低热值气体燃料发动机燃烧过程及火焰稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着日益严峻的能源与环境危机,低热值气体燃料以其清洁性与可持续性给气体发动机的推广应用带来了较大的发展空间。由于燃用低热值气体时发动机容易发生燃烧过程不稳定现象,因此如何提高低热值气体发动机的燃烧稳定性成为研究代用燃料发动机领域的热点问题。为了进一步深化气体燃料发动机缸内湍流燃烧的理论研究,推进缸内混合气组织与燃烧过程控制的技术发展,本文以低热值气体发动机缸内着火与燃烧过程中火焰面结构的微观演化过程为研究重点,开展了缸内预混燃烧的湍流涡团与火焰面的相互作用过程以及火焰内在不稳定性效应等的多维数值模拟的基础研究。研究工作阐明了低热值气体发动机缸内燃烧过程中火焰面形态与结构的演化机理,为清洁高效气体发动机燃烧系统的优化和设计提供了理论支持,具有较高的学术意义和工程应用价值。
     本文研究了湍流扰动下平面火焰传播过程中Darrieus-Landau不稳定性(D-L不稳定性)的发展过程,求解了湍流场作用下的Michelson-Sivashinsky方程(T-M-S方程),在此基础上得出了平面火焰传播速度增量的修正公式;在湍流燃烧三维模型中采用桥函数的方法将D-L不稳定性的函数表达式引入组分方程的化学反应源项中,建立了包含D-L不稳定性效应的PaSR-LES燃烧模型,并研究了发动机缸内流场的湍流分形维数、涡团周转时间与粘性截止尺度等特征参数的内在联系,提出了湍流微混合时间尺度和湍流分形维数的函数表达式;基于电弧与火核跟踪-欧拉(AKTIM-Euler)方法,建立了适用于大涡模拟的火花点火模型,描述了以燃烧反应进程变量为权重的点火能量分配方式;搭建了低热值气体燃料发动机缸内燃烧的三维数值模拟仿真平台,提出了多面体顶点运动和分裂重构的动网格耦合算法,此方法解决了网格单元结构出现的偏斜度较大与负体积等问题;开展了燃用低热值气体燃料的定容弹湍流燃烧试验和发动机缸压测定试验研究,分别验证了本文的湍流燃烧模型和发动机缸内燃烧的数值模拟仿真平台。
     本文分析了湍流强度和无量纲马克斯坦长度特征参数对平面火焰锋面的位置和形态随时间变化的影响规律;通过低热值气体发动机工作过程的模拟计算,研究了进气与压缩过程中各阶段缸内大尺度拟序结构的演变规律,比较了不同发动机转速下缸内拟序结构的生成、发展以及耗散等过程;研究了从点火到初始火核形成的过程中火核半径等参数的变化历程和各发动机转速下涡对与火核相互作用的特征区域范围;分析了缸内涡团运动对各火焰面结构形态的作用;研究了D-L不稳定性效应作用下湍流火焰面结构的演化历程,分析了斜压扭矩对增加火焰面皱褶的作用等。由计算结果的分析可知:
     1.高强度涡团容易出现在远离燃烧室壁面的火焰自由发展区域,火焰锋面处的涡团有助于增大火焰面皱褶度,提高湍流火焰传播速率;涡对运动会对火焰面产生卷吸与拉伸的作用,从而促使火焰面上皱褶的产生。
     2.当低热值气体中惰性气体组分体积比增大时,火焰面皱褶度减小;低热值气体中掺混一定量氢气将有利于提高火焰传播速率,促进涡团运动对火焰面的作用,增大火焰面皱褶程度。
     3.D-L不稳定性会导致火焰锋面处产生斜压扭矩,此斜压扭矩将会增加火焰面皱褶程度;火焰面穿过湍流涡对,应变率随之被D-L不稳定性效应影响,其正负符号与曲率相同,火焰锋面的焰后已燃区逐渐出现与焰前未燃区中方向相反的涡团。图140幅,表14个,参考文献184篇。
With the increasing prominence of energy and environment problems recently, the gas fuel has become the research focus around the world because of its cleanliness and sustainability. Therefore, the research and development of the gas engine is necessary. When the gas engine is fueled with the low calorific value gas (LCV gas), the combustion instability phenomenon become more and more serious. Therefore, the systematic study on the micro-evolution of the flame structure during the ignition and combustion process of a single engine cycle is necessary for the stability of the gas engine. Through the modeling of the vortex-flame interactions and flame intrinsic instability during the in-cylinder gas fuel's premixed turbulent combustion, the unstable propagation mechanism of the flame can be elucidated and the theoretical basis for the development of the clean and efficient engine combustion system can be provided, which has high academic and engineering application value.
