α7烟碱型乙酰胆碱受体激动剂对细胞损伤与保护的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α7烟碱型乙酰胆碱受体不仅在神经细胞上表达,而且在非神经细胞,例如内皮细胞、巨噬细胞、上皮细胞和肿瘤细胞等均有分布表达,参与这些细胞的功能调节,并与一些疾病的病理生理变化相关。将α7烟碱型乙酰胆碱受体作为靶点开发的受体激动剂已用于多种疾病的治疗。
     研究目的:
     流行病学研究表明吸烟能导致多种心血管疾病,尼古丁作为香烟中主要有毒成分在其中起着重要的作用,但其作用机制并不十分清楚。同时,尼古丁在阿尔茨海默病中起到保护神经细胞和提高认知能力的作用。尼古丁作为α7烟碱型乙酰胆碱受体激动剂,可能是通过激活受体发挥作用。本研究目的是探讨尼古丁通过直接、间接刺激对脐带静脉血管内皮细胞表达粘附分子的影响及其作用机制,然后探讨gx-50—一种通过药物软件分析筛选获得的特异性α7烟碱型乙酰胆碱受体激动剂对淀粉样蛋白诱导的大鼠皮质神经细胞损伤的影响。研究方法:
     首先,采用不同浓度的尼古丁刺激巨噬细胞(Ana-1),在各时间点收集巨噬细胞培养上清测定上清中各细胞因子含量。并选择6×10~(-5)M,12小时处理组Ana-1细胞上清处理脐带静脉内皮细胞,收集各时间点内皮细胞的上清后检测其中的可溶性粘附分子。并用抗TNF-α,抗IL-1β,抗IFN-γ,抗TNF-α+抗IL-1β的单克隆抗体中和尼古丁处理的巨噬细胞上清液中相应的细胞因子,再观察其对血管内皮细胞粘附分子表达以及对白细胞粘附能力的影响。
     其次,用不同浓度尼古丁刺激血管内皮细胞,收集细胞上清用酶联免疫吸附法检测前列腺素E2(PGE2)的表达。并提取细胞RNA与蛋白对环氧合酶2(COX-2)的表达进行检测。然后用α7烟碱型乙酰胆碱受体拮抗剂银环蛇毒素和NF-κB抑制剂二硫代氨基甲酸吡咯烷(PDTC)预处理后观察COX-2和PGE2的表达,并用凝胶迁移实验检测尼古丁与抑制剂处理后NF-κB的转录水平变化。最后用COX-2抑制剂NS-398预处理细胞后观察尼古丁诱导的细胞间粘附分子-1蛋白表达变化。
     最后,用不同浓度的gx-50处理大鼠皮质神经细胞,MTT法检测其对细胞活性的影响。用MTT和PI/Hoechst33258双染法观察gx-50预处理后对淀粉样蛋白诱导皮质神经细胞损伤的影响,用实时定量PCR和Western blot法检测相关凋亡基因的表达。最后用受体竞争性结合实验检测gx-50与α7乙酰胆碱受体的结合能力。
     结果:
     IL-1β在6×10~(-5)M尼古丁处理后12小时达高峰,TNF-α在24小时达高峰。IL-8和IFN-γ的表达不受尼古丁的影响。用6×10~(-5)M的尼古丁处理Ana-1细胞12小时的上清刺激血管内皮细胞,能上调sICAM-1、sVCAM-1和E-selectin的表达。抗TNF-α,抗IL-1β,抗TNF-α+抗IL-1β单克隆抗体中和Ana-1上清中的相应细胞因子后,内皮细胞表达sICAM-1和sVCAM-1的量明显降低,且可以阻断单个核细胞与血管内皮细胞的粘附。此外,尼古丁可以浓度依赖性地增加COX-2基因表达和前列腺素E2的分泌,同时在乙酰胆碱受体拮抗剂银环蛇毒素和NF-κB抑制剂PDTC预处理后,这种表达增加明显得到了抑制。而且用COX-2抑制剂NS-398预处理后,尼古丁诱导的ICAM-1表达也得到了抑制。
     在gx-50实验中,结果显示1×10-7~1×10~(-5)M的gx-50对皮质神经细胞活性没有显著的影响。在1×10~(-6)的gx-50预处理后,淀粉样蛋白诱导的神经细胞凋亡数量明显下降,并且使Bcl-2/Bax比率显著上升。另外,gx-50能够结合到大鼠皮质神经细胞表面的α7烟碱型乙酰胆碱受体。
     结论:
     综上所述,尼古丁作为α7烟碱型乙酰胆碱受体激动剂可以通过巨噬细胞分泌炎性因子TNF-α,IL-1β间接诱导内皮细胞表达粘附分子ICAM-1和VCAM-1。同时,尼古丁还可以通过α7乙酰胆碱受体及NF-κB途径直接刺激内皮细胞表达炎性因子,并诱导内皮细胞表达ICAM-1。此外,gx-50作为一种潜在的α7烟碱型乙酰胆碱受体激动剂能够有效地抑制Aβ25-35诱导的皮质神经细胞凋亡,gx-50是否是通过α7烟碱型乙酰胆碱受体介导的神经保护机制仍然需要进一步的研究证实。
Recent studies found that nicotinic acetylcholine receptors were expressed not only in neuron cells, but also in non-neuron cells, such as endothelial cells, macrophages, epithelial cells and tumor cells. The expression of nicotinic acetylcholine receptor is involved in regulating the function of these cells and related to pathological and physiological changes in some diseases.α7 nicotinic acetylcholine receptor agonists has been used to treat many diseases.
     Object:
     Firstly, the aim of our study is to investigate the indirect and direct effect of nicotine on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs) and analyze the pathway mediated by nicotinic acetylcholine receptor.
