太阳能光伏玻璃用纳米减反射膜的制备与改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能光伏用纳米减反射膜玻璃可提高太阳能电池的发电效率,缩短并网发电的成本回收期,提升其市场综合竞争力。在我国新能源战略规划的背景下,项目具有非常好的市场前景和应用价值。本项目用Sol-gel法制备出纳米SiO_2减反射镀膜溶液,在玻璃表面镀膜后,经热处理或钢化使膜层与玻璃基体牢固结合,获得透过率高、耐候性好、硬度高和耐划伤能力好的多孔纳米SiO_2膜,开发出太阳能电池响应波谱范围内具有高透过率的减反射膜玻璃。
     本文首先采用正交试验法研究了醇硅摩尔比、水硅摩尔比、陈化时间、pH值等对酸催化、碱催化条件下合成了SiO_2溶胶的粘度、粒度及稳定性的影响,获得粒度可控的稳定溶胶。酸催化条件下制备的薄膜致密,硬度较高,耐划伤能力好,但增透效果欠佳。而碱催化条件下获得多孔结构的膜,可见光透过率可达98.22%,不过由于孔隙率很高,膜硬度低、耐磨性较差。
     采用聚硅氧烷改性碱催化基础硅溶胶,缠绕或偶然分叉的线形链结构生长的聚硅氧烷被引入到体系中,填充到碱催化所得球形颗粒间的空隙中并形成相互粘连,导致溶胶粘度增加、稳定性提高。随着掺杂比例的提高,膜层孔隙率下降,折射率升高,而膜层表面变致密和光滑,膜耐候性、耐磨性及硬度显著提高。通过控制掺杂比例可实现薄膜折射率在1.23~1.42之间的连续可调。当聚硅氧烷掺杂比例从0%提升到16%时,膜的可见光透过率由97.81%降至94.24%,90天室外老化试验后的透过率衰减值从2.70%降至0.22%。掺杂5%的聚硅氧烷改性可兼顾碱性催化所得减反射膜的高透性与酸催化成膜性好、膜层牢固、硬度高等优势。
     碱催化法获得的减反射膜硬度低、机械强度差,引入TiO_2、ZrO_2溶胶以及Al_2O_3溶液改性碱催化基础溶胶,这些氧化物填充到二氧化硅网络结构中起到较好的复合增强作用,膜的硬度、耐划伤能力等机械性能显著改善。TiO_2、ZrO_2、Al2O3掺杂比例的增加可提高膜的硬度,但添加量过多会引起膜的折射率升高、透过率下降,要选择适宜的掺加比例,才能在保证膜透过率的前提下改善其力学性能。
     采用聚硅氧烷与纳米TiO_2溶胶复合改性碱性基础溶胶,制备出具有亲水性自清洁功能的减反射膜玻璃。引入纳米TiO_2改善了膜层表面状态,膜具有较好的亲水性,而且无定形纳米TiO_2作为纳米增强相提高了膜层硬度,与聚硅氧烷一起掺杂改性后膜的耐候性显著提高。该镀膜玻璃耐候性非常好,湿热试验后透过率衰减值仅为0.23%,膜层非常牢固,附着力为5B,铅笔硬度≥3H,而且镀膜玻璃合片制成组件成品的平均峰值功率较之采用未镀膜玻璃的组件提升了3.20%。
     传统SiO_2膜易吸潮引起透过率衰减,本课题利用甲基三乙氧基硅烷(MTES)在酸催化条件下水解得到的溶胶对碱催化SiO_2溶胶改性处理,首次采用原位合成的方式向SiO_2网络中引入-Si-CH3疏水基团,使纳米SiO_2颗粒表面疏水化,获得单甲基改性的SiO_2溶胶,制备出具有疏水自清洁功能的减反射膜玻璃。红外光谱分析发现掺杂MTES后,膜的-OH基吸收峰减弱,而-CH3吸收峰增强,疏水甲基被成功的引入到膜层结构中,取代硅氧网络结构中的活性羟基,解决了膜层由于表面富含羟基而吸潮、吸水所导致的透过率衰减问题。MTES体积掺杂比例为40%时兼具高透过率、高疏水性能,膜层的可见光透过率达96.25%,接触角达到134.4°。
     工业试验证明项目研发的纳米减反射溶液性能稳定、可靠,制备的太阳能光伏用纳米减反射膜玻璃透过率≥94.3%,膜层的附着力为5B级,铅笔硬度为4H,耐候性非常好,经客户试用证实合成组件的峰值功率提升达2.58%,为业内领先水平,具有非常好的市场前景和推广价值,可广泛的应用于太阳能光伏领域。
It can improve the generating efficiency of solar cells and shorten the cost recoveryperiod of grid-connected power generation using antireflective solar glass, and thecomprehensive competitiveness of the market is enhanced, so the project has very goodmarket prospect and application value under China's new energy strategy planningbackground. Nanometer SiO_2antireflection coating solution was prepared by Sol-gel method,porous SiO_2film was coated on the surface of the glass by suitable coating process, then heattreated or toughened, thus the coating and the glass substrate was firmly combined,antireflective glass for solar photovoltaic modules was successfully fabricated with hightransmittance in solar cell’s response spectral range, good weather resistance, high hardnessand good scratch resistant ability.
