东北地区秸秆降解工程菌的选育及速腐菌剂的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国年产秸秆总量已经超过了7亿吨,居世界第一位,由于缺乏有效的处理手段大量的秸秆被露天焚烧,造成了环境污染,浪费了宝贵的生物资源。而在众多秸秆利用的方法中,微生物菌剂处理秸秆有着较为独特的优势。微生物发酵秸秆可以提供高品质的饲料,微生物菌剂降解秸秆可以提高秸秆利用率,微生物菌剂堆肥秸秆可以提供高品质的有机肥料。而微生物处理的关键是需要优良的菌种。我国东北地区秸秆资源占全国的前三位,由于气温低等因素使其更加难于有效的利用,也更加缺乏优良的菌种。为了提高东北地区的秸秆利用率,本试验进行了东北地区秸秆降解工程菌的选育方面的研究,并制备了秸秆速腐菌剂。取得了以下主要成果:
     1、利用多种微生物育种方法获得以下秸秆降解菌
     从树林中腐烂的树叶、田间地头腐烂的秸秆、放牛场中腐败的牛粪、天然堆沤秸秆肥料中采集样品,利用CMC-Na平板初筛分离纯化培养后,筛选出了40株纤维素降解能力较强的菌株。利用刚果红透明圈法复筛获得了10株菌(H1-H10)。通过CMC酶活和滤纸酶活测定,结果显示酶活情况都很好。选取其中综合性能都好的6株菌,进行形态学和分子生物学鉴定,结果表明H2为假单孢杆菌;H1为缺陷短波单孢菌;H3为荧光单胞菌;H4为解淀粉芽孢杆菌;H7为铜绿假单胞菌;H6为解淀粉芽孢杆菌。
     利用基因工程手段,克隆黑曲霉木聚糖酶基因xynB,并成功插入穿梭质粒,获得重组质粒pGAPz-xynB。PCR、双酶切及测序结果显示克隆的目的基因xynB正确,构建的重组质粒成功。将pGAPz-xynB利用电击法转入毕赤酵母X-33,使用博来霉素筛选得到阳性克隆,经PCR鉴定和SDS-PAGE鉴定,表明转入成功。通过对表达的木聚糖酶酶活测定显示,工程菌成功构建,胞外酶活性可达到8.33IU/mL。重组工程菌命名为PP-XYNB。
     利用原生质体融合手段,对绿色木霉AS3.3711和康宁木霉AS3.2774进行了融合。首先研究了2种木霉菌原生质体的制备条件。试验结果表明,原生质体制备条件为:菌龄为22h,酶浓度为13mg/mL(0.5%溶壁酶+0.5%蜗牛酶+0.3%纤维素酶),酶解时间2h,渗透压稳定剂为STC,酶解温度31℃。在此条件下,原生质体制备率70%,再生率为62%。选取酶活力较高突变株,制备原生质体,再进行细胞融合,通过刚果红初筛和发酵产酶复筛,得到一株酶活力高,遗传稳定的突变株T-VK10。其CMC酶活达到119IU/ml。
     利用分子生物学手段,以pMD18-T-35S.EGI.NOS为模板,将纤维素酶EGI基因、35S启动子、NOS终止子作为一个整体克隆出来,并将其插入到粟酒裂殖酵母表达系统的pESP-2的多克隆位点处,结果证明pESP-2-35S.EGI.NOS表达载体构建成功,将构建成功的载体导入到粟酒裂殖酵母菌体中,并使外源基因得到表达。最后获得了酶活性达16U/mL的表达纤维素酶粟酒裂殖酵母菌体,并命名为SP-EGI。
     2、进行菌株的复合配比试验,并成功制备复合菌剂
     利用平板培养法进行拮抗实验,结果证明实验室筛选的6株纤维素分解菌株,实验室保存的绿色木霉(TV)、康宁木霉(TK)、平菇菌丝(PO)、枯草芽孢杆菌(BS)、酿酒酵母(SC)、啤酒酵母(BY),工程改造的毕赤酵母(PP-XYNB)、粟酒裂殖酵母(SP-EGI)、原生质体融合菌T-VK10共15株菌之间没有明显的拮抗作用,均可以进行复合菌剂的复配实验。
     将备选的15株菌进行正交实验,通过观察各种组合对液体培养基中滤纸条溃烂的情况,确定高效降解秸秆的最优菌种复合系为:假单孢杆菌(H2)+荧光单胞菌(H3)+解淀粉芽孢杆菌(H6)+枯草芽孢杆菌(BS)+毕赤酵母(PP-XYNB)+粟酒裂殖酵母(SP-EGI)+原生质体融合菌(T-VK10)。
     制备复合菌剂干粉,通过单因素试验筛选了20种常见的干燥保护剂,其中效果突出的是海藻糖、吐温80、司班60,效果最好的是海藻糖。通过正交试验设计,得出5%海藻糖、2%吐温80、2%司班60干燥剂组合保护效果最好,CMAP活菌率可以达到83.39%;另外2%司班60、2%吐温80的干燥剂组合效果也不错,CMAP活菌率达到77.43%,完全可以进行工业化生产,关键是其造价低廉。最后确定了CMAP生产条件:培养到适当菌龄的菌液按比例混合,加入2%吐温80、2%司班60为干燥剂,利用板框压滤机压榨到含水率低于65%,挤出造粒Φ1mm×2mm,干燥温度90℃,最终含水率7%左右。
     3、通过功效验证,自制的复合菌剂综合性能优良
     通过堆肥试验验证复合菌剂的功效,结果显示:添加复合菌剂的实验组堆温升高为最快,在第4天进入了高温发酵期,并于第7天达到了最高温度64℃。比CK2先进入高温期5天左右,而且高温期的温度也比CK2高出约13℃,缩短了腐熟时间,并且有利于有害病菌的死亡。堆肥pH值测定结果:实验组堆肥的pH值在7天以后就处于7.4-8.0之间,优于CK2和CK1,这样的偏碱环境下非常有利于微生物降解秸秆,利于堆肥品质的提高。
     通过平板计数法测定各堆肥处理在不同堆肥时间各种相关微生物变化,结果表明:堆肥过程中以好气细菌、兼气细菌数量的增长最为迅速。其次以产纤维素酶的菌株、放线菌生长最快,有利于玉米秸秆的降解。实验组较空白对照而言,堆体中微生物数量明显较多,实验组和CK2微生物数量比CK1高出一个数量级,而实验组又比CK2高出30%以上,大量的微生物繁殖使堆温上升较快且温度高,高温期持续时间较长,能明显促进堆肥腐熟。接种外源菌剂对细菌、真菌、放线菌的数量变化与自然堆肥相比有显著的影响。
     通过对各处理不同时段采样测定有效元素,实验结果表明:实验组有效氮的含量先增后减,表明了微生物大量繁殖和作用的过程,总的来讲,有效氮含量是增加的。从总体来看,有效钾在堆肥过程中的变化不大,实验组和CK2有效钾的含量高于CK1,实验组比CK2略好。堆肥过程中速效磷的变化较大,三个处理堆肥后都比堆肥前提高较多,以实验组增加最为明显,实验组高出对照组69.41%。
The total annual production of straw in our country is above7hundred million tons, ranking first in the world, but due to lack of effective management, a large quantity of straw is burnt in open field, which pollutes the environment and wastes the valuable biological resource. Microbial agent has more unique advantages comparing with other methods of straw utilization. Microbial fermentation of straw can provide high-quality feed, microbial agent degradation of straw can boost utilization ratio, and microbial compost of straw can offer high-quality organic fertilizer. The key of microbial measure is having excellent strains. Straw resources of northeast account for the top three in China, but it is hard to get making full use of them as a result of such factors as low temperatures and lack of excellent strains. In order to improve the utilization of straw of northeastern region, this paper researches breeding of the engineered bacteria used on the Northeast straw degradation and preparing the straw-speed rot agents. The main results as the following:
     1. we obtained the following straw degrading bacteria by various microbial breeding methods.