     Scecondly, gx-50, an ingredient from Zanthoxylum, has been suggested to effectively active alpha7 neuronal nicotinic acetylcholine receptor by structure-based drug design methods. In the present study, we investigated whether alpha7 neuronal nicotinic acetylcholine receptor was involved in the neuroprotective effect of gx-50 on beta-amyloid (Aβ)25-35-induced neuronal damage in primary cultured cortical neurons. Methods:
     According to the concentration of nicotine in the serum of smokers, Ana-1 (macrophages) was challenged by different concentration nicotine, the supernatant of Ana-1 cells were collected for 3 h, 6 h, 12 h, 24 h and 48 h. The expression of IFN-γ,TNF-α,IL-1β,IL-8 were detected by RIA or enzyme-linked immunosorbent assay (ELISA). Treatment of HUVECs with supernatant from Ana-1 stimulated by 6×10~(-5) M nicotine for 12 h, the adhesion molecules were determined by ELISA. The supernatant from Ana-1 challenged by nicotine was pre-neutralized with anti-TNF-α, anti-IL-1β, anti-IFN-γ, or anti-TNF-α+ anti-IL-1βantibody together, respectively. The value of adhesion molecules was detected with ELISA. Adherent cells were counted in 5 microscopic high power fields.
     HUVECSs were treated by different concentration of nicotine. At the end of the incubation time, cell supernatants were collected. Levels of PGE2 were determined using enzyme immunoassay kit. The level of COX-2 mRNA and protein were detected by Real time-PCR and Western blot. Then, the cells were pre-incubated with 1×10~(-6)Mα-Bungarotoxin (BTX) or 5×10~(-5) M PDTC for 30 min prior to 1×10~(-6) M nicotine exposure, then the level of COX-2 mRNA and protein were measured by Real time-PCR and Western blot. The level of PGE2 was determined by ELISA. The effect of nicotine on NF-κB DNA binding activity is measured by EMSA. After NS-398 treatment, nicotine-induced ICAM-1 protein expression was measured by Western blot and Immunofluoresence staining analyses.
     Cortical neurons were treated with different concentration of gx-50 for 48 h, the viability were measured by MTT assay. The inhibitory effect of gx-50 on Aβ25-35-induced neurons cytotoxicity and apoptosis, MTT assay and PI/Hoechst 33258 dual staining method were used. Cells were incubated with 10-6 M gx-50 for 2 h then exposed to 2.5×10~(-5) M Aβ25-35 for 48 h. The expression of anti-apoptotic gene Bcl-2 and pro-apoptotic gene Bax was detected by Real-time PCR and Western blot. The competitive binding assay was performed to verify gx-50 as an agonist ofα7 nAChR.