     Darrieus-Landau instability (D-L instability) phenomenon existed in turbulence disturbed plane flame propagation is studied. The Michelson-Sivashinsky equation forced with external turbulence (T-M-S equation) is solved. The fitting equation for the velocity increment of the plane flame propagation is formulated. Instability function is introduced into the chemical reaction source term of the species equation. The PaSR-LES combustion model with D-L instability is established. The relationships among the characteristic parameters such as the turbulence fractal dimension, the eddy turn over time, and the viscous cutoff scale are investigated. An improved expression for the turbulent micro-mixing time scale is proposed. Based on the arc and flame kernel tracking-Euler (AKTIM-Euler) method, the large eddy simulation model of the spark ignition is set up. The ignition energy distribution of the weight of the combustion process variable values is described. The three-dimensional numerical simulation platform for the low calorific value (LCV) gas fueled engine combustion is established. In order to deal with the engine dynamic mesh, a solution method is proposed to couple polyhedron vertex movement algorithm and Mesquite algorithm. This method can avoid the large skewness and the negative volume of the mesh cells. The experimental research on the constant volume vessel and the engine fueled with the LCV gas is conduced. The turbulent combustion model and the numerical simulation platform for the engine combustion in this paper are validated.
     The change rule of the plane flame front position and shape with respect to different turbulent intensity and dimensionless Makstein length is studied for the weak turbulent flame. Furthermore, the factors which influence the flame propagation increment are considered. Through the large eddy simulation on the working process of LCV gas fueled engine, the evolution of the large-scale coherent structures during the intake and compression stages is investigated. In addition, the generation, development, and dissipation of the coherent structure under different engine speed are compared. The development process of the flame kernel formation and the characteristic regime area of the flame kernel-vortex pair interactions under different engine speed are analyzed. The effect of the vortex-pair movement on the flame surface morphology is researched. The in-cylinder evolution of the turbulent flame surface with the D-L instability effect is studied. The effect of baroclinic torque on increasing the flame wrinkles is analyzed. It is shown from the simulation results that:
     1. The higher strength vortex mostly appears in the flame free propagation area. The vortex on the flame front is helpful to the increase of flame wrinkles and turbulent flame speed. The vortex pair produces entrainment and stretching effects on the flame surface, resulting in the formation of the wrinkles.
     2. With the increase of the volume fraction of inert species in LCV gases, the flame wrinkles decrease. A certain amount of hydrogen addition in LCV gases improves the flame propagation speed, promotes the flame-vortex pair interactions, increases the flame wrinkles.
     3. D-L instability generates the baroclinic torque which incrases the flame wrinkles. The flame strain rate which has the same symbol with the flame surface curvature is influenced by the D-L instability as the flame front passes through the vortex pairs. The vortex in the burnt area has the opposite symbols with the one in the unburnt area.
引文
[1]蒋德明.内燃机替代燃料燃烧学.[M].西安交通大学出版社,2007.
    [2]Selim M E. Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines.[J]. Fuel,2005,84:961-971.
    [3]Liu C, Karim G A. HCCI Combustion and Cyclic Variation for Lean Mixture Operation.[C]. ASME Conference Proceedings,2006,42061.
    [4]Li G, Yao B. Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine.[J]. Applied Thermal Engineering,2008,28(5-6):611-620.
    [5]王金华,黄佐华,苗海燕等.利用定容燃烧弹研究天然气掺氢混合燃料直喷燃烧循环变动.[J].内燃机学报,2008,26(5):410-419.
    [6]Porpatham E, Ramesh A. Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. [J]. International Journal of Hydrogen Energy,2007, 32(12):2057-2065.
    [7]Narayanan G, Shrestha S O B. A simulation model of a four-stroke spark ignition engine fueled with landfill gases.[C].Fall Technical Conference of the ASME Internal Combustion Engine Division. Charleston,2007.
    [8]Ando Y, Yoshikawa K. Research and development of a low-BTU gas-driven engine for waste gasification and power generation.[C]. International Symposium on CO2 Fixation and Efficient Utilization of Energy. Tokyo, JAPAN,2002.
    [9]Haworth D C. Large-eddy simulation of in-cylinder flows.[J]. Oil & Gas Science and Technology-Rev.,1999,54:175-185.
    [10]Drake M C, Haworth DC. Advanced gasoline engine development using optical diagnostics and numerical modeling.[J]. Proceeding of the Combustion Institute,2007,31:99-124.
    [11]Vermorel O, Richard S, Colin O. Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES.[J]. Combustion and Flame,2009,156(8):1525-1541.
    [12]Lilek Z, Nadarajah S, Peric M, et al. Measurements and simulation of the flow around a poppet valve.[J]. Eight Symposium on Turbulent Shear Flows,1991,1:1-6.
    [13]Tabor G, Weller H. Large Eddy Simulation of Premixed Turbulent Combustion Using Xi Flame Surface Wrinking Model.[J]. Flow, Turbulence and Combustion,2004,72:1-28.
    [14]刘奕,郭印诚,张会强等.大涡模拟及其在湍流燃烧中的应用.[J].力学进展,2001,31:215-225.
    [15]Jones W, Prasad V. Large Eddy Simulation of the Sandia Flame Series (D-F) using the Eulerian stochastic field method.[J]. Combustion and Flame,2010,157:1621-1636.