     Collecting samples from decaying leaves in the woods, rotting straw in the fields, putrid cow dung in the cattle field and natural composting straw fertilizer, the auther screened out40well ability strains of cellulose degradation after initial screening separation and the pure culture by CMC-Na tablet. After secondary screening,10strains H1~H10were obtained by means of Congo red transparent circle. The results showed that enzyme activity is good to get through enzyme activity determination of the CMC and filter paper. Selecting six strains that have good comprehensive performance to make morphological and molecular biological identification, the results show that H2is Pseudomonas mendocina; H1is Brevundimonas diminuta; H3is Pseudomonas fluorescens; H4is Bacillus amyloliquefaciens; H7is Pseudomonas aeruginosa; H6is Bacillus amyloliquefaciens.
     Through genetic engineering means, cloning xynB which is xylanase gene of Aspergillus niger, and inserting into the shuttle plasmid successfully, the recombinant plasmid pGAPz-xynB can be obtain. PCR, double enzyme digestion and sequencing results showed that the cloned target gene xynB is correct and the recombinant plasmid constructed is successful. Transferring pGAPz-xynB to Pichia pastoris X-33with electric impact method and screening positive clones by bleomycin, it indicates that the transferred is successful by PCR and SDS-PAGE. Determination of the expression of xylanase activity showed that the engineered bacteria was successfully constructed, and extracellular enzyme activity can be achieved8.331U/mL. Recombinant engineering bacteria is named PP-XYNB.
     Trichoderma viride3.3711and Trichoderma koningii were fused by means of protoplast fusion. Firstly, we researched preparation conditions of the two kinds of Trichoderma protoplast. The results indicate that the protoplast preparation conditions are as follows:strain age is22h, the concentration of enzyme is13mg/mL (0.5%lywallzyme+0.5%snail enzyme+0.3%of cellulase), hydrolysis time is2h, the osmotic stabilizer is STC, hydrolysis temperature is31℃. Under these conditions, the rate of protoplast formation is70%and regeneration rate is62%. Selecting mutants having higher enzyme activity to prepare protoplast and make cells fusion, the mutant T-VK10which has high enzyme activity and genetic stability can be obtained by means of screening with Congo red and rescreening with enzyme production. Its CMC activity reaches1191U/ml.
     Using molecular biology methods and as pMD18-T-35S.EGI.NOS as a template, cellulases EGI gene,35S promoter and NOS terminator were cloned as a whole, then inserted into the multiple cloning sites pESP-2of Schizosaccharomyces pombe expression system, the results demonstrate pESP-2-35S.EGI.NOS expression vector was successfully constructed, which was imported into the Schizosaccharomyces pombe yeast body and made the foreign gene had been expressed. We get Schizosaccharomyces pombe cell that expresses cellulase enzyme, activity reaching16U/mL, and named SP-EGI.
     2. We prepared the composite microbial agent successfully through test concentration configuration of strains.
     The results of Plate culture antagonistic test show that the15strains are no obvious antagonism each other, they included the six cellulose-decomposing strains from laboratory screening, Trichoderma viride (TV), Trichoderma koningii (TK), P. ostreatus (PO), Bacillus subtilis(BS), Saccharomyces cerevisiae (SC), beer yeast (BY) from laboratory saved, and Pichia pastoris (PP-XYNB), Schizosaccharomyces pombe (SP-EGI), protoplast fusion of bacteria (T-VK10) from engineering renovation. So its are appropriate for formulation experiment of composite microbial agent.
