微生物发酵制氢系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用微生物以自然界中极为丰富的纤维素类秸秆为底物进行生物制氢,对开发新能源、降低环境污染、实现经济的可持续发展战略有重要意义。
     以产酸克雷伯氏菌(Klebsiella oxytoca)HP1为产氢菌株,以稻草粉为产氢底物,进行同步糖化发酵(Simultaneous Saccharification and Fermentation,SSF)产氢。对影响同步糖化发酵产氢的单因子进行试验,选取对产氢影响较大的因子:温度、pH、纤维素酶用量进行L9(33)正交试验。结果表明同步糖化发酵产氢的最佳条件为:温度40℃,pH 6.5,纤维素酶用量为20 FPAU/g稻草粉,摇床转速100 r/min,发酵时间42 h。在该条件下的最大氢产量为110.6 mL/g稻草粉。进行了10 L放大发酵产氢试验,最大氢产量为122.3 mL/g稻草粉。与分步糖化发酵(Separate Hydrolysis and Fermentation ,SHF)产氢相比,氢产量提高34.4%。研究表明利用同步糖化发酵工艺可提高生物制氢的产量。
     对产酸克雷伯氏菌( Klebsiella oxytoca ) HP1和荚膜红假单胞菌(Rhodopseudomona capsulata)CN1混合发酵产氢进行了研究。实验对影响混合发酵产氢的因素进行了研究,结果表明:混合发酵最适光照强度为4000 lux,荚膜红假单胞菌(Rhodopseudomona capsulata)CN1最佳接种量为20%,最适起始pH为7.5,最适氮源为蛋白胨(3 g/L),谷氨酸钠次之。加入氨盐会抑制放氢,但可以缩短光合产氢的停滞期。产氢实验须在厌氧条件下进行,即使浓度为3%的氧浓度也会影响放氢。在最适条件下,混合发酵氢产率为4.0 mol H2/mol (CH20)6,氢转化率为66.7%。
     以同步糖化发酵制氢的废液为底物进行混合发酵制氢。同步糖化发酵制氢的废液中含有机酸类(丁酸2.55 g/L,乙酸0.51 g/L)和残余糖类(3.1 g/L)可以被荚膜红假单胞菌(Rhodopseudomona capsulata)CN1和产酸克雷伯氏菌(Klebsiella oxytoca)HP1利用。氢产量为920mLH2/L培养基(同步糖化发酵制氢的废液)。因此,以稻草粉为底物,经过同步糖化发酵制氢和混合发酵制氢后稻草粉的最终产氢率为140.7 mLH2/g稻草粉。
     生物质发酵制氢废水含有大量的产酸克雷伯氏菌(Klebsiella oxytoca)HP1和荚膜红假单胞菌(Rhodopseudomona capsulata)CN1菌体。实验对壳聚糖作为絮凝剂处理发酵制氢废水以进行菌体蛋白的收集和废水处理进行了研究,考察了pH值、壳聚糖用量和絮凝温度等对絮凝效果的影响,结果显示:在pH4.5,壳聚糖用量60 mg/L,絮凝温度40℃时,除菌率和COD去除率分别达到92.1%,40%,并改善了过滤效果,在与絮凝剂130的复合絮凝试验,除菌率可以达到94.1%。
Biomass can be degraded by microbe into sugar which can subsequently be converted into energy source such as hydrogen. Such a process is significant when applied to put off energy source crisis, debate environmental pollution and realize the strategy of sustainable economy.
     Hydrogen production from rice straw by simultaneous saccharification and fermentation (SSF) was studied using the Klebsiella oxytoca HP1 in this report. The experiments of batch ferment hydrogen production were carried out in 600-mL serum bottles. Single factor and orthogonal experiments showed that the optimal conditions for hydrogen production were: pH6.5, ferment temperature 40℃, cellulose dose 20 FPAU/g rice straw, shake rate 100r/min and ferment time 42 h. The maximum H2 production (110.6 mL/g rice straw) was obtained under the above conditions. The enlarge experiments were carried out in a 10- L bioreactor , a maximum H2 production of 122.3 mL/g rice straw was achieved. The H2 production increased by 34.4% compared with the separated hydrolysis and fermentation hydrogen production. This research indicated a perfect application of SSF in biohydrogen production from cellulose material.