     Factors that affecting synthesis of the acid-and base-catalyzed SiO_2sols, includingnH2O/nTEOS, nEtOH/nTEOS, aging time, pH value, et al., were studied systematically usingorthogonal test system firstly, effects on viscosity, particle size, stability of the sols wereanalyzed, and stable sols with controlled particle size were obtained. Film derived fromacid-catalyzed sol was tense and had good scratch resistant ability and high hardness, but theadded transmittance value was limited. Porous membrane with visible light transmittance ofup to98.22%was derived from base-catalyzed sol; however the film had poor wear resistanceand low hardness.
     When the base-catalyzed sol doped with polysiloxane, macromolecules of entangledlinear or randomly branched chains formed in the acid catalyzed silica sols were introduced,long-chained polysiloxane was filled into the gaps between the spherical particles inbase-catalyzed sol and formed a mutual adhesion,which resulted in the increase of viscosityand improvement of system stability. With the doping ratio increased, porosity of films wasreduced and refractive index increased, the film became denser and smooth, resulting in thedesirable increase of the durability, abrasion resistance and hardness. Refractive index couldbe adjusted from1.23to1.42continuously by changing the doping ratio. When the dopingratio increased from0%to16%, the visible light transmittance of the film declined from97.81%to94.24%quickly, the transmittance attenuation after outdoor exposure for90daysreduced from2.70%to0.22%successfully, and the abrasive-resistance properties of thesilica films improved remarkably. Take all factors into consideration, the films derived frommodified base catalyzed sol with5vol%doping ratio exhibits high transmittance, good weather-resistance and high abrasion-resistance.
     Antireflective film derived from the base catalyzed sol has low hardness and poormechanical strength. Mechanical properties of the films including hardness, scratch resistanceability had been significantly improved by introducing TiO_2sol, ZrO_2sol and Al_2O_3solutionto modify the base sol, because of the inorganic ceramic oxide filled to the silica networkstructure and acted as good composite reinforcement effect. The hardness of the film could beimproved continuously with the increasing TiO_2, ZrO_2, Al_2O_3doping ratio, but refractiveindex of the film increased, transmittance decreased when adding too much modifiers. Sochoosing suitable adding ratio is quite important, which can maintain the film mechanicalproperties and optical properties.
     Polysiloxane and nano-TiO_2sol was used to modify the base-catalyzed sol, antireflectivesolar glass with hydrophilic self-cleaning function were prepared. The film’s hardness waspromoted the by amorphous TiO_2nanoparticles as nanometer reinforcing phase, and weatherresistance of the films derived from the modified sols was improved significantly. The filmshad excellent weather resistance, with degradation of transmittance after damp-heat test only0.23%. The adhesion of the film was5B, and pencil hardness of the film could be equal orhigher than3H. The average peak power output of solar module using antireflective glass wasimproved by3.20%than that of uncoated ones.
     Due to the water absorbed from the surroundings, the transmittance of traditional silicacoatings declines with time. The base-catalyzed sol was modified by the sol derived frommethyl triethoxy silane (MTES) hydrolyzed under acid conditions. The-Si-CH3hydrophobicgroups were successfully introduced into the SiO_2network by means of in situ synthesis, somodified SiO_2sol was prepared with the surface of nano-SiO_2particles having hydrophobiceffect, and then antireflective solar glass with hydrophobic self-cleaning function wereprepared. Infrared spectroscopy analysis showed that hydrophobic methyl was successfullyintroduced to the film structure after doping MTES, with absorption peaks of-OH decreasedand absorption peak of-CH3enhanced, so the active hydroxyl silicone in the networkstructure had been replaced by hydrophobic methyl. Thus, the problem of transmissionattenuation of the films caused by moisture and water absorption was solved successfully.When the volume doping ratio of MTES was40%, the film had high transmittance of96.25%,and high hydrophobicity with contact angle of134.4°.
     The nanometer antireflective solutions were stable and reliable researched in this project.Durable antireflective glass for solar photovoltaic modules was prepared with transmittance≥94.3%, coating adhesion to5B level and pencil hardness of4H. It was proved by the customer that the peak power of modules using the products was improved by more than2.58%. As theindustry leading level, it has a very good market prospect and promotion value, and can bewidely used in the field of solar photovoltaic.
引文
[1]施钰川编著.太阳能原理与技术[M].西安:西安交通大学出版社,2009.
    [2] BP世界能源统计年鉴[R]. www.bp.com/statisticalreview,2012年6月.
    [3]中国国务院新闻办公室.中国的能源政策[M].2012年10月24日.
    [4]中国行业研究网.我国太阳能光伏电池组件产能超过全球需求[OL].http://www.chinairn.com/news/20121218/246776.html,2012年12月18日.
    [5]李俊峰,王斯成等著.2007’中国光伏发展报告[M].北京:中国环境科学出版社,2007.
    [6] S.R Wenham, M.A.Green.应用光伏学[M].狄大卫等译.上海:上海交通大学出版社,2008.