    [16]Sheikhi M R H, Givi P, Pope S. Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows.[J]. Physics of Fluids,2009,21:75-102.
    [17]Calhoon W H, SPARTA J, Menon S. Linear-eddy subgrid model for reacting large-eddy simulations:heat release effects.[C].In 35th Aerosciences meeting and exhibit, AIAA 97-0368,1997.
    [18]Kim W W, Menon S. Numerical modeling of turbulent premixed flames in the thin-reaction zones regime.[J]. Combustion Science and Technology,2000,160(1):119-150.
    [19]Chakravarthy V, Menon S. Linear eddy simulations of Reynolds number and Schmidt number effects of turbulent scalar mixing.[J]. The Physics of Fluids,2001,13:488-499.
    [20]Sen B, Menon S. Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames.[J]. Combustion and Flame,2010,157:62-74.
    [21]Colin O, Ducros F, Veynante D, et al. A thickened flame model for large eddy simulations of turbulent premixed combustion.[J]. The Physics of Fluids,2000,157:62-74.
    [22]De A, Acharya S. Large eddy simulation of a premixed bunsen flame using a modified thickened-flame model at two reynolds numbers.[J]. Combustion Science and Technology,2009, 181:1231-1272.
    [23]Fiorina B, Vicquelin R, Auzillon P, et al. A filtered tabulated chemistry model for LES of premixed combustion.[J]. Combustion and Flame,2010,157:465-475.
    [24]Boger M, Veynante D, Boughanem H, et al. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion.[C]. In Twenty-Seventh Symposium (International) on Combustion,1998.
    [25]Gubba S, Ibrahim S, Malalasekera W, et al. An assessment of large eddy simulations of premixed flames propagating past repeated obstacles.[J]. Combust. Theory Modelling,2009, 13:513-540.
    [26]Domingo P, Vervisch L, Bray K. Partially premixed flamelets in LES of nonpremixed turbulent combustion.[J]. Combust. Theory Modelling,2002,6:519-551.
    [27]Goryntsev D, Sadiki A, Klein M, et al. Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI IC-engines.[J]. Proceeding of the Combustion Institute,2009,32:2759-2766.
    [28]Goryntsev D. Large Eddy Simulation of the Flow and Mixing Field in an Internal Combustion Engine.[D]. Technology University of Darmstadt,2007.
    [29]Enaux B, Granet V, Vermorel O, et al. LES and experimental study of cycle-to-cycle variations in a spark ignition engine.[C]. The 33rd International Symposium on Combustion,2010.
    [30]Colin O, Benkenida A. The 3-Zones Extended Coherent Flame Model (ECFM3Z) for computing premixed/diffusion combustion.[J]. Oil & Gas Science and Technology-Rev.,2004, 59(6):593-609.
    [31]Albi E, D'Angelo Y. A simple strategy for the analysis of the cycle-to-cycle variation of premixed combustion process in ICEs.[C]. SAE papers,2007.
    [32]Ramos J I. Internal Combustion Engine Modeling.[M]. Hemisphere Publishing Corporation,1989.
    [33]Kadowaki S, Hasegawa T. Numerical simulation of dynamics of premixed flames:flame instability and vortex-flame interaction.[J]. Progress in Energy and Combustion Science,2005, 31:193-241.
    [34]Steinberg A, Driscoll J, Ceccio S. Temporal evolution of flame stretch due to turbulence and the hydrodynamic instability.[J]. Proceedings of the Combustion Institute,2009, 32(2):1713-1721.
    [35]Creta F, Matalon M. Propagation of wrinkled turbulent flames in the context of hydrodynamic theory.[J]. Journal of Fluid Mechanics,2011,680:225-264.
    [36]Law C K. Combustion physics.[M]. Cambridge University Press,2006.
    [37]Williams F A. Combustion Theory (Second Edition).[M]. The Benjamin/Cummings Publishing Company, Inc,1985.
    [38]Matalon M, Fogla N. Intrinsic flame instability in premixed and nonpremixed combustion.[J]. Annual Review of Fluid Mechanics,2007,39:163-191.
    [39]Furi M, Papas P, Monkewitz PA. Nonpremixed jet flame pulsations near extinction.[J]. Proceeding of the Combustion Institute,2000,28:831-838.
    [40]Lind C D, Whitson J C. Explosion hazards associated with spills of large quantities of hazardeous materials.[R]. Department of Transportation, U.S. Coast Guard Final Rep.,1977.
    [41]Law C K. Propogation, structure, and limit phenomena of laminar flames at elevated pressures.[J]. Combustion Science and Technology,2006,178:335-360.
    [42]Tien J H. Introduction to Laminar Flame Theory.[M].Xi'an JiaoTong University Press, 2005.
    [43]Matalon M, Cui C, Bechtold J K. Hydrodynamic theory of premixed flames:effects of stoichiometry, variable transport coefficients and arbitrary reaction orders.[J]. Journal of Fluid Mechanics,2003,487:179-210.