     Hydrogen production by a mixed culture of R. capsulata CN1 and K. oxytoca HP1 was investigated. The experiments of batch ferment hydrogen production were carried out in 140-mL serum bottles which were filled with argon (Ar). The optimal conditions for hydrogen production were: initial pH 7.5, light intensity 4000lux, Rhodopseudomona capsulata CN 1 inculation volume 20%, 3g/L peptone as nitrogen resource and the sodium glutamate secondary. The stasis stage was evidently shortened when ammoniate were added as nitrogen source, but the yield of H2 production decreased. The anaerobic atmosphere is necessary for hydrogen production,even 3%oxygen can decrease the production of hydrogen. Under the optimal conditions the maximum H2 production was obtained as 4.0 mol H2/ mol (CH20)6 with a H2 yield of 66.7%.
     The liquid waste of SSF includes lots of organic acids(butyric acid 2.55 g/L, acetic acid 0.51 g/L)and suger (3.1 g/L) which can be used by Rh. capsulate CN1 and K. oxytoca HP1. Under the optimal conditions of mixed culture, the amount of hydrogen produced by the waste liquid of SSF was 920 mL H2/L. The total H2 production was 140.7 mLH2/g rice straw by the process of SSF and mixed culture。
     The liquid waste from biohyhrogen contains SCP(sinle cell protein) which can be recycled. In this research, chitosan has been used for receiving bacterium from wastewater .The result showed that the FR was 92.1%, and COD 40%, when the conditions were pH 4.5, chitosan dosage 60mg/l and 40℃. Under the optimal conditions the filtration speed of the flocculated sample was improved dramatically. When the chitosan and the flocculant of 130 were used together, the FR can reach 94.1% .
引文
[1]马经国. 新能源技术 [M]. 南京:江苏科学技术出版社,1992.
    [2]李敏. 浅谈中国能源现状及未来 [J]. 山西电力,2004,3;66-68.
    [3]Das D, Veziroglub TN.Hydrogen production by biological processes: a survey of literature [J] . International journal of hydrogen energy , 2001,26(1):13-28.
    [4]Pounds J.A, Puschendorf R. Clouded futures [J] .Nature, 2004, 427(6970): 107-109.
    [5]沈兆邦. 我国森林资源化学利用的发展前景[J]. 林产化学与工业,1999, 19, (4):75-80.
    [6]封莉,刘俊峰,冯晓静,等.秸秆生物质资源利用途径及相应技术[J].农机化研究, 2004,(6):193-195.
    [7]张无敌,宋洪川,韦小岿,等. 21 世纪发展生物质能前景广阔[J].中国能源,2001,(5):35-38.
    [8]Harding N S,Adams B R. Biomass as a reburning fuel: a specialized cofiring application [J]. Biomass and Bioenergy, 2000, 19(6): 429-445.
    [9]岳建芝,徐桂转,张杰,等。制氢技术和工艺[J].可再生能源, 2003,3:34-35.
    [10]Schrope M.Which way to energy utopia? [J] .Nature, 2001, 414(13): 682-684.
    [11]Chornet E, Czernik S.Harnessing hydrogen [J].Nature, 2002, 418(29): 928-929.
    [12]Burgess,J.E,Parsons,S.A and Stuetz,R.M. Developments in odor control and waste gas treatment biotechnology: a review [J]. Biotechnology Advances, 2001, 19(1):35-63.
    [13]Momirlan M, Veziroglu T. Recent directions of world hydrogen production [J]. Renewable and Sustainable Energy Reviews, 1999, 3(2): 219-231.
    [14]Zandonella Catherine. Is it all just a pipe dream? [J]. Nature, 2001, 410 (12): 465-466.
    [15]Schlapbach Louis, Zuttel Andreas. Hydrogen-storage materials formobile applications [J]. Nature, 2001, 414(15): 353-358.
    [16]Hallenbeck P.C., Benemann J.R.. Biological hydrogen production; fundamentals and limiting processes [J]. International Journal of Hydrogen Energy, 2002, 27(11): 1185-1193.
    [17]刘如林,刁虎欣,梁凤来,赵大键. 光合细菌及其应用(M). 北京:中国农业科技出版社,1991.
    [18]Willison J C, Madern D, and Vignais P M. Increased photoproduction of hydrogen by non-autrophic nutants of Rhodopseudomonas capsulate [J]. Biochemistry, 1984, 219(2): 593-600.
    [19]Hustade E,teinbuchel A,Schlegel,H G. Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulfur bacteria [J]. Applied microbiology and biotechnology ,1993, 31(1):87-93.
    [20]Jahn A, Keuntje B, Dorffler M, Klipp W, Oelze J. Optimizing Photoheterotrophic H2 production by Rhodobacter Capsulatus upon interposon mutagenesis in the hupL gene [J]. Applied Microbiology and Biotechnology,1994,40(5) ,687-690.