    [7]杨金焕等编著.太阳能光伏发电应用技术[M].北京:电子工业出版社,2009.
    [8]赵汝强,梁宗存,李军勇.晶体硅太阳电池工艺技术新进展[J].材料导报,2009,23(3):25-29.
    [9]沃银花. CdTe/CdS太阳能电池材料的研究进展[J].材料导报,2005,19(4):31-34.
    [10]李卫冯,良桓,张静全.CdTe太阳电池组件的关键技术研究[J].中国科学E辑:技术科学,2007,37(7):875-880.
    [11]马光耀,康志君,谢元锋.铜铟镓硒薄膜太阳能电池的研究进展及发展前景[J].金属功能材料,2009,16(5):46-49.
    [12]C. Ballif, J. Dicker, D. Borchert, et al. Solar glass with industrial porous SiO2antireflection coating: measurements of photovoltaic module properties improvement andmodelling of yearly energy yield gain [J]. Solar Energy Materials&Solar Cells,2004,82:331-344.
    [13]Hans Joachim Glaser(汉斯·琼彻·格雷瑟)著.大面积玻璃镀膜[M].德国冯·阿登纳真空奇数有限公司组织翻译.上海:上海交通大学出版社,2006.
    [14]唐晋发,顾培夫,刘旭,李海峰著.现代光学薄膜技术[M].杭州:浙江大学出版社,2006.
    [15]Brian G. Prevo, Yeon Hwang, Orlin D. Velev. Convective assembly of antireflective silicacoatings with controlled thickness and refractive index [J]. Chem. Mater.2005,17(14):3642-3651.
    [16]K.M.A. Sobahan, Yong Jun Park, Jin Joo Kim, et al. Nanostructured porous SiO2filmsfor antireflection coatings [J]. Optics Communications,2011,284:873-876.
    [17]Jason H. Rouse, Gregory S. Ferguson. Preparation of thin silica films with controlledthickness and tunable refractive Index [J]. J. AM. CHEM. SOC.2003,125,15529-15536.
    [18] H.A.麦克劳德著.光学薄膜技术[M].周九林,尹树百译.北京:国防工业出版社,1974.
    [19]D. Chen. Anti-reflection (AR) coatings made by sol-gel processes: A review [J].Sol.Energy Mater. Sol. Cells,2001,68:313-336.
    [20]Michael Jay Minot. Single-layer, gradient refractive index antireflection films effectivefrom0.35to2.5μ [J].J.Opt. Soc. Am.,1976,66(6):515-519.
    [21]Xiaodong Wang, Jun Shen. Sol-gel derived durable antireflective coating for solar glass[J]. J Sol-Gel Sci Technol,2010,53:322-327.
    [22]Xintong Zhang, Akira Fujishima, Ming Jin, et al. Double-layered TiO2-SiO2nanostructured films with Self-cleaning and antireflective properties [J]. J. Phys. Chem. B,2006,110,25142-25148.
    [23]Shui-Yang Lien, Dong-Sing Wuu, et al. Tri-layer antireflection coatings(SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique [J].Solar EnergyMaterials&Solar Cells,2006,90:2710-2719.
    [24]Ying Zhang, Faming Gao, Lihua Gao, et al. Study of tri-layer antireflection coatingsprepared by sol–gel method [J].Journal of Sol-Gel Science and Technology,2012,62,(2):134-139.
    [25]Neuman GA. Antireflective coatings by a PCVD using graded index layers [J].Journal ofNon-crystalline Solids,1997,218:92.
    [26]Rendon Granados Juan Luis.Chemical Process for Obtaining Anti-reflective Glass,Comprising Immersion in an Acid Solution, for Simultaneous and continuous production [P].US: US2010129606A1, May27,2010.
    [27] Vernon Yost, Lakewood, et al. Anti-reflection etching of silicon surfaces catalyzed withionic metal solutions [P]. US2009236317A1, Sep.24,2009.
    [28]M.C.Bautista, A. Morales. Silica antireflective films on glass produced by the sol-gelmethod [J].Solar Energy Materials and Solar Cells,2003,80(2):217-225.
    [29]侯晓波,查良镇,范垂祯,等.反应溅射制备SiO2膜的问题及进展[J].真空,1999(6):1-5.
    [30]Jin-Cherng HSU, Paul W. WANG, Yung-Hsin LIN, et al. Anti-reflective effect oftransparent polymer by plasma treatment with end-hall ion source and optical coating[J].OPTICAL REVIEW,2010,17(6):553-556.
    [31]H. Nagel, A. Metz, R. Hezel. Porous SiO2films prepared by remote plasma-enhancedchemical vapor deposition-a novel antireflection coating technology for photovoltaicmodules [J]. Solar Energy Materials&Solar Cells,2001(65):71-77.
    [32]余火根,余家国,国瑞,赵修建.溶胶-凝胶薄膜的制备和应用[J].材料导报,2003,17(6):31-33.
    [33]黄剑锋编.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    [34]孙少妮.减反射薄膜膜系优化设计及工艺研究[D].沈阳:东北大学机械工程与自动化学院,2006.