    [44]Matalon M. Flame Dynamics.[J]. Proceedings of the Combustion Institute,2009, 32:57-82.
    [45]Sattler S S, Knaus D A, Gouldin F C. Determination of the three-dimensional flamelet orientation distributions in turbulent v-flames from two-dimensional image data.[J]. Proceeding of the Combustion Institute,2002,29:1785-1792.
    [46]Pierre C, Guy J. Length-Scales of wrinkling of weakly-forced, unstable premixed flames.[J]. Combustion Science and Technology,1994,97:405-428.
    [47]Guy J, Pierre C. On a Tentative, Approximate Evolution Equaiton for Markedly Wrinkled Premixed Flames.[J]. Combustion Science and Technology,1992,81:243-256.
    [48]Rastigejev Y, Matalon M. Nonlinear evolution of hydrodynamically unstable premixed flames.[J]. Journal of Fluid Mechanics,2006,554:371-392.
    [49]Thual O, Frisch U, Henon M. Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts.[J]. Journal de Physique,1985,46:1485-1494.
    [50]Vaynblat D, Matalon M. Stability of pole solution for planar propagating flames:1. exact eigenvalues and eigenfunctions.[J]. Society for Industrial and Applied Mathematics,2000, 60:679-702.
    [51]Vaynblat D, Matalon M. Stability of pole solutions for planar propagating flames: 2.properties of eigenvalues/eigenfunctions and implications to stability.[J]. Society for industrial and applied mathematics,2000,60:703-728.
    [52]Kadowaki S, Kim S H, Pitsch H. The Dynamics of premixed flames propagating in non-uniform velocity fields:Assessment of the significance of intrinsic instabilities in turbulent combustion[R]. Center for Turbulence Research Annual Research Briefs,2005.
    [53]Day Y, Bell J, Pascucci V. Turbulence effects on cellular burning structures in lean premixed hydrogen flames.[J]. Combustion and Flame,2009,156(5):1035-1045.
    [54]Clavin P, Williams F A. Theory of premixed-flame propagation in large-scale turbulence.[J]. Journal of Fluid Mechanics,1979,90:589-604.
    [55]Yuan J, Ju Y, Law C K. Effects of turbulence and flame instability on flame front evolution.[J]. Physics of Fluids,2006,18(10):104-105.
    [56]Cambray P, Joulin G.On moderately-forced premixed flames.[J]. Proceeding of the Combustion Institute,1992,24:61-67.
    [57]Bychkov V V, Golberg S M, Liberman M A, et al. Propagation of curved stationary flames in tubes.[J]. Phys. Rev. E,1996,54:3713-3724.
    [58]Aldredge R C, Zuo B. Flame Acceleration Associated with the Darrieus-Landau Instability.[J]. Combustion and Flame,2001,127:2091-2101.
    [59]Kadowaki S, Kobayashi H. Dynamic behavior of premixed flames propagating in Non-uniform Velocity Fields-Assessment of intrinsic instability in turbulent combustion[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2008,51:244-251.
    [60]Boughanem H, Trouve A. The domain of influence of flame instabilities in turbulent premixed combustion.[C].In Twenty-Seventh Symposium (International) on Combustion,1998.
    [61]Bychkov V. Importance of the Darrieus-Landau instability for strongly corrugated turbulent flames.[J]. Physical Review E,2003,68(066304):1-12.
    [62]Zaytsev M, Bychkov V. Effect of the Darrieus-Landau instability on turbulent flame velocity.[J]. Phys. Rev. E,2002,66(026310).
    [63]Helenbrook B T, Law C K. The Role of Landau-Darrieus Instability in Large Scale Flows.[J]. Combustion and Flame,1999,117:155-169.
    [64]王献孕,熊鳌魁.高等流体力学.[M].华中科技大学出版社,2003.
    [65]Poinsot T, Veynante D, Candel S. Quenching process and premixed turbulent combustion diagrams.[J]. Journal of Fluid Mechanics,1991,228:561-606.
    [66]Roberts W L, Driscoll J F, Drake M C, et al. OH fluorescence images of the quenching of a premixed flame during an interaction with a vortex.[J]. Proceeding of the Combustion Institute, 1992,24:169-176.
    [67]Mueller C J, Driscoll J F, Reuss D L, et al. Generation and attenuation of vorticity by flames:measured vorticity field time evolution during a premixed flame-vortex interaction.[J]. Combustion and Flame,1998,112:342-346.
    [68]Patnaik G, Kailasanath K. A computational study of local quenching in flame-vortex interactions with radiative losses.[J]. Proceeding of the Combustion Institute,1998,27:711-717.
    [69]Hasegawa T, Morooka T, Nishiki S. Mechanism of interaction between a vortex and a premixed flame.[J]. Combustion Science and Technology,2000,150:115-142.
