压力旋流喷嘴设计和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对目前工业上所采用的压力旋流喷嘴未能有效系列化的问题,在查阅大量相关文献的基础上,设计了一系列不同结构的旋流喷嘴,并利用高速摄像系统和APV激光测试系统,对不同操作参数和结构参数下喷嘴的内外流场进行冷态实验,进而分析总结出压力旋流喷嘴的设计流程。实验得到如下结论:操作压力小于0.05MPa时,出口空心度与雾化锥角均随操作压力增加而明显增大;操作压力达到0.15MPa后,喷嘴达到稳定工作状态,出口空心度与雾化锥角均逐渐趋于稳定值。随喷嘴出口长度和出口直径增加,出口空心度增大趋势较为明显,但随旋流室锥角增加,出口空心度变化不大。出口长度增加使雾化锥角逐渐减小;出口直径增加使雾化锥角逐渐增大;而旋流室锥角对雾化锥角影响不明显。随出口长度和出口直径的增加,雾锥边缘液滴索太尔直径SMD变化不大,而中部液滴SMD逐渐减小。出口长度、出口直径和旋流室锥角的增加均使截面粒径跨度SPAN增加,但出口直径的影响最为明显。对实验数据进行不同格式的拟合分别得到:特征结构参数δ与出口空心度μ,出口旋流度S0与雾化锥角β正切值,以及特性结构参数ε与-200mm截面平均SMD的经验关系式。实验数据对旋流喷嘴设计和现场应用具有重要指导意义。为深化对旋流喷嘴内流场形态的认识,论文应用FLUENT 6.0软件对的其进行了三维数值模拟,并与实验结果进行比较验证了所选用计算模型的合理性。
Aiming at the problem that the swirling nozzle has not been set on series properly in industry, based on numerous literatures, a series of different swirling nozzles were designed. With the help of 504KC high-speed camera and APV laser system, experiments were carried out to study the inner and outer flow fields under different operating condition and structural parameters, and then to summarize the whole design process of pressure swirling nozzles. Conclusions as follows were drawn from the experimental results. When the operating pressure was less than 0.5MPa, the orifice hollow rate and atomization angle increased visibly; after operating pressure exceeded 0.15MPa, swirling nozzles reached stable work state, and the orifice hollow rate and atomization angle tended to achieve constants respectively. The increase of orifice length and diameter caused evident rise to orifice hollow rate, while the angle of swirling chamber brought little effect on it. The increase of orifice length leaded to the decrease of atomization angle, but the orifice diameter did the opposite effect, and the influence of swirling chamber angle was also not obvious. As the orifice length and width augmented, SMD of the edge did not change a lot, while SMD of center declined gradually. Orifice length, orifice diameter and swirling chamber angle all could make SMD span rise, but the impact of orifice width was the most evident factor. The experimental data were regressed with different format to find out the relationship between structural parameterδand orifice hollow rateμ, orifice swirling rate S0 and the tangent value of atomization angleβ, and structural parameterεand mean SMD on the -200mm section. Experimental result was of great significance to nozzle design and industrial application. In order to further the knowledge on inner flow field, FLUENT6.0 was applied to simulate the inner flow field in a swirling nozzle. By comparing with those experiment results, it was confirmed that the calculating model selected was available.
引文
[1]张殿印,王纯.除尘工程设计手册[M].北京:化学工业出版社,2003:230
    [2]沈忠厚.水射流理论与技术[M].东营:石油大学出版社,1998:251-260
    [3]徐继润.水力旋流器流场理论[M].北京:科学出版社,1998:51-59.
    [4] S. Nonnenmacher, M. Piesche. Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids[J].Chemical Engineering Science,2000,(55): 4339-4348
    [5] M.R. Halder 1, S.K. Dash, S.K. Som. Initiation of air core in a simplex nozzle and the effects of operating and geometrical parameters on its shape and size[J]. Experimental Thermal and Fluid Science.2002,(26):871-878
    [6] Ponstein J.,Instability of Rotating Cylindrical jets[J].Appl.Sci.Res., 1960,(8):425
    [7] Lord Rayleigh.On the Instability of Jets[J].Proc.London Math.Soc., 1879,10(4)
    [8] Kang D J ,Lin S P. Breakup of a Swirling Liquid Jet[J],Int.J.Eng.Fluid Mech.,1989(2):47
    [9] Ibrahim E A. Effect of Swirl on Jet Atomization[J].AIAA J.1993,31(12): 2376
    [10] Wu C, Farokhi S.Spatial Instability of a Swirling Jet Theory and Experiment[J],AIAA J.1992,30(6):1545
    [11] Wang D. Finite Amplitudes Effect on the Stability of a Jet of Circular Cross Section[J].Fluid Mech,1968,34(3):299-305.
