渤海寒潮风暴潮增水风险的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风暴潮灾害居各类海洋灾害之首,世界上绝大多数因强天气系统引起的特大海岸灾害都是由风暴潮造成的。在我国,风暴潮灾害几乎遍及我国沿海,从南到北均有发生。在纬度比较低的东南沿海地区,风暴潮灾害主要发生于夏秋季节,多由在西北太平洋上生成的台风或热带气旋引起;而在像渤海这样纬度比较高的海域,其受到台风或热带气旋影响的机率较低,但在秋冬过渡或冬春过渡季节极易受到寒潮的影响在其沿岸造成持续而不急剧的风暴潮增水(为方便研究,本文将此类风暴潮称为寒潮风暴潮)。
     本文通过分析影响我国渤海地区的寒潮的特征要素,从中归纳提取出三个有利于计算风暴潮增水的要素,在对这些要素进行敏感性分析之后,按照寒潮的四个主要路径将影响渤海地区的寒潮划分为四大类,并且在每一路径下分别考虑五个不同强度的寒潮情景,合理地构造了20个寒潮情景以刻画影响渤海地区寒潮的真实情况。在此基础上使用FVCOM模式对渤海中由寒潮引发的风暴潮进行了数值模拟,发现寒潮风暴潮主要对渤海的西南沿岸造成危害,其中受灾最严重的区域为渤海湾顶部,其次为莱州湾顶部区域。由不同路径下寒潮所引发的风暴潮的特点亦各不相同,其中北路和西北路寒潮同时在渤海湾和莱州湾地区引起增水,且北路寒潮造成的风暴潮灾害最严重;东北路寒潮易在渤海湾造成显著增水;而西路寒潮仅在莱州湾地区形成较严重的增水。在讨论了渤海风暴潮增水极值的分布情况之后,本文对渤海沿岸受风暴潮影响比较严重的三个地区的风暴潮增水风险进行了分析。为具体研究寒潮风暴潮在受灾地区造成的漫滩风险,本文选取受学者关注较多的塘沽地区和黄河三角洲地区做示范性研究,并将这两个地区的漫滩灾害根据诱发风暴潮的寒潮情景强度的不同划分为五个级别。为了克服极值水位和增水风险的概率分布两者的缺点,更直观合理的表现出风暴潮灾害沿渤海沿岸的分布情况,本文引入风暴潮水位超过某一预定警戒值的时间来描述其风险大小,通过构造新的增水风险计算方案,用简单直观的方式表现出渤海沿岸的风暴潮风险分布情况。
     然而风暴潮不仅取决于诱其发生的气象条件,还会受到局地海岸线及地形变化、气候变化导致的海平面上升、地下水等诸多因素的影响。为研究近年来渤海中黄河三角洲地区和曹妃甸地区的岸线变化对风暴潮的影响,本文着眼于这两处区域在1976年、2010年及2030年三个时期的岸线形状,并对这三个时期渤海的寒潮风暴潮情况进行了模拟。通过对不同时期渤海中的天文潮水位、寒潮风暴潮的增水极值和风暴潮增水风险进行计算、模拟与分析后发现:当渤海岸线仅在本文所考虑的区域发生变化时,在渤海湾中的天文潮水位、寒潮风暴潮增水极值和风暴潮增水风险都呈下降趋势,因此其风暴潮的总体风险亦应呈下降趋势:而在莱州湾地区天文潮水位、增水极值及风暴潮增水风险(此处为新方案的结论)均呈增加趋势,故该区域的风暴潮总体风险亦呈增加趋势。
Storm surge can be ranked as the most serious disaster among the marine disasters.Most of the serious disasters that occurred along the coastal zone are associated with storm surges induced by extreme weather systems.In China, almost all the coastal zones are susceptible to storm surges. In the coastal zone of the south-east part of China, storm surges are usually induced by typhoons or tropical cyclones that generate over the northwestern Pacific, but in the Bohai Sea, which is located in the high latitude and seldom affected by typhoons and tropical cyclones, storm surges caused by cold-air outbreaks in winter usually lead to a sustained significant sea level rising along the south-western coastal zone.