    [70]Asato K, Hiruma H W T, Takeuchi Y. Characteristics of flame propagation in a vortex core:validity of a model for flame propagation.[J]. Combustion and Flame,1997,110:418-428.
    [71]Ishizuka S, Murakami T, Hamasaki T, et al. Flame speeds in combustion vortex rings.[J]. Combustion and Flame,1998,113:542-553.
    [72]周光炯,严宗毅,许世雄等.流体力学.[M].高等教育出版社,2000.
    [73]Roberts W L, Driscoll J F, Drake M C, et al. Inages of the quenching of a flame by a vortex to quantify regimes of turbulent combustion.[J]. Combustion and Flame,1993,94:58-69.
    [74]Renard P H. Dynamics of flame/vortex interactions.[J]. Progress in Energy and Combustion Science,2000,26:225-282.
    [75]Pan K L, Qian J, Law C K, et al. The role of hydrodynamic instability in flame-vortex interaction.[J]. Proceeding of the Combustion Institute,2002,29:1695-1704.
    [76]Pope S B. Turbulent premixd flames.[J]. Annual Review of Fluid Mechanics,1987, 19:237-270.
    [77]Peters N. Turbulent Combustion.[M]. Cambridge University Press,Cambridge,2000.
    [78]Doosje E. Limits of mixture dilution in gas engines.[D]. Technische Universiteit Eindhoven,2010.
    [79]Eichenberger D A, Roberts W L. Effect of unsteady stretch on spark ignited flame kernel survival.[J]. Combustion and Flame,1999,118:469-478.
    [80]Echekki T, Gokula H K. A regime diagram for premixed flame kernel-vortex interactions.[J]. Physics of Fluids,2007,19(043604).
    [81]Long E J, Hargrave G K, Jarvis S, et al. Characterisation of the interaction between toroidal vortex structures and flame front propagation.[C]. Journal of Physics:Conference Series, 2006.
    [82]Vasudeo N, Echekki T, Day M S, et al. The regime diagram for premixed flame kernel-vortex interactions-Revisited.[J]. Physics of Fluids,2010,22(043602):1-10.
    [83]Senan NAF. A brief introduction to non-dimensionalization.[R]. Department of Mechanical Engineering, University of California at Berkeley,2008.
    [84]Fogla N. Interplay between backgroud turbulence and Darrieus-Landau instability in premixed flames via a model equation.[D]. Urbana,Illinois:University of Illinois at Urbana-Champaign,2010.
    [85]Renardy M. A model equation in combustion theory exhibiting an infinite number of secondary bifurcations.[J]. Physica D:Nonlinear Phenomena,1987,28:155-167.
    [86]Salas M D. The Curious Events Leading to the Theory of Shock Waves. [C]. Invited lecture at the 17th Shock Interaction Symposium. Rome, Italy,2006.
    [87]张兆顺等.湍流大涡数值模拟的理论和应用.[M].清华大学出版社,2008.
    [88]Klein M, Sadiki A, Janicka J. A Digital Filter Based Generation of Inflow Data for Spatially Developing direct numerical or large eddy simulations.[J]. Journal of Computational Physics,2003,186:652-665.
    [89]Batchelor G. The Theory of Homogeneous Turbulence.[M]. Cambridge:Cambridge University Press,1953.
    [90]张元林.工程数学-积分变换.[M].高等教育出版社,2003.
    [91]Siminos E. Kuramoto-Sivashinsky weak turbulence.[R]. Atlanta, GA 30332-0430, USA: School of Physics, Georgia Institute of Technology,2005.
    [92]Cox S M, P.C.Matthews. Exponential time differencing for stiff systems.[J]. Journal of Computational Physics,2002,176:430-455.
    [93]Kassam A K, Trefethen L N. Fourth-order time stepping for stiff PDES.[J]. SIAM Journal on Scientific Computing,2005,26:1214-1233.
    [94]Poulain C, Mazellier N, Chevillard L, et al. Dynamics of spatial Fourier modes in turbulence, Sweeping effect, long-time correlations and temporal intermittency.[J]. THE EUROPEAN PHYSICAL JOURNAL B,2006,53:219-224.
    [95]Lloyd D J. Localised Solutions of Partial Differential Equations.[D]. Department of Engineering Mathematics, University of Bristol,2005.
    [96]Bychkov V, Liberman M. Dynamics and stability of premixed flames.[J]. Physics Reports,2000,325:115-237.
    [97]常铭,苗海燕,路林等.初始温度/压力对天然气层流燃烧速率的影响.[J].燃烧科学与技术,2010,16:309-316.
    [98]解茂昭.内燃机计算燃烧学.[M].大连理工大学出版社,2005.
    [99]Baudoin E. Large Eddy Simulation of Turbulent Premixed and Partially Premixed Combustion.[D]. Division of Fluid Mechanics, Department of Energy Sciences, Lund Institute of Technology,2010.
    [100]Chapuis M, Fureby C, Fedina E, et al. LES Modeling of Combustion Applications Using OpenFOAM.[R]. V European Conference on Computational Fluid Dynamics, Lisbon, Portugal, Jun 14-17,2010.
