超滤膜表面亲水改性及其抗污染性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种绿色高效的新型分离技术,超滤在生物分离领域具有广阔前景。目前,膜污染依然是制约超滤应用效率的瓶颈。膜材料是影响膜污染的主要因素,开发亲水性膜材料或者提高现有材料的亲水性被认为是降低膜污染的有效途径。本论文以降低高分子超滤膜在生物分离中的污染为出发点,系统研究了膜的制备和膜表面的亲水改性。
     采用反相成膜法制备聚乙烯醇缩丁醛(PVB)超滤膜,并通过酸催化水解对其进行化学处理改性。对改性后的PVB膜进行表征,XPS和接触角实验结果表明膜表面的羟基含量增加,亲水性增强,SEM照片显示膜结构未发生明显变化,机械强度和孔隙率实验结果也与未改性膜接近;超滤实验数据表明化学处理改性对膜分离性能有一定影响;通过对膜污染的系统分析发现化学处理改性可以提高PVB超滤膜的抗污染性能,当使用1.0 M盐酸处理4 h时,膜的通量损失率由45.1%下降至38.1%,而通量恢复率则由58.8%上升至78.5%。
     通过吸附法改性聚醚砜(PES)超滤膜,将亲水性PVA吸附到疏水性膜表面,并对改性膜进行表征和评价。XPS数据证实了改性膜表面PVA的存在,接触角数据证实了膜表面亲水性的增强,而SEM则显示膜结构并未发生明显变化;超滤实验表明吸附改性会导致膜通量的降低,但可有效提高PES超滤膜的抗污染性能,当PVA溶液浓度为0.5 wt%,吸附次数为3次时,改性膜的总污染和可逆污染指数分别从0.61和0.47降至0.38和0.22,通量恢复率由53.1%上升至78.2%;长期运行实验表明PVA吸附改性膜具有较高的稳定性。
     通过共混法使用含有聚乙二醇(PEG)链段的梳状共聚物PS-b-PEG对PES膜进行改性,并对共混膜进行表征和评价。接触角、XPS等表征结果表明共混超滤膜表面亲水性得到显著提高,PEG链段发生了表面富集现象;SEM和机械强度结果表明共混膜结构未发生显著变化,机械性能仍可满足超滤操作要求;蛋白质吸附实验表明共混膜具有良好的抑制蛋白质吸附能力,最低吸附量降至0.5μg/cm2;超滤实验表明共混膜的通量略有提高,其原因主要是梳状共聚物起一定的致孔作用;通过对膜污染的系统分析证实共混改性提高了PES膜抗污染性能,总污染和不可逆污染指数均显著降低。
As a green and energy-efficient separation technology, ultrafiltration exhibits a vast prospect of application in bioseparation, while membrane fouling still constitutes a bottleneck of its development. Membrane materials show great impact on membrane fouling. Major approaches for fouling reduction include exploitation of novel hydrophilic membrane materials and hydrophilic modification of membrane materials applied. In this dissertation, with the aim of reducing membrane fouling during biosepration, preparation and hydrophilc modification of ultrafiltration membranes were investigated.
     Poly (vinyl butyral) (PVB) ultrafiltration membranes were prepared via the phase inversion process and modified through an acid catalyzed hydrolysis process. XPS and water contact angle results indicated the increase of hydroxyl groups at membrane surface and the enhancement of surface hydrophilicity, and SEM suggested that modified membranes remained asymmetric structure; meanwhile, the mechanical property and porosity were close to the values of control PVB membranes.
     Ultrafiltration results showed that separation performance was affected to some extent by chemical modification. The systematical analysis of membrane fouling confirmed that chemical modification could effectively improve the antifouling property of PVB membranes. When treated with 1.0 M HCl solution for 4 h, the flux loss ratio was decreased from 45.1% to 38.1% while the flux recovery ratio was increased from 58.8% to 78.5%.