     By analyzing the characteristics of cold-air outbreaks, three typical characteristics are summarized to calculate the storm surge.After the sensitivity experiment with these characteristics, the cold-air outbreaks are divided into four categories according to the major track by which they attack China, and in each category there are one control scenario and four more extended scenarios. Therefore,the cold-air outbreaks over the Bohai Sea are described by these 20 scenarios.Base on these cold-air scenarios, storm surges induced by cold-air outbreaks in the Bohai Sea are modeled by FVCOM.It is find that the tops of the Bohai Bay and the Laizhou Bay are most seriously affected by the storm surges in the Bohai Sea.The characteristics of storm surges change with the tracks of cold-air outbreaks.The cold-air outbreaks from the NW and N track could place both the Bohai Bay and the Laizhou Bay at risk, the cold-air outbreaks from NE track usually lead significant water level rising to the top of Bohai Bay, but the ones from W track can only affect the Laizhou Bay. After the discussion of the water level rising induced by cold-air outbreaks, the risk of storm surge in Tanggu, Huanghua and Yangjiaogou is analyzed.As the most concerned areas, the risk of inundation in Tanggu and the Yellow River Delta is investigated respectively according to the strength of the cold-air outbreaks. In order to estimate the risk along the coast more reasonably, the time period that the water level exceeds a given threshold is involved.Based on the function considering the surge elevation, the probability of the storm surge scenarios and the time period mentioned above, the risk along the coast of the Bohai Sea is estimated, and the distribution of risk of storm surge along the Bohai Sea can be presented easily and clearly by this method.
     Strom surges are not only determined by the atmospheric forcing, but also influenced by many other factors, such as the coastal geometry and bathymetry, sea level rising caused by climate change and underground water. As the coastline of the Bohai Sea has changed evidently in the Caofeidian area and Yellow River Delta these years, storm surges in the Bohai Sea may have some new characteristics due to the local changing of the geometry. To find out these new characteristics, the influence of the changes in coastal geometry on storm surges is primarily investigated by numerical methods by involving the coastline of the Bohai Sea during 1976,2010 and 2030.By comparing the amplitude of astronomic tide, the distribution of maximum surge elevation and the risk of the storm surge during different periods, the main changes made by the variation of the coastline in Caofeidian and the Yellow River Delta can be found in the Bohai Bay and the Laizhou Bay. In the Bohai Bay, the amplitude of astronomic tide, the distribution of maximum surge elevation and the risk of the storm surge are all found decreasing with the changing of coastline, however, in the Laizhou Bay, all these terms are enhanced by the changing Yellow River Delta.
引文
[1]Austria, P. M., and A.A.Aldama. Adaptive mesh scheme for free surface flows with moving boundaries. In G. Gambolati, A. Rinaldo, C.A. Brebbiam, W. G. Fray, and G. F. Pinder (eds.), Computational methods in Surface Hydrology, Springer-Verlag, New York. 1990,456~460.
    [2]Blumberg, A. F.,and G. L. Mellor. A description of a three-dimensional coastal ocean circulation model. In Three-Dimensional Coastal Ocean Models, (edited by N.Heaps) American Geophysical Union, Washington, D.C.,1987,1~16.
    [3]Blumberg, A. F. A primer for Ecom-si. Tech. Rep.,HydroQual, Inc.,1994.66pp.
    [4]Bowler, N., A. Arribas, R. Kenneth, et al. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc.,2008,134:703~722.
    [5]Haidvogel, D.,J.Wilkin, and R. Young. A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comput. Phys.,1991,94:151~184.
    [6]Bondesan, M., G. B.Castiglioni, C. Elmis, et al.Coastal areas at risk from storm surges and sea-level rise in northeastern Italy.J. Coast. Res.,1995,11:1354-1379.
    [7]Chen, C., H. Liu, and R. C. Beardsley. An unstructured, finite-volume, three-dimensional, primitive equation ocean model:Application to coastal ocean and estuaries. J. Atmos. and Oceanic Tech.,2003,20:159~186.