     Doing the orthogonal experiment with alternative15strains, by observing the situation that the various combinations fester filter strips in the liquid medium, it can be confirmed that the optimal composite microbial agent of efficient degradation of straw is Pseudomonas mendocina (H2)+Pseudomonas fluorescens (H3)+bacillus amyloliquefaciens (H6)+Bacillus subtilis (BS)+Pichia pastoris (PP-XYNB)+Schizosaccharomyces pombe (SP-EGI)+protoplast fusion strain (T-VK10).
     In the tests of preparation for CMAP(composite microbial agent powder), Screening20kinds of common drying protective agents through single-factor tests, it had prominent effect that Tween-80, span60and trehalose, while the trehalose had the best effect. By orthogonal experimental design, it can be summarized that the desiccant combination including5%trehalose,2%Tween-80and2%Span60had the best protection effect, and viable rate of CMAP can achieve83.39%. In addition, the effect of the combination including2%Span60and2%Tween-80is also good, viable rate of CMAP can achieve77.43%. It can be used for industrial production completely, and the key is its low cost. The production conditions of CMAP are confirmed that the bacterial liquid at proper cell age is mixed in proportion, and added2%Tween-80and2%Span60as drying protective agents, then pressed moisture content to below65%with frame filter, extrusion granulation is Φ1mm×2mm, drying temperature is90℃and final moisture content is about7%.
     3. Our composite microbial agent had good performance, through the functional validation.
     The results of efficacy of the composite microbial agent verified through composting test showed that the experimental group added composite microbial agent had the fastest rise in temperatures, which was into the high-temperature fermentation period on the fourth day, reached the maximum temperature of64℃on the seventh day,5days prior to CK2into the high temperature period, and it's temperature of high temperature period is about13℃higher than CK2, which greatly shortening the maturity time and is conducive to the death of harmful bacteria. The compost pH value indicates that the experimental group was in7.4-8.0after7days better than CK2and of CK1, whose slightly alkaline environment is very conducive to microbial degradation of straw and can improve the quality of compost.
     Determining the changes of variety of microorganisms in the different composting time by the plate count method, the results showed that the number of aerobic bacteria and facultative bacteria has most rapid growth in the composting process. Followed fastest growth strains are the strains produced cellulase and actinomycetes, which make for the degradation of corn stover. The experimental group had more microorganisms in the pile than blank control group significantly, and the number of microorganisms of the experimental group and CK2was an order of magnitude higher than that of CK1, while the experimental group was30%higher than CK2. The large number of microorganisms breeding made temperature rise faster and resulted in long duration of high temperature, which can promote the composting significantly. It had remarkable influence to inoculate exogenous strains for bacteria, fungi and actinomycetes by comparison natural compost in the number change.
     Determining effective elements of each treatment group at different times, the experimental results showed that the effective nitrogen content of the experimental group increases first and then decreases, indicating the process of reproduction and impact of microorganisms. In general, the effective nitrogen content is increased. Overall, effective potassium had only little changes in the composting process, the effective potassium content of experimental group and CK2was higher than that of CK1, the experimental group is slightly better than CK2. Quick-acting phosphorus content had a greater change in the composting process, after compost improve more than before in three treatments, and the most obvious increase is the experimental group that was69.41%higher than the control group.
引文
[1]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005.
    [2]中华人民共和国统计局.国际统计年鉴[M].北京:中国统计出版社,2010.
    [3]Antonopoulos A, Grohmann K. New research findings in biotechnology for fuels and chemical production[J]. Appl. biochem. biotechnol.,1994 (45):935-952.
    [4]李振宇,黄少安.制度失灵与技术创新——农民焚烧秸秆的经济学分析[J].中国农村观察,2002(05):11-16+80.
    [5]金凤云.秸秆氨化处理技术[J].农民致富之友,1994(08):10.
    [6]郭庭双,张志青.秸秆微生物处理技术应用现状及展望[J].农村养殖技术,1999(01):29-30.
    [7]陈东水,盖振东,陈燕琴,尤宁一.秸秆利用现状及资源化利用方向[J].上海农业科技,2006(05):32-33.
    [8]王倩,张伟,王颉,李长文.生物质生产酒精的研究进展[J].酿酒科技,2003(03):56-58.
    [9]那贵森.关于东北地区玉米秸秆发电的探讨[J].水利电力机械,2006(12):45-49.
    [10]潘丽娜.高寒地区秸秆气化集中供气技术应用研究[J].东北农业大学学报(社会科学版),2009(04):12-14.
    [11]解爱华,付荣恕.秸秆焚烧对农田土壤动物群落结构的影响[J].山东农业科学,2006(03):56-57.
    [12]Stewart B. Wuest, T.C. Caesar-TonThat, Sara F. Wright, Williams J D. Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil[J]. Soil and Tillage Research,2005 (2):154-167.
    [13]马永良,师宏奎,张书奎,吕润海.玉米秸秆整株全量还田土壤理化性状的变化及其对后茬小麦生长的影响[J].中国农业大学学报,2003(S1):42-46.
    [14]刘保平,王宏燕,房红岩,王玲等.降解秸秆的细菌和放线菌的分离与筛选[J].东北农业大学学报,2010(02):49-54.
    [15]张强,陈合.玉米秸秆的酶法降解机理研究[J].玉米科学,2007(05):148-152.