    [12] Chaudhary K, Rededopp L.The Nonlinear Capillary Instability of Liquid Jet, Part. 2, Experiments on the Jet Behaviors Before Droplet Formation [J].Fluid Mech.,1980,96(6):275-280.
    [13] Chaudhary K, Maxworthy T. The Nonlinear Capillary Instability of a Jet[J], Part 1.Teory,1980,96(4):257-262.
    [14] Shokoohi F, Elrod H. Numerical Investigation of the Disintegration of Liquid Jets[J].Computational Physics,1987,71(3):324-328.
    [15] Nonnenmacher S, Piesche M. Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids[J].Chemical Engineering Science,2000,55(3): 4339-4348.
    [16]林玉静.旋流喷嘴射流及其破碎机理的研究[D],天津:天津大学,1999
    [17]杨延相,林玉静,史绍熙.旋流喷嘴中空旋转射流近区域流动的研究[J].应用力学学报,2000,17(2):81-84
    [18]史绍熙,杜青,秦建荣,郝大光.液体射流破碎机理研究中的时间模式和空间模式[J].内然机学报,1999,17(3): 12-14
    [19]李兆东,王世和等.湿法烟气脱硫旋流喷嘴喷雾角实验研究[J].华东电力. 2005, 33(10):12-14
    [20]李兆东,王世和等.湿法烟气脱硫旋流喷嘴雾化特性研究[J].热能动力工程. 2006, 21(1):66-69
    [21]李兆东.湿法烟气脱硫旋流喷嘴雾化性能研究和数值模拟[D].南京东南大学,2004
    [22]徐震,王渺林等.喷嘴雾化对湿化器内空气加湿过程的影响[J].热力发电. 2006, (4):38-41
    [23]马素平,寇子明.用于喷雾降尘的压力雾化喷嘴设计研究[J].矿山机械. 2006, 34(1):67-68
    [24]石庆宏等旋转压力式喷嘴雾化特性的实验研究[J].高校化学工程学报. 2005, 19(6):851-854
    [25]陈明功.喷雾脱硫压力式雾化器的研究[J].安徽理工大学学报. 2003, 23(1)53-56:
    [26]邢小军.燃烧室内喷雾两相流场的实验研究[D],北京:北京航空航天大学,2000
    [27]平浚.射流理论基础及应用[M].北京:宇航出版社,1995:166-172
    [28] Hinze J. Q.Critical Speeds and Sizes of Liquid Globules[J].Applied Scientific Research,Mechanics,Martinus Nijhoff:273-288
    [29]侯凌云,侯晓春.喷嘴雾化手册[M].北京:中国石化出版社,2002:67-90
    [30]潘永康,王喜中编著.现代干燥技术[M].北京:化学工业出版社,2001:288-330
    [31] Brodkey, R.S.The Phenomena of Fluid Motions[J]. Provides excellent complementary material to Landau and Lifshitz, 1967,(8)737
    [32]傅维镳,张永康,王清安.燃烧学[M].北京:高等教育出版社,1989:384-405
    [33]《燃油喷嘴性能试验》标准编制组.《燃油喷嘴性能试验》标准,燃油喷嘴性能试验标准编制的几个问题[C].CSAA-2000-PC-039 00学术会议.2000
    [34]杨立军,葛明和,张向阳等.喷口长度对离心喷嘴雾化特性的影响[J].推进技术. 2005,26(3):209-214
    [35]袁恩熙.工程流体力学[M]北京:石油工业出版社.2002:91-100
    [36]吴望一.流体力学[M].北京:北京大学出版社.2004,(上):205-231,(下):1-50
    [37]陈锐等.气泡雾化喷嘴研究.高等学校工程热物理学会第五届学术会议[C].1994
    [38]姚增权,马进.简单旋流喷嘴设计[J].电力环境保护,2002,18(3):1-7
    [39] WD. Bachlor.Experimental Methods in Multiphase Flows[J].Int. J. Multiphase Flow,1994,20,Suppl:261-295
    [40] Amir A. Naqwi, Franz Durst, Gabriele Kraft.Sizing of Submicrometer Particles Using a Phase Doppler System[J].Appl.Opt.,1991,30(33):4903-4913
    [41]姚斌,秦俊,廖光煊.三维LDV/APV系统测量大尺度雾场的硬件布局参数及应用[J].中国科技大学学报,1997,27(3):471-476
    [42] TSI Incorporated.Instruction Manual.USA:TSI Inc.,1997:1-2
    [43]盛森芝,许宏庆,徐月亭等.飞速发展中的流动测量技术[C].第三届第三次全国气动实验测控自动化技术交流会上的报告.北京:北京大学特赛流动测量研究中心
    [44] Amir A. Naqiwi,Franz Durst.Light Scattering Applied to LDA and PDA Measurement,Part 1:“Theory and Numerical Treatments”.Part.Syst.Charact. 1991:245-258
    [45]沈熊.光多普勒流动测量技术(清华大学内部资料)[M].北京:清华大学出版社,2002:18-24, 47-49
    [46] Amir A. Naqwi, Rajan Menon. Xiaozhi Liu. A Rigorous for Design and Response Determination of Phase Doppler System[J].Fluid Mechanics Instruction Division, TSI Inc., St. Paul,MN 55164,USA.