    [8]Chu, Z,X. Sun, S.Zhai, et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China:based on remote sensing images. Mar. Geol.,2006, 227(1-2):13~30.
    [9]Davies,A.M. and J.E. Jones. A three-dimensional wind driven circulation model of the Celtic and Irish Seas. Cont Shelf Res.,1992,12(1):159~188.
    [10]Debernard, J.,and L. Rφed. Future wind, wave and storm surge climate in the Northern Seas:a revisit. Tellus,2008,60A:427~438.doi:10.1111/j.1600-0870.2008.00312.x
    [11]Dick, E. Introduction to finite-volume techniques in computational fluid dynamics. In Computational Fluid Dynamics, ed. by J. F. Wendt, Springer.1994, p.271~297.
    [12]Hubbert, G. D., and K. L. Mcinnes.A Storm Surge Inundation Model for Coastal Planning and Impact Studies. J. Coas. Res.,1999,15(1),168~185.
    [13]Ding, Y. and T. N. Krishnamurti. Heat budget of the Siberian High and the Winter Monsoon. Mon. Wea. Rev.,1987,115:2428~2449.
    [14]Dube, S. K., I. Jain, and A. D. Rao. Recent development in storm prediction models for the north Indian ocean. Powerpoint, JCOMM Scientific and Technical Symposium on Storm Surges, Seoul, Korea Rep,2007.
    [15]Dutta S.,M. Chakraborty, and S.Panigrahy. Computation of Storm-Surge Damage Using Distributed Models and Remote Sensing Data:A Case Study for the Super Cyclone in Orissa State,India. IEEE Transactions on Geoscience and Remote Sensing,2002,40(2): 497~499.
    [16]Flather, R. A.A numerical model investigation of the storm surge of 31 January and 1 February 1953 in the North Sea. Quarr. J. R. Met. SOC.,1984,110:591~612.
    [17]Flather, R. A.A storm surge prediction model for the northern bay of Bengal with application to the cyclone disaster in April 1991.J. Phys. Oceanogr.,1994,24:172~190.
    [18]Flather, R. A.Existing operational oceanography. Coast. Eng.,2000,41:13~40.
    [19]Flather,R. A.,and A.M. Davies. Note on a preliminary scheme for strom surge prediction using numerical models. Quarr. J. R. Met. SOC.,1976,102:123~132.
    [20]Flather, R. A.,and N.S.Heaps. Tidal computations for Morecambe Bay. Geophys. J. Roy. Astr. Soc.,1975,42:489~517.
    [21]Galperin, B.,L. H. Kantha, S.Hassid, et al.A quasi-equilibrium turbulent energy model for geophysical flows.J.Atmos. Sci.,1988,45:55~62.
    [22]Heaps, N.S.Storm surges on a continental shelf. Philos.T. Roy. Soc. A,1965,257:351~ 383.
    [23]Heaps, N.S. A two-dimensional numerical sea model.Philos. T. Roy. Soc. A,1969,265: 93-137.
    [24]Heaps, N. S.Storm surges,1967-1982.Geophys. J. Roy. Astron.Soc.,1987,74,331~ 376.
    [25]Higaki, M., and H.Hayashibara. Operational Storm Surge Forecasting at Japan Meteorological Agency. Powerpoint, JCOMM Scientific and Technical Symposium on Storm Surges, Seoul, Korea Rep,2007.
    [26]India Met. Department:Annual WWW Technical Progress Report On the Global Data Processing and Forecasting System 2004. India Met. Department. New Delhi,2004.
    [27]Isobe, A., and R. C.Beardsley. An estimation of the cross-frontal transport at the shelf break of the East China Sea with the Finite Volume Coastal Ocean Model, J. Geophys. Res., 2006,111, C03012, doi:10.1029/2005JC003290.
    [28]Ip, J. T. C.,D. R. Lynch, and C.T. Friedrichs. Simulation of estuarine flooding and dewatering with application to Great Bay, New Hampshire. Estua. Coast. Shelf Sci.,1998, 47:119~141.