    [16]管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机理研究的进展[J].上海环境科学,1998(11):46-49.
    [17]孙军德,陈南.秸秆纤维素降解细菌的筛选及其产酶条件的研究[J].沈阳农业大学学报,2010(02):210-213.
    [18]宋波,羊键.一株降解纤维素的放线菌的筛选及其产酶条件的研究[J].微生物学杂志,2005(05):36-39.
    [19]Bailey K L, Lazarovits G. Suppressing soil-borne diseases with residue management and organic amendments[J]. Soil and Tillage Research,2003 (2):169-180.
    [20]陆师义,梁枝荣.食用菌栽培在生态良性循环中的意义[J].生物学通报,1989(06):10-11.
    [21]刘娣.秸秆纤维素高效降解真菌的筛选、鉴定及其纤维素酶基因克隆[D].北京:中国农业科学院,2008.
    [22]袁彤光,张壮塔,凌德全.食用菌与植物全纤维素物质[J].食用菌,1998(01):4-5.
    [23]唐欣昀.微生物学[M].北京:中国农业出版社,2009.
    [24]李明.垃圾渗出液微生物循环接种强化堆肥试验研究[D].重庆:重庆大学,2005.
    [25]张明珠.秸秆分解菌的分离和筛选[D].甘肃:甘肃农业大学,2008.
    [26]殷中伟.秸秆纤维素高效降解菌株的筛选及对秸秆降解效果初步研究[D].北京:中国农业科学院,2010.
    [27]刘爽.中低温秸秆降解菌的筛选及其秸秆降解效果研究[D].北京:中国农业科学院,2011.
    [28]Wesenberg D, Kyriakides I, Agathos S N. White-rot fungi and their enzymes for the treatment of industrial dye effluents[J]. Biotechnology Advances,2003 (1-2):161-187.
    [29]Bolta S V, Mihelic. R. Microbial structure during composing with and without mass inocula[J]. Compost Science,2003(1):6-15.
    [30]韩玮,聂俊华,李飒.外源纤维素酶在秸秆还田上的应用研究[J].河南农业科学,2005(11):72-75.
    [31]焦瑞身.微生物菌种选育[J].上海调味品,1982(04):1-8.
    [32]张建峰,耿宏伟,下曙光,王丕武.一株高产纤维素酶菌的筛选[J].粮油加工,2010(10):170-172.
    [33]全桂静,赵航.半纤维素酶高产菌株的筛选及产酶条件的研究[J].沈阳化工学院学报,2010(01):20-23+57.
    [34]胡婷婷,邱雁临.原生质体紫外诱变选育纤维素酶高产菌株[J].化学与生物丁程,2008(08):58-60.
    [35]陈红歌,张东升,刘亮伟.纤维素酶菌种选育研究进展[J].河南农业科学,2008(08):5-7.
    [36]李雪峰,侯红萍.选育高产纤维素酶菌种的研究进展[J].酿酒科技,2010(05):92-94.
    [37]杜娟,曲音波,林觐勤,徐惠娟等.灰绿曲霉高产纤维素酶突变株的选育[J].厦门大学学报(自然科学版),2006(S1):23-26.
    [38]宋小炎,宋桂经,孙彩云,刘陶陶等.抗高浓度葡萄糖阻遏的纤维素酶高产菌的选育[J].山东大学学报(自然科学版),1999(04):488-492.
    [39]管斌,孙艳玲,谢来苏,隆言泉.抗分解代谢阻遏纤维素酶变异株的选育[J].无锡轻工大学学报,2000(03):244-247.
    [40]Wang T, Liu X, Yu Q, Zhang X, et.al. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei[J]. Biomolecular Engineering,2005 (1-3):89-94.
    [41]乔宇,毛爱军,何永志,刘伟丰,等.里氏木霉内切-β-葡聚糖酶Ⅱ基因在毕赤酵母中的表达及酶学性质研究[J].菌物学报,2004(03):388-396.
    [42]Kim Y-S, Jung H-C, Pan J-G. Bacterial Cell Surface Display of an Enzyme Library for Selective Screening of Improved Cellulase Variants[J]. Applied and Environmental Microbiology,2000 (2):788-793.
    [43]崔罗生.黑曲霉木聚糖酶基因的克隆、表达与热稳定性改造研究[D].武汉:华中农业大学,2008.
    [44]Biely P. Microbial xylanolytic systems[J]. Trends in Biotechnology,1985 (11):286-290.
    [45]Chauthaiwale V M, Deshpande V V. Molecular cloning and expression of the xylanase gene from Chainia in Escherichia coli[J]. FEMS Microbiology Letters,1992 (2-3):265-270.
    [46]孙振涛,赵祥颖,刘建军,杜金华.微生物木聚糖酶及其应用[J].生物技术,2007(02):93-97.
    [47]南京林业大学主编.木材化学[M].北京:中国林业出版社,1990.
    [48]邵蔚蓝,薛业敏.以基因重组技术开发木聚糖类半纤维素资源[J].食品与生物技术,2002(01):88-93.
    [49]邹永龙,王国强.木聚糖降解酶系统[J].植物生理学通讯,1999(05):404-410.
    [50]凌沛学,朱希强,苏移山,张晓元.低聚木糖功能与应用研究进展[J].食品与药品,2007(09):35-39.
    [51]Tabernero C, Sanchez J, Perez P. Cloning and DNA Sequencing of xyaA, a Gene Encoding an Endo-β-1,4-Xylanase from an Alkalophilic Bacillus Strain (N137)[J]. Appl. Environ. Microbiology,1995 (6):2420-2424.