     Polyethersulfone (PES) ultrafiltration membrane was modified through adsorption to introduce the hydrophilic poly (vinyl alcohol) (PVA) chains to the hydrophobic membrane surface. The modified membranes were characterized and evaluated. XPS results confirmed the presence of PVA at membrane surface, and the value of water contact angle indicated the hydrophilicity enhancement. The membrane structure had no significant changes according to SEM. Ultrafiltration results showed that adsorption would reduce membrane flux, but it had effectively improved the antifouling property of PES membranes. When PVA concentration was 0.5 wt% and adsorption cycle was 3, the total and irreversible fouling ratio of modified membranes were 0.38 and 0.22, respectively, much lower than control PES membrane, of which the value were 0.61 and 0.47. The flux recovery ratio was increased from 53.1% to 78.2%, while the long term ultrafiltration experiment showed an ideal stability of modification.
     A comb copolymer PS-b-PEG, which contained hydrophilic poly (ethyl glycol) (PEG) chains, was blended with PES to fabricate ultrafiltration membrane, and the blend membranes were characterized and evaluated. The PEG segments were spontaneously segregated to the membrane surface and the surface hydrophilicity was correspondingly enhanced, which was confirmed by the water contact angle and XPS results. The membrane structure had no significant changes and the mechanical property could still well meet the need of ultrafiltration. The protein adsorption experiments indicated the blend membranes had excellent protein adsorption resistance; the lowest adsorption amount reached 0.5μg/cm2. Ultrafiltration results showed that the blend membranes had a little higher flux, which was due to the pore-forming effect of the copolymer. The fouling investigation confirmed the antifouling property improvement of PES membrane through blending; the total and irreversible fouling were both remarkably reduced.
引文
[1] 时钧,袁权,高从堦,膜技术手册[M],北京:化学工业出版社,2001,336~361
    [2] Kim K. J., Fane A. G., Fell C. J. D., et al., Fouling mechanisms of membranes during protein ultrafiltration, Journal of Membrane Science, 1992, 68(1-2): 79~91
    [3] Katsoufidou K., Yiantsios S. G., Karabelas A. J., A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling, Journal of Membrane Science, 2005, 266(1-2): 40~50
    [4] Mockel D., Staude E., Guiver M. D., Static protein adsorption, ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes, Journal of Membrane Science, 1999, 158(1-2): 63~75
    [5] Bae T. H., Tak T. M., Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, Journal of Membrane Science, 2005, 249(1-2): 1~8
    [6] Ochoa N. A., Masuelli M., Marchese J., Development of charged ion exchange resin-polymer ultrafiltration membranes to reduce organic fouling, Journal of Membrane Science, 2006, 278(1-2): 457~463
    [7] Susanto H., Ulbricht M., Influence of ultrafiltration membrane characteristics on adsorptive fouling with dextrans, Journal of Membrane Science, 2005, 266(1-2): 132~142
    [8] Sigal G. B., Mrksich M., Whitesides G. M., Effect of surface wettability on the adsorption of proteins and detergents, Journal of the American Chemical Society, 1998, 120(14): 3464~3473
    [9] Bhat R. R., Chaney B. N., Rowley J., et al., Tailoring cell adhesion using surface-grafted polymer gradient assemblies, Advanced Materials, 2005, 17(23): 2802~2807
    [10] Ma H., Li D., Sheng X., et al., Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization, Langmuir, 2006, 22(8): 3751~3756
    [11] Sharma S., Popat K. C., Desai T. A., Controlling nonspecific protein interactions in silicon biomicrosystems with nanostructured poly(ethylene glycol) films, Langmuir, 2002, 18(23): 8728~8731
    [12] Chuang W. Y., Young T. H., Chiu W. Y., The effect of acetic acid on the structure and filtration properties of poly (vinyl alcohol) membranes, Journal of Membrane Science, 2000, 172(1-2): 241~251
    [13] Chuang W. Y., Young T. H., Chiu W. Y., et al., The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes, Polymer, 2000, 41(15): 5633~5641
