakraborty, U.K., Jain, L.C. Distributed cooperative multi-robot path planning using differential evolution[C]. in IEEE Congress on Evolutionary Computation,2008:718-725.
    [160].张忠峰,高云峰,宝音贺西.基于差分进化算法的飞行器航迹规划[J].计算机工程与应用,2008,44(34):216-218.
    [161]. Nikolos, I.K., Brintaki, A.N. Coordinated UAV path planning using differential evolution[C]. in IEEE International Symposium on Intelligent Control, Mediterrean Conference on Control and Automation, Limassol, Cyprus,2005: 549-556.
    [162]. Zhang, W.-J., Xie, X.-F. DEPSO:hybrid particle swarm with differential evolution operator[C]. in IEEE International Conference on Systems, Man and Cybernetics,2003:3816-3821.
    [163]. Xu, R., Venayagamoorthy, G.K., Wunsch Ii, D.C. Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization [J]. Neural Networks,2007,20(8):917-927.
    [164]. Luitel, B., Venayagamoorthy, G.K. Differential evolution particle swarm optimization for digital filter design[C]. in IEEE Congress on Evolutionary Computation,2008:3954-3961.
    [165]. Das, S., Abraham, A., Konar, A. Particle Swarm Optimization and Differential Evolution Algorithms:Technical Analysis, Applications and Hybridization Perspectives[J]. Advances of Computational Intelligence in Industrial Systems, 2008:1-38.
    [166]. Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E. Hole-filled seamless SRTM data V4[J]. International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org,2008.
    [167]. Fitzgibbon, A., Pilu, M., Fisher, R. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):476-480.
    [168]. Yao, J., Kharma, N., Grogono, P. A multi-population genetic algorithm for robust and fast ellipse detection[J]. Pattern Analysis and Applications,2005,8(1): 149-162.
    [169]. Fu, Y., Ding, M., Zhou, C. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2011(DOI:10.1109/TSMCA.2011.2159586), In Press, Corrected Proof.
    [170]. Foo, J.L., Knutzon, J., Kalivarapu, V., Oliver, J., Eliot Winer. Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization[J]. Journal of Aerospace Computing, Information, and Communication,2009,6: 271-290.
    [171]. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.