    [52]苏玉春.木聚糖酶的酶学特性及基因克隆表达研究[D].长春:吉林农业大学,2008.
    [53]胡沂淮,邵蔚蓝.木聚糖酶[J].生命的化学,2002(03):281-285.
    [54]Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities[J]. Biochem J.,1993 (3):781-788.
    [55]陈惠忠,高培基,王祖农.黑曲霉An-76木聚糖酶系的酶学研究[J].微生物学报,1991(02):100-107.
    [56]Flint H J Z J X. Molecular biology of xylanases from the rumen cellulolytic anacrobe Rumminococcus flavefaciens 17-multiple genes and bifunctional enzymes[J]. Progress in Biotechnology,1992 (7): 301-308.
    [57]Ahern T J, Casal J I, Petsko G A, Klibanov A M. Control of oligomeric enzyme thermostability by protein engineering[J]. Proc.Nati.Acad.Sci.USA,1987 (3):675-679.
    [58]陆健,曹钰,陈坚,顾国贤.木聚糖酶的产生、性质和应用[J].酿酒,2001(06):30-34.
    [59]Bachmann S L, McCarthy A J. Purification and Cooperative Activity of Enzymes Constituting the Xylan-Degrading System of Thermomonospora fusca[J]. App] Environ Microbiol.,1991 (8): 2121-2130.
    [60]Wong K K, Tan L U, Saddler J N. Multiplicity of beta-1,4-xylanase in microorganisms:functions and applications.[J]. Microbiol. Rev.,1988 (3):305-317.
    [61]连惠芗,汪世华.木聚糖酶的研究与应用[J].武汉工业学院学报,2006(01):42-46.
    [62]顾赛红.不同木聚糖酶基因在毕赤酵母中表达及酶学特性研究[D].杭州:浙江大学,2004.
    [63]张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报,2002(03):23-26+30.
    [64]江正强,李里特,林清,Ahsan M M极端嗜热菌海栖热袍菌木聚糖酶b的克隆和表达[J].应用与环境生物学报,2002(03):280-284.
    [65]马兴元,谭建华,朱平等.巴斯德毕赤酵母(Pichia pastoris)表达系统及其在外源蛋白生产中的优势与应用前景[J].中国兽医学报,2003(01):98-101.
    [66]唐元家,余柏松.巴斯德毕赤酵母表达系统[J].国外医药(抗生素分册),2002(06):246-250+271.
    [67]Waterham H R, Digan M E, Koutz P J, et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter[J]. Gene,1997,186 (1):37-44.
    [68]田生礼,邵睿,刘刚等.碱性纤维素酶基因在巴氏毕赤酵母中的表达及重组酵母菌发酵工艺的优化[J].中国生物制品学杂志,2009(05):425-430+437.
    [69]Doring F, Klapper M, Theis S, et al. Use of the Glyceraldehyde-3-phosphate Dehydrogenase Promoter for Production of Functional Mammalian Membrane Transport Proteins in the Yeast Pichia pastoris[J]. Biochem. Biophys. Res. Commun.,1998,250 (2):531-535.
    [70]Delroisse J-M, Dannau M, Gilsoul J-J, et al. Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris[J]. Protein Expr. Purif.,2005,42 (2):286-294.
    [71]Ai-Lian. Z, Jin-Xian. L, ZHANG Tian-Yuan. e a. Constitutive Expression of Human Angiostatin in Pichia pastoris Using the GAP Promoter[J]. Acta Genetica Sinica,2004 (06):552-557.
    [72]周细南,张爱联,张添元等Pichia pastoris表达系统提高表达量的几个关键点[J].海南大学学报(自然科学版),2008(01):68-73.
    [73]Goodrick J C, Xu M, Finnegan R, et al. High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system[J]. Biotechnol. Bioeng. 2001,74:492-497.
    [74]Khasa Y P, Khushoo A, Srivastava L, et al. Kinetic studies of constitutive human granulocyte-macrophage colony stimulating factor (hGMCSF) expression in continuous culture of Pichia pastoris[J]. Biotechnol. Lett.,2007,29:1903-1908.
    [75]黎海彬,李琳,黄日波,郭祀远.纤维素酶产生菌的筛选及产酶条件[J].华南理工大学学报(自然科学版),2003(03):45-48.
    [76]梁新红.产纤维素酶菌株产酶条件的研究[J].江苏调味副食品,2003(04):10-13+19.
    [77]刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994(04):27-32.
    [78]谭伟,郑林用,彭卫红,肖在勤.原生质体融合技术在食用菌育种上的应用研究进展[J].西南农业学报,2001(S1):120-123.
    [79]孙剑秋,周东坡,平文祥.火活微生物原生质体融合的研究进展[J].中国医学生物技术应用,2002(02):29-32.
    [80]刘秋,吴元华,于基成,杜春梅等.链霉菌原生质休融合技术研究进展[J].沈阳农业大学学报,2002(05):383-386.
    [81]董立,孟庆芳,刘大群.农用抗生素高产育种技术研究进展[J].河北农业大学学报,2002(S1):180-183.
    [82]王春平,韦强,鲍国连,刘燕等.微生物原生质休融合技术研究进展[J].动物医学进展,2008(05):64-67.
    [83]王丕武,张发福,付永平.一种基因组重排木霉菌及其制备及其应用[Z].CN101260371:.2008.
    [84]岳强,周惠.粟酒裂殖酵母——一种良好的真核模式生物(Ⅰ)[J].韶关学院学报(自然科学版),2002(12):120-125.
    [85]李思光,周惠,张鹏,罗玉萍等.两个新的粟酒裂殖酵母boxH/ACAsnoRNA的鉴定、功能分析及进化意义[J].自然科学进展,2005(03):28-36.