    [35] A. Chabas, T. Lombardo, H. Cachier, et al. Behavior of self-cleaning glass in urbanatmosphere [J]. Build. Environ.2008,(43):2124-2131.
    [36]E. Hammaberg, A. Roos. Antireflection treatment of low-emitting glazings for energyefficient windows with high visible transmittance [J].Thin Solid Films,2000,442:222-226.
    [37]T. Morimoto, Y. Sanada, H. Tomonaga.Wet chemical functional coatings for automotiveglasses and cathode ray tubes[J].Thin Solid Films,2001,392:214-222.
    [38] J. Deubener, G. Helsch, A. Moiseev, H. Bornh ft. Glasses for solar energy conversionsystems [J]. Journal of the European Ceramic Society,2009,29:1203-1210.
    [39] G. Helsch, A. M s, J. Deubener, M. H land. Thermal resistance of nanoporousantireflective coatings on silica glass for solar tower receivers [J]. Sol. Energy Mater. Sol.Cells,2010(94):2191-2196.
    [40]Helsch G., Deubener J. Compatibility of antireflective coatings on glass for solarapplications with photocatalytic properties [J]. Solar Energy,2012,86:831-836.
    [41]San Vicente G., Bayón R., Germán N., Morales A. Surface modification of porousantireflective coatings for solar glass covers [J]. Solar Energy,2010,85:676-680.
    [42] Y. Xu, B.Zhang, W.H. Fan, et al. Sol-gel broadband anti-reflective single-layer silicafilms with high laser damage threshold [J]. Thin Solid Films,2003(440):180-183.
    [43]陶华锋,张林,王金凤,等.溶胶凝胶法制备PMMA/SiO2杂化材料[J].强激光与粒子束,2006,18(2):223-226.
    [44]Y.J. Yang, L. Zhang, Y. Xu, et al. Antireflective mesoporous sio2films with highlaser-induced damage threshold [J]. High power laser and particle beams,200820(6):935-938.
    [45]魏芸,吕海兵,等.高功率激光宽光谱减反膜的溶胶-凝胶旋转法制备工艺[J].强激光与粒子束,2003,15(7):647-650.
    [46] Takahiro Mizuta, Tomohiro Ikuta,et al. An optimum design of antireflection coating forspherical silicon solar cells [J].Solar Energy Materials&Solar Cells,2006,(90):46-56.
    [47] R. Prado, G. Beobide, A. Marcaide, et al. Development of multifunctional sol-gelcoatings: Anti-reflection coatings with enhanced self-cleaning capacity [J]. Sol. Energy Mater.Sol. Cells,2010,94(6):1081-1088.
    [48]张晓晖,丁双红.光纤通信系统用减反膜的研究[J].海军工程大学学报,2003,15(3):23-24.
    [49]张晓晖.WDM光纤通信用光学薄膜的研究[D].武汉:华中科技大学,2001.
    [50] D. Chen, Y. Yan, E. Westenberg, et al. Development of anti-reflection (AR) coating onplastic panels for display applications [J]. J. Sol–Gel Sci. Tech.2000,19:77-82.
    [51]K. ABE, Y. SANADA,T. MORIMOTO. Anti-reflective coatings for CRTs by sol-gelprocess [J]. Journal of Sol-Gel Science and Technology,2001,22:151-166.
    [52]贾克辉.等离子体辅助沉积大口径减反射膜[D].长春:中国科学院研究生院,2003.
    [53]Shi X,Cheah L K,Tay B K,et al. Spectroscopy ellipsometroy studies of tetrahedralamorphous carbon prepared by filtered cathodic Vacuum arc technique [J].Thin Solid Film,1998,312:160.
    [54]马玉蓉,王昕,张红泉,等.用YAG激光制备类金刚石薄膜及其光学折射率研究[J].光学学报,1994,14(12):1294-1297.
    [55]武晓培.溶胶-凝胶技术制备减反射薄膜的研究[D].杭州:浙江大学,2005.
    [56]王晓栋,沈军,等.太阳能玻璃表面高强度双层减反膜制备研究[J].光子学报,2009,38(10):2501-2505.
    [57]Hiromitsu Kozuka, Akihiro Yamano, Masahiro Fujita,et al. Aqueous dip-coating route todense and porous silica thin films using silica nanocolloids with an aid ofpolyvinylpyrrolidone [J]. J Sol-Gel Sci Technol,2012,61:381-389.
    [59]杨伟,李海波,张清华,等.改性剂对旋转法SiO2减反膜均匀性的影响[J].强激光与粒子束,2010,22(12):2865-2870.
    [59]熊华山.溶胶-凝胶法制备SiO2增透膜的研究[D].成都:四川大学,2004.
    [60]Abhilash Vincent, Suresh Babu, Erik Brinley, et al. Role of catalyst on refractive indextunability of porous silica antireflective coatings by Sol-gel technique[J]. J. Phys. Chem. C,2007,111(23):8291-8298.
    [61]樊栓狮,史小农,李春华,等.超细孔二氧化硅膜的制备研究[J].无机材料学报,1995,10(1):90-94.