    [101]De Villiers E. The potential of large eddy simulation for the modelling of wall bounded flows.[D]. Thermofluids Section, Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine,2006.
    [102]周龙保.内燃机学.[M].北京:机械工业出版社,2005.
    [103]Duclos J, Colin O. Arc and kernel tracking ignition model for 3D spark-ignition engine calculations.[C].COMODIA. Nagoya,2001:343-350.
    [104]Kim J, Anderson R W. Spark anemometry of bulk gas velocity at the plug gap of a firing engine.[C].SAE paper,1995.
    [105]Adelman H G.A time dependent theory of spark ignition.[C].In 18th Symposium (International) on Combustion. The Combustion Institute,1981:1333-1342.
    [106]Colin O, Truffin K. A Spark Ignition Model for Large Eddy Simulation Based on an FSD Transport Equation (ISSIM-LES).[J]. Proceedings of the Combustion Institute,2011, 33(2):3097-3104.
    [107]Heywood J B. Internal Combustion Engine Fundamentals.[M]. NewYork:McGraw-Hill Book company,1988.
    [108]Rohwein G J. An efficient, power enhanced ignition system.[J]. IEEE Transactions on P1, 1997,25:306-310.
    [109]Chen J Y. Stochastic Modelling of Partially Stirred Reactors.[J]. Combustion Science and Technology,1997,122:63-94.
    [110]Chomiak J, Karlsson A. Flame liftoff in diesel sprays.[J]. Symposium (International) on Combustion,1996,26(2):2557-2564.
    [111]Golovitchev V I, Fureby C. Detailed Chemistry Based CFD Technology for Enhanced Combustion Mode Simulations. [R]. Department of Thermo and Fluid Dynamics, Chalmers university of technology,1999.
    [112]Golovitchev V I. Revising old good models:detailed chemistry spray combustion modelin based on eddy dissipation concept.[C].Proceedings of 5th International Conference ICE. Capri-Naples, Italy,2001.
    [113]Rahimi M, Hiremath V. Chemical kinetic model reduction based on partially-stirred reactor simulations with comparable chemical and mixing time scales.[C].51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,2013.
    [114]Nordin PAN. Complex Chemistry Modeling of Diesel Spray Combuation.[D]. Department of Thermo and Fluid Dynamics, Chalmers University of Technology,2001.
    [115]Golovitchev V I, Chomiak J. Numerical Modeling of High Temperature Air "Flameless" Combustion.[R]. Goteborg,Sweden:Chalmers University of Technology,2001. The 4th International Symposium on High Temperature Air Combustion and Gasification, Rome, Italy, Nov 26-30,2004.
    [116]Paul RN, Bray K N C. Study of premixed turbulent combustion including Landau-Darrieus instability effects.[C].Twenty-Sixth Symposium (International) on Combustion/ The Combustion Institute,1996:259-266.
    [117]Chen Z. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames.[J]. Combustion and Flame,2011,158:291-300.
    [118]Chen Z. Effects of hydrogen addition on the propagation of spherical methane/air flames: A computational study.[J]. International Journal of Hydrogen Energy,2009,34:6558-6567.
    [119]Heravi H M, Azarinfar A, Kwon S I, et al. Determination of Laminar Flame Thickness and Burning Velocity of methane air mixture.[C].THIRD EUROPEAN COMBUSTION MEETING ECM 2007,2007.
    [120]Veberic D. Having Fun with Lambert W(x) Function.[R]. University of Nova Gorica, Slovenia,2009.
    [121]Westbrook C K, Dryer F L. Chemical Kinetic Modeling of Hydrocarbon Combustion.[J]. Progress in Energy and Combustion Science,1984,10(1):1-57.
    [122]Xu J, Zhang X, Liu J, et al. Experimental study of a single-cylinder engine fueled with natural gas-hydrogen mixtures.[J]. International Journal of Hydrogen Energy,2010,35:2909-2914.
    [123]Boudier G. Methane/air flame with 2-step chemistry:2s ch4 cm2.[R]. CERFACS,2007.
    [124]Jones W P, Lindstedt R P. Global reaction schemes for hydrocarbon combustion.[J]. Combustion and Flame,1988,73:222-233.
    [125]Bibrzycki J, Poinsot T. Reduced chemical kinetic mechanism for methane combustion in O2/N2 and O2/CO2 atmosphere.[R]. CERFACS,2010.
    [126]Frisch U, Sulem P. A simple dynamical model of intermittent fully developed turbulence.[J]. Journal of Fluid Mechanics,1978,87:719-736.
    [127]Bradley D, Cresswell T M, Puttock J S. Flame Acceleration Due to Flame-Induced Instabilities in Large-Scale Explosions.[J]. Combustion and Flame,2001,124:551-559.
    [128]Gulder O L, Smallwood G J. Inner cutoff scale of flame surface wrinkling in turbulent premixed flames.[J]. Combustion and Flame,1995,103:107-114.