    [86]赵特.烟夜蛾滞育激素基因的克隆及在粟酒裂殖酵母中的表达[D].郑州:河南农业大学,2005.
    [87]吴朝霞,郑文岭,马文丽.裂殖酵母作为外源基因表达系统[J].生命科学研究,2004(S1):110-115.
    [88]王海海,吴慎杰,李飞飞,陈天子等.35s启动子甲基化引起棉花转基因沉默(英文)[J].棉花学报,2008(04):274-280.
    [89]Wood V., Gwilliam R., Rajandream M.-A.. The genome sequence of Schizosaccharomyces pombe[J]. NATURE,2002 (2):871-876.
    [90]焦改丽,孟钊红,聂安全,南芝润等.花椰菜花叶病毒(CaMV)35S启动子在转基因棉花中的表达[J].作物学报,2004(11):1135-1139+1181-1182.
    [91]Lu J, Zhao H Y, He Y K, et al.. Advances and progresses of high promoter research and its application[J]. Natural Science Progresses,2004 (8):856-862.
    [92]丁志山,蒋承俊,吴根福.电穿孔法转化完整酵母的研究[J].生物技术,1995(04):9-12+26.
    [93]储晨亮,孙伟.酵母在饲料业中的研究和应用[J].饲料博览(技术版),2007(02):19-22.
    [94]董清华,沈元月.酵母表达系统研究进展与展望[J].北京农学院学报,2008(02):72-75.
    [95]孙全喜.多基因植物表达载体构建方法的研究[D].泰安市:山东农业大学,2008.
    [96]张树军,杨磊,黄瑾.信号肽序列在酵母分泌表达系统中的应用[J].医学综述,2007(09):643-645.
    [97]赵慧,郑文岭,马文丽.信号肽对外源蛋白分泌效率的影响[J].生物学杂志,2003(05):1-3.
    [98]付平平,黎洋.新型酵母表达系统-Pichia.pastoris高效分泌型表达病毒生长因子的研究[J].中国免疫学杂志,2000(07):378-380.
    [99]Siam R, Dolan W P, Forsburg S L. Choosing and using Schizosaccharomyces pombe plasmids[J]. Methods, 2004(3):189-198.
    [100]Burland T G, Pallotta D, Tardif M C, Lemieux G. Fission yeast promoter-probe vectors based on hygromycin resistance[J]. Gene,1991 (0):241-245.
    [101]Wright A, Maundrell K, Heyer W D, Beach D. Vectors for the construction of gene banks and the integration of cloned genes in Schizosaccharomyces pombe and Saccharomyces cerevisiae[J]. Plasmid, 1986 (2):156-158.
    [102]Brun C, Dubey D D, Huberman J A. pDblet, a stable autonomously replicating shuttle vector for Schizosaccharomyces pombe[J]. Gene,1995 (1):173-177.
    [103]张平武,李育阳.新型酵母表达系统的研究[J].生物技术通讯,1999(04):306-309.
    [104]张博润,何秀萍,陈玉梅.酵母的载体系统研究进展[J].微生物学通报,1998(1):42-45.
    [105]王贺.含35S启动子的粟酒裂殖酵母分泌型表达载体的构建及功能鉴定[D].长春:吉林农业大学,2011.
    [106]刘甲锋.水稻秸秆腐解复合菌系的筛选构建[D].北京:中国农业科学院,2010.
    [107]何永梅.秸秆腐熟菌剂的选用[J].农家科技,2007(11):13-14.
    [108]李文革,李倩,贺小香.秸秆还田研究进展[J].湖南农业科学,2006(01):46-48.
    [109]张世敏,汪伦记,贾新成,赵柏叶.秸秆降解菌制剂的研究初报[J].河南农业大学学报,2001(03):259-261.
    [110]赵明文,史玉英,李玉祥,娄无忌.纤维分解菌群对水稻秸秆田间腐熟效果的研究[J].江苏农业科学,2000(01):51-53.
    [111]杨文兵,胡正梅,杨长斌,甘曦.不同秸秆腐熟剂在湖北省晚稻上的应用效果试验[J].现代农业科技,2008(12):189-191+193.
    [112]丁波,王义芳,梅桂芳.小麦秸秆腐熟剂试验结果初报[J].安徽农学通报(下半月刊),2009(04):41+82.
    [113]Bolta S V, Mihelic R, Lobnik F, et al. Microbial Community Structure During Composting With and Without Mess Inocula.[J]. Compost, Sci&Utili,2003 (1):6-15,62.
    [114]李国学,张福锁.固体废物堆肥化与有机复合肥生产[M].北京:化学工业出版社,2000.
    [115]杨毓峰,薛澄泽,唐新保,袁红旭.畜禽废弃物的强制通风静态堆肥化处理及其生物学效应[J].农业环境保护,2000(04):209-212.
    [116]张增强.固体废物的处置与利用[M].杨凌:西北农林科技大学出版社,2003.
    [117]赵由才.生活垃圾资源化原理与技术[M].北京:化学工业出版社,2002.
    [118]胡华.高效纤维素降解菌株的筛选及其复合系菌剂在秸秆堆肥中的应用[D].雅安:四川农业大学,2008.
    [119]顾希贤,许月蓉.垃圾堆肥微生物接种实验[J].应用与环境生物学报,1995(03):274-278.
    [120]王玉军,窦森,崔俊涛,张晋京等.复合菌剂对农业废弃物堆肥过程中理化指标变化的影响[J].农业环境科学学报,2006(05):1354-1358.