    [29]Jelesnianski, C.P.Numerical computations of storm surges without bottom stress. Mon. Weather Rev.,1966,94(6):379~394.
    [30]Jelesnianski, C.P. Numerical computations of storm surges with bottom stress. Mon. Weather Rev.,1967,94(11):740~756.
    [31]Jelesnianski, C.P. SPLASH(Special program to list amplitudes of surge from hurricanes): I.Landfall stroms. NOAA Technical Memorandum NWS TDL-46.Washington:NOAA, NWS,1972.
    [32]Jelesnianski, C.P.,J. Chen, W. A. Shaffer. SLOSH:Sea, Lake, and Overland Surges from Hurricanes. NOAA Technical Report NWS 48.Washington:NOAA,NWS,1992.
    [33]Johns, B.,and M. A. Ali. The numerical modelling of storm surges in the Bay of Bengal. Quart. J. R. Met. Soc.,1980,106:1~18.
    [34]Johns, J. E. and A. M. Davies. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction. Cont. Shelf Res., 1998,18:201~251.
    [35]Johns, J. E. and A. M. Davies.Influence of wave-current interaction, and high frequency forcing upon storm induced currents and elevations.Estuar. Coast. Shelf S.,2001,53(4): 397~413.
    [36]Johns, J. E. and A.M. Davies. On conbing current observations and models to investigate the wind induced circulation of the eastern Irish Sea. Cont. Shelf Res.,2003,23:415~434.
    [37]Johns, J. E. and A.M. Davies. Influence of wind field and open boundary input upon computed negative surges in the Irish Sea. Cont. Shelf Res.,2004,24:2045~2064.
    [38]Karim, M.F.,and N. Mimura. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Global Environ. Chang.,2008,18:490~500.
    [39]Large, W. G., and S. Pond. Open ocean momentum fluxes in moderate to strong winds. J. Phys. Oceanogr.,1981,11:324~336.
    [40]Leendertse, J.J. A water-quality simulation model for well-mixed estuaries and coastal seas: principles of computation. Rand Corporation Report RM-6230-RC,Vol. Ⅰ.1970.
    [41]Leendertse, J. J. Aspects of SIMSYS2D, a system for two-dimensional flow computation. Rand Corporation Report R-3572-USGS.1987.
    [42]Lynch, D. R., and C.E. Naimie. The M2 tide and its residual on the outer banks of the Gulf of Maine. J. Phys. Oceanogr.,1993,23:2222~2253.
    [43]Lynch, D.R., and W. G. Gray.Finite element simulation of flow in deforming regions. J.Comput. Phys.,1980,36:135~153.
    [44]Mcinnes, K. L., K. J. E. Walsh, G.D. Hubbert, et al. Impact of Sea-level Rise and Storm Surges on a Coastal Community. Natural Hazards,2003,30:187~207.
    [45]Mellor, G. L.,and T. Yamada. Development of a turbulence closure models for geophysical fluid problem. Rev. Geophys. Space. Phys.,1982,20:851~875.
    [46]Mercer, D.,J. Sheng, R. J.Greatbatch, et al.Barotropic waves generated by storms moving rapidly over shallow water, J. Geophys. Res.,2002,107(C10),3152,doi:10.1029/2001JC0 01140.
    [47]Murty, T. S.Storm surges in the Marginal Seas of the North Indian Ocean. Proceedings of the WMO/Unesco Sub-forum on Science and Technology in Support of Natural Disaster Reduction. Geneva, Switzerland,1999.
    [48]Naimie, C. E. Georges Bank residual circulation during weak and strong stratification periods:prognostic numerical model results.J.Geophys. Res.,1996,101(C3):6469~ 6486.
    [49]Raber, G. T., and J. A.Tullis. Rapid Assessment of Storm-Surge Inundation after Hurricane Katrina Utilizing a Modified Distance Interpolation Approach.GIScience & Remote Sensing,2007,44(3):220~236.