    [62] mer Kesmez, Esin Burunkaya, Nadir Kiraz,et al. Effect of acid, water and alcohol ratioson sol-gel preparation of antireflective amorphous SiO2coatings [J]. Journal ofNon-Crystalline Solids,2011,357:3130-3135.
    [64]Glaser P M, Pantano C G. Effect of the H2O/TEOS ratio upon the preparation andnitridation of silica sol-gel films [J].J Non-Crystalline Solids,1984,63:209-221.
    [63]刘小林,张伟清,梁培辉.水含量对溶胶-凝胶SiO2增透膜结构和性能的影响[J].光子学报,2000,29(11):1035-1039.
    [65]Bagnall C M, Howarth L G, James P F. Modeling of aggregation kinetics of colloidalsilica particles[J].J Non-Crystalline Solids,1990,121:56-60.
    [66]孙宏伟,谢灼利,郑冲.非对称SiO2凝胶膜的制备与性能研究[J].北京化工大学学报,1998,25(1):2-7.
    [67]刘小林,张伟清.水解反应温度对溶胶凝胶SiO2增透膜光学性能的影响[J].光子学报,1999,28(6):558-561.
    [68]Iler R K. The Chemistry of Silica [M].New York: John Wiley&Sons,1979:76-97.
    [69]余桂郁,杨南如.溶胶-凝胶原理及工艺过程[J].硅酸盐通报,1993,(6):60-65.
    [70]陈同来,陈铮.催化方式和水硅比对正硅酸乙酯的溶胶凝胶过程的影响[J].华东船舶工业学院学报:自然科学版,2003,17(3):62-65.
    [71]Xinxiang Zhang, Yulu Zhang, Haiping Ye, Bo Jiang. Sol–gel preparation of antireflectivecoatings at351nm with different thickness and improved moisture-resistance [J]. J Sol-GelSci Technol,2011,58:340–344.
    [72] mer Kesmez, Nadir Kiraz, Esin Burunkaya, et al. Effect of amine catalysts onpreparation of nanometric SiO2particles and antireflective films via sol-gel method [J]. JSol-Gel Sci Technol,2010,56:167-176.
    [73]倪元星,吕俊霞,邓忠生,等.溶胶-凝胶SiO2在变色薄膜中的应用[J].功能材料,2002,33(4):435-439.
    [74]乐月琴,张伟清,等.多孔SiO2增透膜溶液的工艺研究[J].硅酸盐学报,1998,(5):48-51.
    [75]汤加苗,朱从善,范文浩,等.溶胶颗粒度分布对溶胶-凝胶光学增透膜性能的影响[J].光学学报,1997,17(3):338-341.
    [76]陶华锋,张林,王金凤,等.偶联剂在溶胶中的应用研究[J].光电工程,2007,34(1):69-71.
    [77]Arkles B. Tailoring Surfaces with silanes [J].Chem.Tech,1977,7:766-778.
    [78]朱春玲,陈祖耀,张立祥.硅烷偶联剂对制备纳米SiO2粒子形态的影响[J].电子显微学报,2003,22(2):168-171.
    [79]王秀华,翁履谦,王玲.硅烷偶联剂在有机-无机杂化纳米复合材料中的应用[J].有机硅材料,2004,18(3):30-33.
    [80]郑康,储昭琴.乳液聚合改性纳米二氧化硅的TEM研究[J].电子显微学报,2004,23(4):437.
    [81]汤加苗,朱从善,范文浩,吴东.PEG对SiO2溶胶凝胶中颗粒分布和孔结构的影响[J].材料研究学报,1998,12(1):79-82.
    [82]刘小林,张伟清,乐月琴.多孔SiO2增透膜改性研究[J].硅酸盐通报,2000,(5):3-8.
    [83]殷明志,姚熹,李振荣,张良莹.酸催化正硅酸乙脂溶胶-凝胶二氧化硅薄膜的制备[J].西安交通大学学报,2002,36(8):847-850.
    [84]李智,姚熹,张良莹.Sol-gel法制备多孔纳米SiO2薄膜[J].电子元件与材料,2005,(2):32-37.
    [85]K.J. Cathro, D.C. Constable, T. Solaga. Durability of porous silica antireflection coatingsfor solar collector cover plates [J].Solar Energy,1981,27(6):491-496.
    [86]B.E. Yoldas, D.P. Partlow. Formation of broad band antireflective coatings on fused silicafor high power laser applications [J]. Thin Solid Films,1985,129(1-2):1-14.
    [87]I.M. Thomas. High power laser damage threshold porous silica antireflective coating [J].Applied Optics,1986,25(9):1481-1483.
    [88]I.M. Thomas. A two layer broadband antireflective coatings prepared from a methylsilicon and porous silica [J]. Proc. SPIE,1997,3136:215-219.
    [89]Floch H G, Belleville P.F, Priotton J. J. Sol-gel optical coatings for lasers,3[J]. Am.Ceram.Bull,1995,74(12):48-52.
    [90]Sermon P A, Vong M S W, Bazin N, Badheka N, Spriggs D. Recent developments insol-gel anti-reflection (AR) coatings [J]. Proc SP IE,1995,2633:464-474.