    [121]史红钻,张波,蔡伟民.pH对厨余垃圾发酵产酸特性影响的研究[J].农业环境科学学报,2005(04):809-811.
    [122]Peter S. Effect of temperature on bacterial species diversity in hemophilic solid waste composting[J]. Appl. Environ. Microbiol.,1985 (4):899-955.
    [123]Frederick C., Michel J., Reddy C. Composting rate odor production and compost quality in bench scale reactors[J]. Composting Science and Utilization,1998 (4):6-14.
    [124]李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003(02):252-256.
    [125]洪玉梅,李建中.利用纤维素酶生产燃料酒精的研究进展[J].中国农学通报,2007(02):462-464.
    [126]季祥,蔡禄.降解纤维素菌株的筛选和鉴定[J].天津化工,2010(01):34-35.
    [127]万先凯.一株高活力纤维素分解菌的筛选及酶学性质研究[D].天津:天津大学,2004.
    [128]武峥,张迎君,周心智.降解秸秆的纤维素酶产生菌的筛选及产酶条件研究[J].纤维素科学与技术,2009(02):20-26.
    [129]刘保平.作物秸秆的微生物降解研究[D].哈尔滨:东北农业大学,2009.
    [130]聂麦茜,刘加昌,朱玉玺,李立伟.纤维素降解菌筛选分离与cmc酶提取及其活性研究[J].安徽农业科学,2008(19):7956-7958+8002.
    [131]Miller G.L.. Use of dinitro salicylic acid reagent for determination of reducing sugar[J]. Ann. Chem.,1959: 426-428.
    [132]张超.纤维素降解菌筛选及降解柑桔果渣研究[D].重庆:西南大学,2006.
    [133]岳思君,李学斌,李爱华,蒙秋燕.高酶活纤维素分解菌分离筛选的研究[J].安徽农业科学,2009(01):11-12+15.
    [134]R.E.布坎南,N.E.吉本斯等.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984.
    [135]魏景超.真菌分类鉴定手册[M].北京:科学出版社,1974.
    [136]李玉.野生食用菌菌种分离与鉴定[D].福州市:福建农林大学,2008.
    [137]王庆容,李顺,宋培勇,杨秀荣.2种改进的未知细菌DNA提取方法[J].安徽农业科学,2009(12):5381-5382+5607.
    [138]葛芸英,陈松,胡兰,涂政.土壤细菌DNA提取及多样性分析的t-Rflp方法[J].微生物学通报,2008(01):131-136.
    [139]姜淑梅,张龙,戴世鲲,李翔.一种简单.、有效的适丁PCR操作的放线菌DNA提取方法[J].生物技术,2007(01):39-41.
    [140]姜绪林.绿色木霉固态发酵产纤维素酶的研究[D].2005.
    [141]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002,8.
    [142]诸葛健,下正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994,6.
    [143]下洪洲,郑幼霞.庆丰链霉菌原生质体的形成、再生及融合重组的研究[J].遗传学报,1982(03):172-179.
    [144]陈敏.一种改进的纤维素分解菌鉴别培养基[J].杭州师范学院学报(自然科学版),2001(06):11-12.
    [145]周与良,邢来群.真菌学[M].北京:高等教育出版社,1986.
    [146]李淑芳,郝利平,殷晓鹏,苏艳玲.酶法提取杏仁油工艺的优化研究[J].粮油加工与食品机械,2003(06):40-41.
    [147]杨怀文.我国微生物农药发展概况[J].农业工程技术(农业产业化),2006(03):43-44.
    [148]杜相革,王慧敏.有机农业原理和种植技术[M].北京:中国农业大学出版社,2002.
    [149]贾小红,黄元仿.有机肥料加工与施用[M].北京:化学工业出版社,2002.
    [150]郭建国,刘永刚,吕和平,张海英.农作物秸秆的青贮和高温堆肥利用进展[J].甘肃农业科技,2008(04):31-35.
    [151]温从雨,王华良,程扶旗.绩溪县秸秆腐熟菌剂大田对比试验初报[J].安徽农学通报,2008(19):72-73.
    [152]谢柱存,何伟松.三种秸秆腐熟菌剂在稻田上的比较试验[J].广西农学报,2008(06):17-19.
    [153]金海洋,姚政,徐四新,杨建军.纤维素分解菌剂对水稻秸秆田间降解效果的研究[J].上海农业学报,2004(04):83-85.
    [154]林祥木,童金秀,陈汉清,庞杰.产纤维素酶菌株的筛选及产酶条件的选择[J].福建农业大学学报,2003(04):510-513.
    [155]王娟,戴习林,宋增福,潘迎捷.一株氨化细菌的分离、鉴定及氨氮降解能力的初步分析[J].水生生物学报,2010(06):1198-1201.
    [156]周德庆.微生物实验手册[M].上海:上海科学技术出版社,1983:209-240.
    [157]王伟,李佳,刘金淑,朱宝成.硅酸盐细菌菌株的分离及其解钾解硅活性初探[J].安徽农业科学,2009(17):7889-7891.
    [158]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1995:181-183.
    [159]黄世文,高成伟,王玲,王全永.土壤中有益放线菌的高效分离、筛选和生物测定技术[J].植物保护,2008(01):138-141.
    [160]李繁,涂然,陈三凤.7株解有机磷细菌的分离和鉴定[J].农业生物技术学报,2006(04):600-605.
    [161]邱向阳,陆文静,王洪涛,黄鼎曦.蔬菜-花卉秸秆混合堆肥性状表征及纤维素分解菌群选育研究[J].北京大学学报(自然科学版),2003(02):254-261.
    [162]高建程.牛粪堆肥的腐熟度评价及重金属形态变化研究[D].上海:上海师范大学,2008.