    [50]Shi, F.,and W. Sun. A variable boundary model of storm surge flooding in generalized curvilinear grids. International J.Num. Meth. in Fluids,1995,21:641~651.
    [51]Shi, F., W. Sun, and G.Wei. A WDM method on a generalized curvilinear grid for calculation of storm surge flooding. Applied Ocean Research,1997,19:275~282.
    [52]Siden, G. L. D., and D. R. Lynch. Wave equation hydrodynamics on deforming elements. International J. Num. Meth. in Fluids,1988,8:1071~1093.
    [53]Steers, J.A., D. R. Stoddart, T. P. Bayliss_Smith, et al.The Storm Surge of 11 January 1978 on the East Coast of England. The Geogra. J.,1979,145:192~205.
    [54]Storch, H. V.,and H. Reichardt. A Scenario of Storm Surge Statistics for the German Bight at the Expected Time of Doubled Atmospheric Carbon Dioxide Concentration. J. Climate, 1997,10:2653~2662.
    [55]Tatsuo, K., and T. Yoshinobu. Analyses of storm surges in the western part of the Seto Inland Sea of Japan caused by Typhoon 9119. Cont. Shelf Res.,1995,15:1795~1823.
    [56]Verlaan, M., A.Zijderveld, H.D. Vries, et al. Operational storm surge forecasting in the Netherlands:developments in the last decade. Phil.Trans. R. Soc.,2005,363:1441~1453.
    [57]Wanstrath, J. J.,R. E. Whitaker, R. O. Reid, et al. Storm surge simulation in transformed coordinates, Vol.1,Theory and application. Corps of Engineers Technical Report No.76-3, U.S.Army Coastal Engineering Research Center,1976.
    [58]Weisberg, R. H.,and L. Zheng. Hurricane Storm Surge Simulations for Tampa Bay. Estua. Coast.,2006,29(6A):899~913.
    [59]Weisberg, R. H., and L. Zheng. Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida region, J.Geophys. Res.,2008,113, C12001,doi:10.1029/2008JC0 05115.
    [60]Zheng, L., C.Chen, and H. Liu. A modeling study of the Satilla River Estuary, Georgia. Part Ⅰ:flooding/drying process and water exchange over the salt marsh-estuary-shelf complex. Estua. Coast.,2003,26 (3):651~669.
    [61]丁燕,史培军.台风灾害的模糊风险评估模型.自然灾害学报,2002,11(1):34~43.
    [62]房浩,李善峰,叶晓滨.天津风暴潮经济损失评估.海洋环境科学,2007,26(3):271~274.
    [63]冯士榨.风暴潮导论.北京:科学出版社.1982.2~4pp.
    [64]冯士榨,施平.含变涡动系数的超浅海风暴潮模型.海洋学报,1980,2(3):1~11.
    [65]黄大吉,苏纪兰.黄河三角洲岸线变迁对莱州湾流场和对虾早期栖息地的影响.海洋学报,2002,24(6):104~111.
    [66]黄祖珂.渤海的潮波系统及其变迁.青岛海洋大学学报,1991,21(2):1~12.
    [67]纪新燕,熊艺媛,麻荣永.风暴潮灾害损失评估的模糊综合方法.广西水利水电,2007,2:16~19.
    [68]乐肯堂.我国风暴潮灾害风险评估方法的基本问题.海洋预报,1998,15(3):38~44.
    [69]乐肯堂,周参武.黄河口的变迁对滨海大陆架区流场变化的影响.海洋科学集刊,1995.36:93~109.
    [70]梁海燕,邹欣庆.海口湾沿岸风暴潮风险评估.海洋学报,2005,27(5):22~29.
    [71]秦曾灏,冯士榨.浅海风暴潮动力机制的初步研究.中国科学,1975,1:64~78.
    [72]史峰岩,孙文心.渤海局部海域风暴潮漫滩的数值模拟.海洋与湖沼,1993,24:16~23
    [73]孙文心,冯士筰,秦曾灏.超浅海风暴潮的数值模拟(一)—零阶模拟对渤海风潮的初步应用.海洋学报,1979,1(2):193~211.