    [91]Thomas I M. Method for the preparation of porous silica antireflection coatings varyingin refractive index from1.22to1.44[J].Appl.Opt.1992,31(28):6145-6149.
    [92]Zhang Weiqing, Tang Yongxing, Le Yueqin et al. Study on the preparationperformances of antireflective and protective coatings of KDP crystals [J].High Power Laserand Particle Beams,1999,11(2):220-223.
    [93]Jia Qiaoying, Le Yueqin, Tang Yongxing, et al. Broadband and scratch-resistantantireflective coating composed of SiO2/TiO2prepared from sol-gel processing [J].ActaOptica Sinica,2004,24(1):65-69.
    [94]. Kesmez, H. Erdem amurlu, E. Burunkaya, et al. Preparation of antireflective SiO2nanometric films [J]. Ceramics International,2010,36(1):391-394.
    [95]张伟清,朱从善,章泉兴,等.高激光负载多孔二氧化硅增透膜的研制[J].中国激光,1993,20(12):916-920.
    [96]刘小林,张伟清,唐永兴,等.溶胶-凝胶工艺提拉法制备二氧化硅增透膜[J].光子学报,1998,27(1):29-33.
    [97]Haiping Ye, Xinxiang Zhang, Yulu Zhang, et al.. Preparation of antireflective coatingswith high transmittance and enhanced abrasion-resistance by a base/acid two-step catalyzedsol–gel process [J]. Solar Energy Materials&Solar Cells,2011,95:2347–2351.
    [98]吴广明,王珏,沈军,等.低折射率SiO2光学增透薄膜的结构控制[J].原子能科学技术,1999,33(4):332-335.
    [99]付甜,吴广明,沈军,等.溶胶-凝胶法制备宽带减反膜[J].功能材料,2003,34(5):579-584.
    [100]Wang J., Wu G.M., Shen J., et al. Scratch-resistant improvement of sol-gel derivednano-porous silica films [J]. Journal of Sol-Gel Science and Technology,2000,18:219–224.
    [101]G.M. Wu, et al. A novel route to control refractive index of sol-gel derived nano-poroussilica films used as broadband antireflective coatings [J].Mater. Sci. Eng. B,2000,78:135-139.
    [102]吴广明,沈军,等.溶胶凝胶制备纳米多孔SiO2光学增透薄膜耐磨特性强化研究[J].原子能科学技术,2002,36(4/5):374-379.
    [103]G.M. Wu, et al. Properties of sol-gel derived scratch-resistant nano-porous silica films bya mixed atmosphere treatment [J]. Non-Cryst. Solids,2000,275:169-174.
    [104]王贺,魏长平,彭春佳,等.多孔SiO2膜的制备和增透性能研究[J].硅酸盐通报,2012,31(2):411-415.
    [105]R.B. Pettit, et al., in: L.C. Klein (Ed.).Sol–Gel Technology for Thin Films, Fibers,Preforms, Electronics and Speciality Shapes[M].Noyes Publications, Park Ridge, NJ,1987:80-109.
    [106]Dong Dong, Xiaobo Liu,Wencheng Hu.The structure and mechanism of porous silicafilms by sol-gel method using poly(ethylene glycol) and side-chain polyether modifiedpolydimethylsiloxane with terminal Si-CH3as templates[J]. J Mater Sci: Mater Electron,2011,22:944-948.
    [107]Floch H G, Belleville P F. A Scratch-resistant Single-layer antireflective coating by alow temperature sol-gel route [J]. SPIE Sol-Gel Optics Ⅱ,1992,1758:135-149.
    [108]K.WONGCHAREE, M. BRUNGS, et al. Sol-gel processing by aging and pore creatoraddition for porous silica antireflective coatings[J].Journal of Sol-Gel Science andTechnology,2002,25:215-221.
    [109]Einarsrud M A, Nilson E. Strengthening of water glass and colloidal sol based silica gelsby aging in TEOS [J].J Non-crystalline Solids,1998,226:122-128.
    [110]Haereid S,Dahle M,Einarsrud MA. Preparation and properties of monolithic silicaxerogels from TEOS-based alcogels aged in silane solutions [J].J Non-crystalline Solids,1995,186:96-103.
    [111] Belleville P, Prene P. A sol-gel broadband antireflective and scratch-resistant coating formegajoule-class laser amplifier blastshields [J].Proc. SPIE,1998,3492:230-237.
    [112] Shyamal Das, Sudipta Roy, Amitava Patra, et al. Study of refractive index and physicalthickness of porous silica films with ageing in hydrated ammonia and air [J]. Materials Letters,2003,57:2320-2325.
    [113]Y.J. Guo, X.T. Zu, X.D. Jiang, et al. Effect of ammonia treatment on laser-induceddamage of nano-porous silica film [J].Optik,2009,120:437-441.
    [114]肖轶群,谢志勇,沈军,等.溶胶-凝胶工艺制备SiO2薄膜的结构控制和稳定性研究[J].强激光与离子束,2006,18(8):1302-1306.