    [47] Amir A. Naqiwi, Franz Durst. Light Scattering Applied to LDA and PDA Measurement, Part 2:“Computation Results and Their Discussion”, Part. Syst. Charact, 1992; 9: 66~80
    [48]崔运静,仇性启,马培勇等.LDV管道测速实验折射率问题分析[J].石油化工设备. 2005,16(1):17-19
    [49]崔运静,仇性启,王丽娟等.动态流场激光多普勒测试效果的影响因素[C].石油大学(华东)第二届研究生学术节,东营:石油大学(华东)研究生院,2004:1-3
    [50]王宗明,段希利,朱建国等.过程设备冷态流场激光测量示踪粒子选择与添加[J].石油化工设备.2003,32(4):11-12
    [51]周华,范明豪,杨华勇.旋芯喷嘴高效雾化特性测量研究[J].机械工程学报. 2004,40(8):110-114
    [52] J.O.Hinze.Turbulence Mc Graw-Hill Publishing Co,New York,1975
    [53]郭宽良等编著.计算传热学[M].合肥:中国科技大学出版社.1988
    [54]杨世铭.传热学[M].第三版.北京:高等教育出版社.1998
    [55] Yakhot V,Orzag S A.Renormalization group analysis of turbulence:basictheory[J].J Scent Compute.1986(1):3-11
    [56] M.R. Halder 1, S.K. Dash, S.K. Som. A numerical and experimental investigation on the coefficients of discharge and the spray cone angle of a solid cone swirl nozzle[J].Experimental Thermal and Fluid Science. 2004,(28):297-305
    [57] Jose A. Delgadillo, Raj K. Rajamani.A comparative study of three turbulence-closure models for the hydrocyclone problem[J].Int. J. Miner. Process.2005,(77):217-230
    [58]韩占忠,王敬,兰小平.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [59] Jose A. Delgadillo,Raj.K. Rajamani. Multiphase modelling of hydrocyclones-prediction of cut-size[J].Minerals Engineering. 2007,(20):395-406
    [60] M. Narasimha, Mathew Brennan, P.N.Holtham. Large eddy simulation of hydrocyclone—prediction of air-core diameter and shape[J].Int. J. Miner. Process.2006,(80):1–14
    [61] P.Wazel. Liquid Atomization[J]. International Chemical Engineering[J]. 1993,(20):46-60
    [62] Kang D J, Lin S P. Breakup of a Swirling Liquid Jet. Fluid Mech. 1989,2(1):47
    [63] Satoru Komori, Hiromasa Ueda. Turbulent Flow Structure in the Near Field of a Swirling Round Free Jet[J].Fluids.1985,28(7):2075
    [64]北京大学力学与工程科学系研究室.激光多普勒测速仪[M].北京:北京大学出版社,2003:15-16
    [65]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [66]冉景煜,张力,辛明道等.渐扩切向槽式低压旋流喷嘴流场的数值模拟[J].工程热物理学报. 2002,23(5):586~588.
    [67]岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟[J].工程热物理学报. 2003,24(5):888~890.
    [68]王国辉,蔡体敏,何国强等.一种旋流式喷嘴的实验和数值研究[J].推进技术. 2003,24(1):28-32
    [69]黎惠霖,阮伯如.射流技术及其应用[M].北京:机械工业出版社.1977:1-15
    [70] Jose A. Delgadillo , Raj K. Rajamani.A comparative study of three turbulence-closure models for the hydrocyclone problem[J].Int. J. Miner. Process. 2005, (77):217-230
    [71] TSI Incorporated.Instruction Manual.USA:TSI Inc.,1997: 1-2
    [72] Plateau, J., "Statique experimentale et theorique des liquides soumis aux seules for des moleclaires,"Theory of Sound.V o1.I1.Dover, New York, (1945)
    [73] Weber. C. Z., "Zum Zerfall eines Flussigkeitsstrahles," Mathematik and Mechanik,1931,(11)
    [74]曹建明.喷雾学[M]北京:机械工业出版社.2005:116