    [14] Zhang Y. Z., Li H. Q., Li H., et al., Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes, Desalination, 2006, 192(1-3): 214~223
    [15] 陆晓峰,陈仕意,李存珍等,表面活性剂对超滤膜表面改性的研究,膜科学与技术,1997,17(4):35~40
    [16] Randona J., Blancb P., Patersona R., Modification of ceramic membrane surfaces using phosphoric acid and alkyl phosphonic acids and its effects on ultrafiltration of BSA protein, Journal of Membrane Science, 1995, 98(1-2): 119~129
    [17] Hyun J., Jang H., Kim K., et al., Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains, Journal of Membrane Science, 2006, 282(1-2): 52~59
    [18] Wei J., Helm G. S., Corner-Walker N., et al., Characterization of a non-fouling ultrafiltration membrane, Desalination, 2006, 192(1-3): 252~261
    [19] Hester J. F., Banerjee P., Mayes A. M., Preparation of protein-resistant surfaces on poly (vinylidene fluoride) membranes via surface segregation, Macromolecules, 1999, 32(5): 1643~1650
    [20] Wang Y., Wang T., Su Y., et al., Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly (ethersulfone) ultrafiltration membranes by blending with Pluronic F127, Langmuir, 2005, 21(25): 11856~11862
    [21] Bottino A., Capannelli G., Comite A., Novel porous membranes from chemically modified poly (vinylidene fluoride), Journal of Membrane Science, 2006, 273(1-2): 20~24
    [22] Shoichet M. S., Winn S. R., Gentile F. T., et al., Poly(ethylene oxide)-grafted thermoplastic membranes for use as cellular hybrid bio-artificial organs in the central nervous system, Biotechnology and Bioengineering, 1994, 43(7): 563~572
    [23] Gancarz I., Po?niak G., Bryjak M., Modification of polysulfone membranes 3. Effect of nitrogen plasma, European Polymer Journal, 2000, 36(8): 1563~1569
    [24] Ulbricht M., Belfort G., Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone, Journal of Membrane Science, 1996, 111(2): 193~215
    [25] Pieraccia J., Crivellob J. V., Belfort G., Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling, Journal of Membrane Science, 1999, 156(2): 223~240
    [26] Taniguchi M., Belfort G., Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type, Journal of Membrane Science, 2004, 231(1-2): 147~157
    [27] Mok S., Worsfold D. J., Fouda A., et al., Surface modification of polyethersulfone hollow-fiber membranes by γ-ray irradiation, Journal of Applied Polymer Science, 1994, 51(1): 193~199
    [28] 陆晓峰,汪赓华,梁国明等,聚偏氟乙烯超滤膜的辐照接枝改性研究,膜科学与技术,1998,18(6):54~57
    [29] L. Deng, M. Mrksich, G. M. Whitesides, Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein, Journal of the American Chemical Society, 1996, 118(21): 5136~5137
    [30] Holmlin R. E., Chen X., Chapman R. G., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir, 2001, 17(9): 2841~2850
    [31] Ostuni E., Chapman R. G., Holmlin R. E., et al., A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir, 2001, 17(18): 5605~5620
    [32] Ostuni E., Chapman R. G., Liang M. N., et al., Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir, 2001, 17(20): 6336~6343
    [33] Iwasaki Y., Ishihara K., Phosphorycholine-containing polymers for biomedical applications, Analytical and Bioanalytical Chemistry, 2005, 381(12): 534~546
    [34] Ishihara K., Nakabayashi N., Fukumoto K., Improvement of blood compatibility on cellulose dialysis membrane, Biomaterials, 1992, 13(3): 145~149
    [35] Ye S. H., Watanabe J., Iwasaki Y., Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system, Journal of Membrane Science, 2002, 210(2): 411~421
    [36] Ishihara K., Fukumoto K., Iwasaki Y., et al., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization, Biomaterials, 1999, 20(17): 1545~1551
    [37] Xu Z., Dai Q., Wu J., et al., Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach, Langmuir, 2004, 20(4), 1481~1488
    [38] Wang T., Wang Y. Q., Su Y. L., et al., Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer, Journal of Membrane Science, 2006, 280(1-2): 343~350
    [39] Yoshikawa C., Goto A., Tsujii Y., et al., Protein repellency of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes by the size-exclusion effect, Macromolecules, 2006, 39(6): 2284~2290