    [115] Tang Jiamiao, Zhu Congshan. Study on the strengthened antireflective coatingsprepared from sol-gel process [J].Acta Optica Sinica,1998,18(2):242-246.
    [116]Xiaoguang Li, Jun Shen. The stability of sol-gel silica coatings in vacuum with organicContaminants [J].J Sol-Gel Sci Technol,2011,59:539-545.
    [117]Imai H, Morimoto H,Tominaga A, et al. Structural changes in sol-gel derived SiO2andTiO2films by exposure to water vapor [J].Journal of Sol-gel Science and Technology,1997,10:45-54.
    [118]吴广明,陈炎,沈军,周斌.纳米多孔SiO2薄膜的结构控制与强化[J].同济大学学报:自然科学版,2004,32(6):836-840.
    [119]Chien-Hung Chen, Shiao-Yi Li, Anthony S.T.Chiang, et al. Scratch-resistant zeoliteanti-reflective coating on glass for solar applications [J].Solar Energy Materials&Solar Cells,2011,95:1694-1700.
    [120]Fangting Chi, Lianghong Yan, Haibing Lv, Bo Jiang. Novel pathways for thepreparation of silica antireflective films: Improvement in mechanical property [J]. MaterialsLetters,2011,65:1095-1097.
    [121]Cheng-Tsung Tsai, Hsin-Yan Lu, Chih-Yuan Ting, et al. Increasing mechanical strengthof mesoporous silica thin films by addition of tetrapropylammonium hydroxide and refluxingprocesses [J]. Thin Solid Films,2009,517:2039-2043.
    [122]St ber W, Fink A, Bohn E. Controlled growth of mono-disperse silica spheres in themicro size angle [J].J Colloid Interface Sci,1968,26:62-66.
    [123]Bo Xiao,Yulu Zhang, Xinxiang Zhang, et al. Focus on moisture-resistance andhydrophobicity of SiO2antireflective film improved by poly (isopropylene oxide)glycerolether [J]. J Sol-Gel Sci Technol,2011,60:11-16.
    [124]Xinxiang Zhang, Congrui Cao, Bo Xiao, et al. Preparation and characterization ofpolyvinyl butyral/silica hybrid antireflective coating: effect of PVB on moisture-resistanceand hydrophobicity. J Sol-Gel Sci Technol,2010,53:79-84.
    [125]Xiaoguang Li, Jun Shen. A scratch-resistant and hydrophobic broadband antireflectivecoating by sol-gel method [J]. Thin Solid Films,2011,519:6236-6240.
    [126]Xiaodong Wang, Jun Shen. A review of contamination-resistant antireflective sol-gelcoatings [J].Journal of Sol-Gel Science and Technology,2012,61(1):206-212.
    [127]Aksmatsu Y, Makita K, Inaba H, et al. Water-repellent coating films on glass preparedfrom hydrolysis and polycondensation reactions of fluoroalkyltrialkoxylsilane [J].Thin SolidFilms,2001,389:138-145.
    [128]Hong B S, Han J H, Kim S T, et al. Endurable water-repellent glass for automobiles[J].Thin Sol d Film,1999,351:274-278.
    [129]H. M. Shang, Y. Wang, et al. Optically transparent super-hydrophobic silica-based films[J]. Thin Solid Films,2005,472(1-2):37-43.
    [130]Yao Xu, Dong Wu, Yu Han Sun, et al. Comparative study on hydrophobic anti-reflectivefilms from three kinds of methyl-modified silica sols[J]. Journal of Non-Crystalline Solids,2005,351:258-266.
    [131]Bankovic P. Obtention of selective membranes for water and hydrophobic liquids byplasma enhanced chemical vapor deposition on porous substrates [J]. Materials Science andEngineering B-Solid State Materials for Advanced Technology,2004,112:165-170.
    [132]马建华,吴广明,程银兵,等.疏水型SiO2光学增透膜的制备[J].物理化学学报,2001,17(12):1112-1116.
    [133]K.WONGCHAREE. Influence of surfactant and humidity on sol-gel macroporousorganosilicate coatings [J].Journal of Sol-Gel Science and Technology,2004,29:115-124.
    [134]徐耀,范文浩,黄祖鑫,等.溶胶-凝胶法制备抗激光损伤SiO2疏水减反射膜[J].强激光与粒子束,2004,16(1):40-44.
    [135]徐耀,范文浩,等.溶胶-凝胶法制备TEOS-DOS基SiO2疏水减反射膜:溶胶微结构对膜性能的影响[J].材料科学与工程,2002,20(3):344-348.
    [136]张晔,吴东,孙予罕,等.疏水增透SiO2膜的制备及其性能研究[J].物理化学学报,2002,18(4):355-358.
    [137]张磊,徐耀等.单甲基原位改性SiO2疏水减反膜的制备与性能研究[J].强激光与粒子束,2006,18(10):1648-1652.
    [138]杨瑜杰,张磊,徐耀,等.高抗激光损伤阈值介孔SiO2减反射膜[J].强激光与粒子束,2008,20(6):935-938.