    [21]Sasikala K, Ramana C V. Rso P R. Photoproduction of hydrogen from the wastewater of a distillery by Rhodobacter sphaeroides O.U.001[J]. Hydrogen Energy,1992,17(1)23-27.
    [22]刘双江,杨惠芳,周培瑾.固定化光合细菌处理豆制品废水产氢研究 [J].环境科学,1994,16(l):42-44.
    [23]Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y. H2 production from starch by a mixed culture of Clostrium Butyricum and Rhodobacter sp.M-19 [J]. Biotechnology Letters,1998,20(9):895-899
    [24]Odom JM, Wall JD. Photoproduction of H2 from cellulose by an anaerobic bacterial co-culture [J]. Applied and Environmental Microbiology, 1983, 45(4): 1300-1305.
    [25]计红芳,陈锡时,王爱杰.光合细菌光合产氢的研究进展[J] .微生物学杂志,2002,22(5):44-46。
    [26]Adams M W, Stiefel E I. Biological hydrogen production:not so elementary [J]. Science, 1998, 282(5395): 1842-1843.
    [27]Hallenbeck P C,Benemann J R. Biological hydrogen production;fundamentals and limiting processes [J]. International journal of hydrogen energy , 2002, 27: 1185-1193.
    [28]杨素萍,赵春贵,曲音波,钱新民.光合细菌产氢研究进展[J].水生生物学报,2003,27(1):85-91.
    [29]李鹏,龙敏南.光生物产氢研究进展[J],厦门大学学报(自然科学版). 2004,43(增刊):159-165.
    [30]吴永强,陈秉俭,仇哲.浑球红假单胞菌在暗处发酵生长时的固氮酶、吸氢酶以及放氢机制研究[J].微生物学通报,1991,18(2):71-74.
    [31]杜近义 秦际威.光合细菌的开发应用进展[J].生物学通报,1998,33(11): 15-18.
    [32]曾宇,秦松,梁明山.光合细菌综合应用新进展[J].水产科学,2000,19(5):34-36.
    [33]宋志文,郭本华,曹军.光合细菌及其在化工有机废水处理方面的应用[J].化工环保,2003,23(4):209-212.
    [34]Veziroglu T. N. Quarter Century of Hydrogen Movement 1974-2000 [J]. International journal of hydrogen energy , 2000, 25(12): 1143-1150.
    [35]林明.高效产氢发酵新菌种产氢机理及生态学研究[D],哈尔滨,哈尔滨工业大学 2002:17-18.
    [36]Van Niel EW , Claassen PA, Stams AJ. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus [J]Biotechnology and Bioengineering, 2003,81(3):255-262.
    [37]Van Niel E.W., Budde M.A.W., De Haas G.G. et al . Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii [J]. International journal of hydrogen energy , 2002, 27(11):1391-1398.
    [38]Rachman M.A., Furutani Y., Nakashimada Y. et al. Enhanced Hydrogen Production in Altered Mixed Acid Fermentation of Glucose by Enterobacter aerogenes [J]. Journal of fermentation and bioengineering. 1997, 83(4): 358—363.
    [39]Rachman M.A., Nakashimada Y., Kakiaon T.,Nishio N. Hydrogen Production with High Yield and High Evolution Rate by Self-flocculated Cells of Enterobactera erogenesina Packed-bed Reactor [J]. Applied microbiology and biotechnology. 1998, 49(4): 450-454.
    [40]李秋波.自凝集产氢新菌种的特性及其快速检测(D),哈尔滨,哈尔滨工业大学.
    [41]Yokoi H. Ohkawara T. Hirose J. et al. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39 [J]. Journal of fermentation and bioengineering. 1995.80(6):571-574.
    [42]Yokoi H. Tokushige T. Hirose J et al. Hydreogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39 [J]. Ferment.Bioeng. 1997, 83(5): 481-484
    [43]Kumar N., Das D. Enhancement of Hydrogen Production by Enterobacter Cloacae IIT-BT08 [J]. Process Biochemistry.2000,35(6):589-593.
    [44]Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices [J]. Enzyme and Microbial Technology 2001, 29(4): 280-287.
    [45] Majizat A, Mitsunori Y, Mitsunori W, et al. Hydrogen gas production from glucose and itsmicrobial kinetics in anaerobic systems [J],Water Science and Technology.1997,36(6):279-286.
    [46]任南琪,宫曼丽,邢德峰.连续流生物制氢反应器乙醇型发酵的运行特性[J] .环境科学,2004,25(6):113-116.