    [40] Currie E. P. K., Norde W., Cohen Stuart M. A., Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties, Advances in Colloid and Interface Science, 2003, 100-102: 205~265
    [41] Hancock L. F., Fagan S. M., Ziolo M. S., Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer, Biomaterials, 2000, 21(7): 725~733
    [42] Kim Y. W., Ahn W. S., Kim J. J., et al., In situ fabrication of self-transformable and hydrophilic poly (ethylene glycol) derivative-modified polysulfone membranes, Biomaterials, 2005, 26(16): 2867~2875
    [43] Nie F. Q., Xu Z. K., Ye P., et al., Acrylonitrile-based copolymer membranes containing reactive groups: effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility, Polymer, 2004, 45(2): 399~407
    [44] Gholap S. G., Badiger M. V., Gopinath C. S., Molecular origins of wettability of hydrophobic poly (vinylidene fluoride) microporous membranes on poly (vinyl alcohol) adsorption: surface and interface analysis by XPS, the Journal of Physical Chemistry B, 2005, 109(29): 13941~13947
    [45] Barrett D. A., Hartshorne M. S., Hussain M. A., et al., Resistance to nonspecific protein adsorption by poly(vinyl alcohol) thin films adsorbed to a poly(styrene) support matrix studied using surface plasmon resonance, Analytical Chemistry, 2001, 73(21): 5232~5239
    [46] Kozlov M., Quarmyne M., Chen W., et al., Adsorption of poly(vinyl alcohol) onto hydrophobic substrates. A general approach for hydrophilizing and chemically activating surfaces, Macromolecules, 2003, 36(16): 6054~6059
    [47] Kim J. H., Kim C. K., Ultrafiltration membranes prepared from blends of polyethersulfone and poly(1-vinylpyrrolidone-co-styrene) copolymers, Journal of Membrane Science, 2005, 262(1-2): 60~68
    [48] Wang Y., Su Y., Ma X., et al., Pluronic polymers and polyethersulfone surface segregated membranes with improved fouling-resistant ability and ultrafiltration performance, Journal of Membrane Science, 2006, 283(1-2): 440~447
    [49] Wang Y., Su Y., Sun Q., et al., Generation of anti-fouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone, Journal of Membrane Science, In Press
    [50] Irvine D. J., Ruzette A. V. G., Mayes A. M., Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide, Biomacromolecules, 2001, 2(2): 545~556
    [51] Walton D. G., Mayes A. M., Entropically driven segregation in blends of branched and linear polymers, Physical Review E, 1996, 54(3): 2811-2815
    [52] Dhaliwal A. K., Hay J. N., The characterization of polyvinyl butyral by thermal analysis, Thermochimica Acta, 2002, 391(1-2): 245~255
    [53] Shen F., Lu X. F., Bian X. K., et al., Preparation and hydrophilicity study of poly (vinyl butyral)-based ultrafiltration membranes, Journal of Membrane Science, 2005, 265(1-2): 74~84
    [54] Shakesheff K. M., Evora C., Soriano I., et al., The adsorption of poly(vinyl alcohol) to biodegradable microparticles studied by X-ray photoelectron spectroscopy (XPS), Journal of Colloid and Interface Science, 1997, 185(2): 538~547
    [55] Coupe B., Chen W., A new approach to surface functionalization of fluoropolymers, Macromolecules, 2001, 34(6): 1533~1535
    [56] De Witt J. A., Van de Ven T. G. M., Kinetics and reversibility of the adsorption of poly(vinyl alcohol) onto polystyrene latex particles, Langmuir, 1992, 8(3): 788~793
    [57] Serizawa T., Hashiguchi S., Akashi M., Stepwise assembly of ultrathin poly(vinyl alcohol) films on a gold substrate by repetitive adsorption/drying processes, Langmuir, 1999, 15(16): 5363~5368
    [58] Serizawa T., Kamimura S., Kawanishi N., et al., Layer-by-layer assembly of poly(vinyl alcohol) and hydrophobic polymers based on their physical adsorption on surfaces, Langmuir, 2002, 18(22): 8381~8385
    [59] Irvine D. J., Mayes A. M., Griffith L. G., Nanoscale clustering of RGD peptides at surfaces using comb polymers. 1. Synthesis and characterization of comb thin films, Biomacromolecules, 2001, 2(1): 85~94
    [60] Ma H., Bowman C. N., Davis R. H., Membrane fouling reduction by backpulsing and surface modification, Journal of Membrane Science, 2000, 173(2): 191~200