    [139]Y C Chang, GHMei, T WChang, et al. Design and fabrication of a nanostructuredsurface combining antireflective and enhanced-hydrophobic effects [J]. Nanotechnology,2007,18:1-6.
    [140]Minami T, Katata N, Tadanaga K. Preparation and characterization of superwater-repellent Al2O3coating films with high transparency [A].SPIE[C],1997,3136:168-175.
    [141] Nakajima A,Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic filmswith visible light transmission [J].Thin Solid Films,2000,376:140-143.
    [142]姚兰芳,解德滨,吴广明,等.疏水型纳米SiO2增透薄膜的制备与性能研究[J].材料科学与工程学报,2004,22(4):502-504.
    [143]肖轶群,沈军,姚兰芳等.短波段光学减反膜的溶胶-凝胶法制备及性能分析[J].强激光与粒子束,2004,16(10):1281-1285.
    [144]李海元,唐永兴.溶胶凝胶多孔二氧化硅减反膜稳定性研究[J].中国激光,2005,32(6):839-843.
    [145]李玲著.自清洁玻璃[M].北京:化学工业出版社,2006.
    [146]Helsch G., Deubener J. Compatibility of antireflective coatings on glass for solarapplications with photocatalytic properties [J]. Solar Energy,2012,86:831-836.
    [147]Moiseev A., Qi F., Deubener J., Weber A. Photocatalytic activity of nanostructuredtitanium dioxide from diffusion flame synthesis [J]. Chem. Engineer. J.2011,170,308-316.
    [148] Huiting Wang, Yanjie Hu, Ling Zhang, et al. Self-cleaning films with high transparencybased on TiO2nanoparticles synthesized via flame combustion [J]. Ind. Eng. Chem. Res.2010,49(8):3654-3662.
    [149]王建伍,白宇辰,姚微,等.具有自洁和耐磨功能SiO2/TiO2减反膜的制备与研究[J].无机材料学报,2011,26(70):769-773.
    [150] mer Kesmez, H.Erdem amurlu, et al. Sol–gel preparation and characterization ofanti-reflective and self-cleaning SiO2-TiO2double-layer nanometric films [J]. Solar EnergyMaterials&Solar Cells,2009,93:1833-1839.
    [151]Zhaoyue Liu, Xintong Zhang, Taketoshi Murakami, et al. Sol-gel SiO2/TiO2bilayerfilms with self-cleaning and antireflection properties [J]. Solar Energy Materials&SolarCells,2008,92:1434-1438.
    [152]业海平,张欣向,肖渡,等.碱/酸两步催化法制备耐候性SiO2增透膜的研究[J].无机化学学报,2011,27(5):823-827.
    [153]沈军,刘源,李晓光.溶胶-凝胶SiO2减反膜的表面修饰和抗污染特性[J].硅酸盐学报,2010,38(11):2054-2058.
    [154]Yulu Zhang, Xinxiang Zhang, Haiping Ye, et al. A simple route to prepare crack-freethick antireflective silica coatings with improved antireflective stability [J].Materials Letters,2012,69:86-88.
    [155]Annaso B. Gurav, Sanjay S. Latthe,et al. Porous water repellent silica coatings on glassby sol-gel method[J]. J Porous Mater,2011,18:361-367.
    [156]Patil M. Contamination resistant sol-gel AR coatings by vapor-phase silanization [J].2008Summer Research Program for High School Juniors at the University of Rochester’sLaboratory for Laser Energetics, Rochester.
    [157]Yao Xu, Wen Hao Fan, Zhi Hong Li,et al. Antireflective silica thin films with superwater repellence via a sol-gel process [J].APPLIED OPTICS,2003,42,(1):108-112.
    [158]李海元,唐永兴.掺入有机硅提高溶胶-凝胶二氧化硅减反膜的稳定性研究[J].中国激光,2006,33(1):116-119.
    [159] Renate M de Vos, Wilhelm F Maier, Henk Verweij. Hydrophobic silica membranes forgas separation [J]. Journal of Membrane Science,1999,158:277-288.
    [160] Sai S. Prakash, C. Jeffrey Brinker, Alan J. Hurd, et al. Silica aerogel films prepared atambient pressure by using surface derivatization to induce reversible drying shrinkage[J].Nature,1995,374:439-443.
    [161] Brinker C J, Schere G W. Sol-gel Science, the Physics and Chemistry of Sol-gelProcessing [M]. San Diego: Academic Press,1990.
    [162] Bogush G H, Tracy M A, Zukoski I V. Preparation of monodisperse silica particles:control of size and mass fraction [J]. Journal of Non-crystalline Solids,1988,104:95-106.
    [163] Capozzi C A, Pye L D, Condrate Sr R A. Vibrational spectral/structural changes fromthe hydrolysis/polycondensation of methyl-modified silicates. I. comparisons for singlemonomer condensates [J]. Materials Letters,1992,15:130-136.
    [164] Wada M, Kamiya K, Nasu H. X-ray diffraction analysis of SiO2gel prepared frommonomethyl-tri-ethoxysilane by the sol-gel method [J]. Physics and Chemistry of Glasses,1992,33(2):56-60.