    [163]肖焱波,李文学,段宗颜,张福锁.植物对硝态氮的吸收及其调控[J].中国农业科技导报,2002(02):56-59.
    [164]南京农业大学主编.土壤农化分析[M].北京:农业出版社,1988.
    [165]吴建之,葛滢,王晓月.过硫酸钾氧化吸光光度法测定植物总氮[J].理化检验(化学分册),2000(04):166-167.
    [166]谢红,昌英华,段霄燕,杨瑞让.土壤速效钾测定[S].DB13/T 844—2007.石家庄:河北省土壤肥料总站,2007.
    [167]苏云辉,何平安,唐昆,蒋琛.有机肥料速效磷的测定[S].NY/T 300—1995.北京:农业部全国土壤肥料总站,1995.
    [168]秦清军.农业废弃物静态高温堆腐微生物菌剂研究[D].杨凌:西北农林科技大学,2007.
    [169]黄得扬,陆文静,王洪涛,周辉宇.高效纤维素分解菌在蔬菜-花卉秸秆联合好氧堆肥中的应用[J].环境科学,2004(02):145-149.
    [170]Golueke C. G. Baceriology of composting.[J]. Biocycle,1992 (3):55-57.
    [171]曾国明,黄国和,袁兴中等.堆肥环境生物与控制[M].北京:科学出版社,2006.
    [172]Kapetanios E G, Loizidou M, Valkanas G. Compost production from Greek domestic refuse[J]. Bioresource Technology,1993(1):13-16.
    [173]胡佩.家禽粪便的微生物除臭法[J].土壤肥料,1996(04):45-46.
    [174]Ko H J, Kim K Y, Kim H T, et al. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure[J]. Waste Management,2008 (5):813-820.
    [175]刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报(城市科学版),2002(02):57-59.
    [176]Sanchez-Monedero M A, Roig A, Paredes C, Bernal M P. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures[J]. Bioresource Technology,2001 (3):301-308.
    [177]Bazrafshan E, Zazoul M A, Bazrafshan J. Evaluation of microbiological and chemical parameters during wastewater Sludge and Sawdust Co-composting[J]. Journal of Applied Sciences and Environmental Management,2006 (2):115-119.
    [178]辛银川.高效降解秸秆菌株配伍筛选及菌剂制备[D].郑州:郑州大学,2011.
    [179]蔡兴旺.秸秆发酵剂的研究[D].天津:天津科技大学,2004.
    [180]李华,骆艳娥,刘延琳.真空冷冻干燥微生物的研究进展[J].微生物学通报,2002(03):78-82.
    [181]李雁.微生物简易保藏方法及其应用[J].湖北畜牧兽医,1998(03):20-22.
    [182]张晖,黄萍.微生物学实验室菌种使用保存与管理方法研究[J].公共卫生与预防医学,2008(04):93-95.
    [183]Malik K.A. A new freeze-drying method for the preservation of nitrogen-fixing and other fragile bacteriafJ]. Journal of Microbiological Methods,1988 (5):259-271.
    [184]李培培,张冬冬,王慧,王小娟.分解秸秆纤维素菌群的发酵及保存方法[J].农业工程学报,2011(S1):152-156.
    [185]Joseph, Richard:YEASTS:PRODUCTION AND COMMERCIAL USES, Richard K R, editor, Encyclopedia of Food Microbiology[M], Oxford:Elsevier,1999:2335-2341.
    [186]董家武,李雪松.国内活性干酵母生产的现状与发展[J].食品科技,2003(09):7-10+13.
    [187]胡彬.活性干酵母行业发展瓶颈与对策[J].中国食品工业,2006(07):20-21.
    [188]Tiirker M, Kanarya A, Yuzgec U. Drying of baker's yeast in batch fluidized bed[J]. Chemical Engineering and Processing,2006 (12):1019-1028.
    [189]姚娟,杨清峰,谭斌等.饲料添加剂饲用活性干酵母(酿酒酵母)(S).安琪酵母股份有限公司;中国饲料工业协会.2008:1-12.
    [190]Ferrarini R, Bocca E, Cavazza A. Mechanical dispersion procedures improve the rehydration of active dry yeast[J]. Enzyme and Microbial Technology,2007 (5):1251-1255.
    [191]陈毛清,赵华.葡萄酒活性干酵母的干燥工艺研究[J].酿酒科技,2006(08):88-90.
    [192]Bayrock D, Ingledew W M. Fluidized bed drying of baker's yeast:moisture levels, drying rates, and viability changes during drying[J]. Food Research International,1997 (6):407-415.
    [193]陈群,刘海燕,魏炳栋,邱玉朗.秸秆微生物发酵剂[P].中国:吉林省农业科学院.2010:1-7.
    [194]赵志华,岳田利,王燕妮等.海藻糖的生物学机制在酝酿活性干酵母(AADY)中的应用[J].食品研究与开发,2006(11):180-184.
    [195]高振鹏,岳田利,袁亚宏等.增香型苹果酒活性干酵母保护剂的筛选研究[J].农产品加工(学刊),2007(03):22-24.
    [196]戴秀玉,沈义国,周坚.海藻糖对乳酸菌的抗逆保护研究[J].微生物学通报,2001(02):46-50.
    [197]胡连栋,唐星,崔福德.维甲酸固体脂质纳米粒冷冻干燥工艺研究[J]. 中国医药工业杂志,2007(01):22-26.
    [198]张吉祥,赵文静,白晓杰等.正交试验法优化黑米黑色素的超声辅助提取工艺[J].食品科学,2010(04):39-41.