    [47]Yokoi H, Saitsu A, Uchida H, et al. Microbial hydrogen production from sweet potato starch residue [J].Journal of Bioscience and Bioengineering,2001,91(1):58-63
    [48] Weetall H H., Sharma P B., Detar C C. Photometabolic production of hydrogen from organic substrates by free and immobilized mixed cultures of Rhodospirillum rubrum and Klebsiella pneumoniae [J]. Biotechnology and Bioengineering, 1981, 23(3), 605-614.
    [49]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展[J].生物质化学工 程,2006,40(1)27-31
    [50] Stephenson M and Stickland L H. Hydrogenase: a bacterial enzyme activating molecular hydrogen [J]. Biochemical Journal, 1931, 25(1):205-214
    [51]王继华,赵爱萍.生物制氢技术的研究进展与应用前景[J].环境科学研究,2005,18(4):131-135.
    [52]Gray C T,Gest H.Biological formation of molecular hydrogen [J].Science,1964,148(3667):186-192
    [53]郑怀礼等,生物絮凝剂与絮凝技术(M),北京,化学工业出版社,2004.
    [54]肖锦,周勤。天然高分子絮凝剂(M),北京,北京化学工业出版社,2005.
    [55]陈亮,陈俭,朱超.壳聚糖在给水处理中的应用研究[J].中国给水排水,2003, 19(8):50-51.
    [56]方忻兰.高效絮凝剂壳聚糖螯合剂的研制及其絮凝效果的研究[J].污染防治技术.1997,10(1):52-55.
    [57]云逢霖,崔焕明.谷氨酸发酵液絮凝除菌的研究[J]. 微生物学通报,1996,23(2):91-94.
    [58]杜娟,曲音波,林觐勤等.灰绿曲霉高产纤维素酶突变株的选育[J].厦门大学学报(自然科学版),2006, 45(增刊):23-26.
    [59]Minnan L, Jinli H, Xiaobin W, et al. Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring [J] . Research in Microbiology, 2005, 156(1): 76-81.
    [60]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J].微生物学通报 1987(14):81-86.
    [61]林加涵,魏文铃,彭宣宪.现代生物学实验(下)[M]. 北京: 高等教育出版社,2000.
    [62]Mary Mandels, Raymond Andreotti, Charles Roche. Measurement of saccharifying cellulose [J]. Biotechnology and Bioengineering, 1976, 18(6): 21-33
    [63]毕喜婧,刘德华.7 种絮凝剂对甘油发酵的絮凝效果比较[J].研究报告.2002.28(9)15-18.
    [64]Li Ping Huang, Bo Jin, Paul Lant, et al. Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus [J]. Biochemical Engineering Journal,2005, 23(3): 265-276.
    [65]Stenberg K, Galbe M, Zacchi G. The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol [J]. Enzyme and Microbial Technology, 2000, 26(1): 71-79.
    [66]Golias H, Dumsday J G, Stanley A G, et al. Characteristics of cellulose preparations affecting the Simultaneous saccharification and fermentation of cellulose to ethanol [J]. Biotechnology Letters, 2000, 22(7): 617-621.
    [67]Tantsho S. Kuromoto M, Kadokura N. Effect of CO2 removal on hydrogen from production by fermentation [J]. International journal of hydrogen energy , 1998, 23(7): 559-563
    [68]刘灵芝,孙军得,韩梅,陈锡时.光合细菌产氢因子的研究进展[J].生态科学, 2004, 23(2): 184-186
    [69]杨素萍,赵春贵,刘瑞田,曲音波,钱新民. 沼泽红假单胞菌乙酸光合放氢研究[J].生物工程学报,2002,18(4):486-487.
    [70]Asada A, Miyake J. Photobiological hydrogen production [J]. Journal of bioscience and bioengineering ,1999,88(1): 1-6.
    [71]李凡锋,周玉杰,刘德华.1,3-丙二醇发酵液的絮凝预处理研究[J].微生物学通报.2004,31(3)30-35.
    [72]马青山等.絮凝化学和絮凝剂.北京;中国环境科学出版社,1988
    [73]张凡,陈青.味精生产废水中提取菌体蛋白初探[J].河南科学,1999,17(4):419-422.
    [74]肖玲,张婧.交联壳聚糖季铵盐与聚合铝复合的絮凝效果研究[J],环境科学与技术,2006,29(10):30-36.
    [75]黄锦丽.微生物制氢系统的研究(D) 厦门,厦门大学,2005.