    [129]Metghalchi M, Keck J C. Burning velocities of mixture of air with methanol, isooctane and indolene at high pressure and temperature.[J]. Combustion and Flame,1982,48:191-210.
    [130]Dahoe A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions.[J]. Journal of Loss Prevention in the process industries,2005,18:152-166.
    [131]Sankaran R. Effects of hydrogen addition on the markstein length and flammability limit of streched methane/air premixed flames.[J]. Combustion Science and Technology,2006, 178:1585-1611.
    [132]Weller H. The Development of a New Flame Area Combustion Model Using Conditional Averaging.[R]. Department of Mechanical Engineering, Imperial College of Science Technology and Medicine,1993.
    [133]OpenCFDLtd. OpenFOAM the Open Source CFD toolbox-user guide and programmer's guide.[M]. Version-1.6,2009.
    [134]Jasak H, Weller H G, Nordin N. In-Cylinder CFD Simulation Using a C++ Object-Oriented Toolkit.[R]. Salfords,United Kingdom:Nabla Ltd,2004. SAE 2004 World Congress and Exhibition (SAE 2004), Detroit, MI, USA, Mar 08,2004.
    [135]Lucchini T, D'Errico G. Automatic mesh motion, topological changes and innovative mesh setup for ICE CFD simulations.[C]. Convegno Internazionale "Automobili e Motori Hi-Tech". Dipartimento di Energetica, Politecnico di Milano,2006.
    [136]Lucchini T, D'Errico G, Brusiani F, et al. Multi-dimensional modeling of the air/fuel mixture formation process in a PFI engine for motorcycle applications.[C].SAE papers,2009.
    [137]Brusiani F, Bianchi G M, Lucchini T, et al. Implementation of a finite-element based mesh motion technique in an open source CFD code.[C].Proceedings of the ASME International Combustion Engine Division 2009 Spring Technical Conference, ICES2009. Milwaukee, Wisconsin, USA,2009.
    [138]Lucchini T. Internal Combustion Engine Simulations in OpenFOAM.[R]. Department of Energy-Internal Combustion Engine Group, Politecnico di Milano,2009.
    [139]Menon S, Mooney K. Use of the dynamicTopoFvMesh class in OpenFOAM.[R]. University of Massachusetts Amherst,2011.
    [140]Brewer M, Diachin L F, Knupp M P, et al. The Mesquite Mesh quality improvement toolkit.[C].12th International Meshing Roundtable, Sandia National Laboratories report SAND 2003-3030P,2003.
    [141]Menon S. A numerical study of droplet formation and behavior using interface tracking methods.[D]. University of Massachusetts Amherst,2011.
    [142]George P L, Borouchaki H. Delaunay Triangulation and Meshing:Applications to Finite Elements.[M]. Paris:Hermes,1998.
    [143]De L'Isle E B, George PL. Optimization of tetrahedral meshes.[J]. Institute for Mathematics and Its Applications,1995,75:97-127.
    [144]Liu A, Joe B. Relationship between tetrahedron shape measures.[J]. BIT Numerical Mathematics,1994,34:268-287.
    [145]Knupp PM. Algebraic mesh quality metrics for unstructured initial meshes.[J]. Finite Elements in Analysis and Design,2003,39:217-241.
    [146]Farrell P E, Piggott M D, Pain C C, et al. Conservative interpolation between unstructured meshes via supermesh construction.[J]. Computer Methods in Applied Mechanics and Engineering, 2009,198:33-36.
    [147]Blom F J. Considerations on the spring analogy.[J]. International Journal for Numerical Methods in Fluids,2000,32:647-668.
    [148]张志荣,冉景煜,张力等.内燃机缸内气体CFD瞬态分析中动态网格划分技术.[J].重庆大学学报(自然科学版),2005,28:98-100.
    [149]Freitag LA, Ollivier-Gooch C. Tetrahedral mesh improvement using swapping and smoothing.[J]. International Journal for Numerical Methods in Engineering,1997,40:3979-4002.
    [150]Jasak H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows.[D]. Department of Mechanical Engineering Imperial College of Science, Technology and Medicine,1996.
    [151]Lucchini T, D'Errico G, Brusiani F, et al. A Finite-Element Based Mesh Motion Technique For Internal Combustion Engine Simulations. [R]. Milano, Italy:Politecnico di Milano,2008.7th International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA 2008), Sapporo, Japan, Jul 28-31,2008.
    [152]Goodwin D G.Object-oriented software for reacting flows.[R]. California Institute of Technology,2002.
    [153]Hindmarsh A C, Brown P N, Grant K E, et al. SUNDIALS:Suite of nonlinear and differential/algebraic equation solvers.[J]. ACM Transactions on Mathematical Software (TOMS), 2005,31:363-396.
    [154]Rehm M, Seifert P, Meyer B. Towards a CFD Model for Industrial Scale Gasification Processes.[C].OpenFOAM Workshop 2008. Milan, Italy,2008.