    [74]孙文心,江文胜,李磊.近海环境流体动力学数值模型.北京:科学出版社.2004.4~246pp.
    [75]孙文心,秦曾灏,冯士榨.超浅海风暴潮的数值模拟(Ⅱ)—渤海风潮的一阶模型.山东海洋学院学报,1980,10(2):7~19.
    [76]孙英兰.超浅海风暴潮的一个联合模型及其对渤海风潮的初步应用.山东海洋学院学报,1984,14(1):54~67.
    [77]王斌.曹妃甸围海造地二维潮流数值计算及滩槽稳定性研究:[硕士学位论文].南京:河海大学港口海岸及近海工程系,2007.
    [78]汪景庸.风暴潮数值预报.见:冯士榨,孙文心.物理海洋数值计算.河南:河南科学技术出版社,1992:197~218pp.
    [79]王秀芹,钱成春,王伟.计算域和选取对风暴潮数值模拟的影响.青岛海洋大学学报.2001,31(3):319~324.
    [80]王子今.汉代“海溢”灾害.史学月刊,2005,7:26~30.
    [81]吴德星,秦曾灏.改进的超浅海风暴潮联合模型及其试验.地球物理学报,1985,28(3):233~244.
    [82]伍荣生.现代天气学原理.北京:高等教育出版社,1999.224~226pp.
    [83]吴少华,王喜年等.渤海风暴潮概况及温带风暴潮数值模拟.海洋学报,2002,24:28~34.
    [84]吴巍,孙文心.渤海局部海域风暴潮漫滩计算模式—ADI干湿网格模式在渤海局部海域风暴潮漫滩计算中的应用.青岛海洋大学学报,1991,25(2):146~152.
    [85]许启望,谭树东.风暴潮灾害经济损失评估方法研究.海洋通报,1998,17(1):1~12.
    [86]杨大升,刘余滨,刘式适.动力气象学(修订本).北京:气象出版社,1983.124~137pp.
    [87]闫丽凤,江文胜等.0703温带气旋特大风暴潮数值模拟对比分析.应用气象学报,2008,19:595~601.
    [88]尹宝树等.黄河三角洲沿岸海浪风暴潮耦合作用漫堤风险评估研究.海洋与湖沼,2006,37(5):457~463.
    [89]尹延鸿,周永青,丁东.黄河三角洲海岸演化研究.海洋通报,2003,23(2):32~40.
    [90]尹延鸿.对河北唐山曹妃甸浅滩大面积填海的思考.海洋地质动态,2007,23(3):1~10.
    [91]尹延鸿.曹妃甸浅滩潮道保护意义及曹妃甸新老填海规划对比分析.现代地质,2009,23(2):200~209.
    [92]于福江,吴炜.“10.11”渤海特大温带风暴潮过程数值模拟.“10.11”渤海特大温带风暴潮研讨会材料,河北沧州,2003.
    [93]于福江,张占海.一个东海嵌套网格台风暴潮数值预报模式的研制与应用.海洋学报,2002,24:23~33.
    [94]张金善,李鑫,章卫胜.寒潮作用下渤海潮流场变异特征研究.2008年风暴潮灾害防治及海堤工程技术研讨会论文集.北京:水利水电出版社.2008,202-214.
    [95]张俊香,黄崇福,刘旭拢.广东沿海台风暴潮灾害的地理分布特征和风险评估(1949-2005).应用基础与工程科学学报,2008,16(3):393-402.
    [96]张晓慧.渤海大风统计特征及物理机制分析:[硕士学位论文].青岛:中国海洋大学气象系,2003.
    [97]赵滨.黄河口附近风暴潮漫滩的多年一遇长期预测:[硕士学位论文].青岛:中国海洋大学海洋系,2000.
    [98]赵庆良等.沿海城市风暴潮灾害风险评估研究进展.地理科学进展,2007,26(5):32-40.
    [99]朱乾根,林锦瑞,寿绍文,唐东异.天气学原理和方法(第三版).北京:气象出版社,2000.266~305pp.