    [155]Bianchi G M, Brusiani F, Postrioti L, et al. CFD analysis of injection timing and injector geometry influences on mixture preparation ar idle in PFI motorcycle engine.[C].SAE paper,2008.
    [156]Spalding D B. A single formula for the law of the wall.[J]. Journal of Applied Mechanics, Trans. ASME, Series E,1961,28:455-458.
    [157]VonNeumann J, Richtmyer R D. A Method for the Numerical Calculation of Hydrodynamic Shocks.[J]. Journal of Applied Physics,1950,21:232-237.
    [158]陶文铨.数值传热学(第二版).[M].西安交通大学出版社,2001.
    [159]Andersen C, Nielsen N E L. Numerical investigation of a BFR using OpenFOAM.[R]. AAU-Institute of Energy Technology, Aalborg university,2008.
    [160]Issa R I. Solution of the implicitly discretized fluid flow equations by operator splitting.[J]. Journal of Computational Physics,1986,62:40-65.
    [161]王福军.计算流体动力学分析-CFD软件原理与应用.[M].清华大学出版社,2004.
    [162]Pope S B. Ten questions concerning the large-eddy simulation of turbulent flows.[J]. New Journal of Physics,2004,6:1-24.
    [163]Sarli V D, Benedetto A D, Russo G.Large Eddy Simulation of Transient Premixed Flame-Vortex Interactions in Gas Explosions.[J]. Chemical Engineering Science,2012,71:539-551.
    [164]Afarin Y, Tabejamaat S, Mardani A. Large eddy simulation study of H2/CH4 flame structure at MILD condition.[C].7th Mediterranean Combustion Symposium. Sardinia, Italy,2011.
    [165]Rutland C J. Large-eddy simulations for internal combustion engines-a review.[J]. International Journal of Engine Research,2011,12:421-451.
    [166]Richard S, Colin O, Vermorel O, et al. Towards large eddy simulation of combustion in spark ignition engines.[J]. Proceedings of the Combustion Institute,2007,31:3059-3066.
    [167]Enaux B, Granet V, Vermorel O, et al. Large eddy simulation of a motored single-cylinder piston engine:numerical strategies and validation.[J]. Flow Turbulence Combust,2011,86:153-177.
    [168]Jagus K, Jiang X. Large Eddy Simulation of Diesel Fuel Injection and Mixing in a HSDI Engine.[J]. Flow Turbulence Combust,2011,87:473-491.
    [169]曾文,解茂昭,周磊.网格密度对内燃机冷态流场大涡模拟的影响.[J].燃烧科学与技术,2010,16:181-186.
    [170]Zheng S, Zhang X, Xu J, et al. Effects of initial pressure and hydrogen concentration on laminar combustion characteristics of diluted natural gas-hydrogen-air mixture.[J]. International Journal of Hydrogen Energy,2012,37:12852-12859.
    [171]王鹏.基于定容燃烧弹的湍流火焰燃烧分析.[D].北京交通大学,2012.
    [172]Jeong J, Hussain F, Schoppa W, et al. Coherent structures near the wall in a turbulent channel flow.[J]. Journal of Fluid Mechanics,1997,332:185-214.
    [173]Lugt H G.Vortex Flow in Nature and Technology.[M]. John Wiley & Sons,1983.
    [174]Green S I. Fluid Vortices.[M]. Kluwer Academic Publishers,1995.
    [175]Jeong J, Hussain F. On the identification of a vortex.[J]. Journal of Fluid Mechanics,1995, 285:69-94.
    [176]Lugt H J. The dilemma of defining a vortex.In Recent Developments in theoretical and experimental fluid mechanics.[M]. Springer,1979:309-321.
    [177]Chong M S, Perry A E, Cantwell B J. A general classification of three dimensional flow field.[J]. Physics of Fluids A,1990,2:765-777.
    [178]Melander M V, Hussain F. Polarized vorticity dynamics on a vortex column.[J]. Physics of Fluids A,1993,5:1992-2003.
    [179]Sarli V D, Benedetto AD. Regimes of interactions between expanding premixed flames and toroidal vortices.[C].7th Mediterranean Combustion Symposium. Chia Laguna, Cagliari, Sardinia, Italy,2011.
    [180]Kolar V. A note on integral vortex strength.[J]. Journal of Hydrology and Hydromechanics, 2010,58:23-28.
    [181]Ashurst W M T, Mcmurtry PA. Flame Generation of Vorticity:Vortex Dipoles from Monopoles.[J]. Combustion Science and Technology,1989,66:17-37.
    [182]Landau L, Lifshitz E M. Fluid Mechanics.[M]. Butterworth-Heinemann,Oxford,1987.
    [183]Candel S, Poinsot T. Flame stretch and the balance equation for the flame area.[J]. Combustion Science and Technology,1990,70:1-5.
    [184]Lancaster D R. Effects of engine variables on turbulence in a spark ignition engine.[C]. SAE papers,1976.