     Results:
     The expression of TNF-αand IL-1βin Ana-1 was improved as the increasing of nicotine concentration till 6×10~(-5) M. Moreover, there was an expression peak of TNF-αat 24 h as well as IL-1βat 12 h. However, nicotine could not regularly affect the release of IFN-γand IL-8. The expression of sICAM-1 and sVCAM-1 were significantly decreased in the groups of anti-TNF-α, anti-IL-1βor anti-TNF-α+anti-IL-1βpre-neutralized, and blocked partly the attachment of mononuclear cells to HUVECs. TNF-αor IL-1βrelease could be affected by nicotine with time- and concentration-dependent manner.
     Nicotine increased COX-2 mRNA expression in a dose-dependent manner. The maximal level of COX-2 mRNA and protein were expressed after exposure to 1×10~(-6) M nicotine for 2 h or 6 h. It was found thatα-bungarotoxin significantly decreased the level of COX-2 mRNA and protein by about 61.3% and 70.2% respectively of the nicotine-treated group. In addition, PDTC prevented the nicotine-induced COX-2 mRNA and protein expression by 73.5% and 80.1%. Nicotine-induced ICAM-1 protein expression was remarkably decreased after NS-398 pretreatment.
     Pretreatment of the cells with gx-50 for 2 h prior to 2.5×10~(-5) M Aβ25-35 exposure caused significantly apoptotic rate decrease and viability elevation. Furthermore, a marked reduction of bcl-2/bax ratio was found after 2.5×10~(-5) M Aβ25-35 exposure, which could be partly reversed by pretreatment of gx-50.
     Conclusion:
     Nicotine could increase the expression of ICAM-1 and VCAM-1 mediating TNF-α,IL-1βrelease by macrophages. In addition,nicotine induced COX-2 expression through NF-κB activation which mediated by nicotinic acetylcholine receptor and the induction of COX-2 was related to ICAM-1 expression. Furthermore, nicotine could induce COX-2 expression through activating nicotinic acetylcholine receptor and NF-κB pathway which was related to ICAM-1 expression. In addition, our research revealed that gx-50, an potentialα7 nAChR agonist could protect neurons against amyloid-induced neurotoxicity.
引文
[1] Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci. 2002, 3(2): 102-114.
    [2] Leonard S, Bertrand D. Neuronal nicotinic receptors: from structure to function. Nicotine Tob Res. 2001, 3(3): 203-223.
    [3] Brejc K, van Dijk W J, Klaassen R V, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001, 411(6835): 269-276.
    [4] Dani J A, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007, 47: 699-729.
    [5] Lindstrom J M. Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology. Ann N Y Acad Sci. 2003, 998: 41-52.
    [6] Bartus R T, Dean R R, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982, 217(4558): 408-414.
    [7] Francis P T, Palmer A M, Snape M, et al. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999, 66(2): 137-147.
    [8] Arneric S P, Holladay M, Williams M. Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem Pharmacol. 2007, 74(8): 1092-1101.
    [9] Ho K T, Burgess R M, Pelletier M C, et al. Use of powdered coconut charcoal as a toxicity identification and evaluation manipulation for organic toxicants in marine sediments. Environ Toxicol Chem. 2004, 23(9): 2124-2131.
    [10] Vasto S, Candore G, Aquino A, et al. The nACHR4 594C/T polymorphism inAlzheimer disease. Rejuvenation Res. 2006, 9(1): 107-110.
    [11] D'Andrea M R, Nagele R G. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer's disease pyramidal neurons. Curr Pharm Des. 2006, 12(6): 677-684.
    [12] Wang H Y, Lee D H, D'Andrea M R, et al. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem. 2000, 275(8): 5626-5632.
    [13] Wevers A, Monteggia L, Nowacki S, et al. Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer's disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur J Neurosci. 1999, 11(7): 2551-2565.
    [14] Wessler I, Kirkpatrick C J, Racke K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther. 1998, 77(1): 59-79.
    [15] Macklin K D, Maus A D, Pereira E F, et al. Human vascular endothelial cells express functional nicotinic acetylcholine receptors. J Pharmacol Exp Ther. 1998, 287(1): 435-439
    [16] Moccia F, Frost C, Berra-Romani R, et al. Expression and function of neuronal nicotinic ACh receptors in rat microvascular endothelial cells. Am J Physiol Heart Circ Physiol. 2004, 286(2): H486-H491.
    [17] Wang Y, Pereira E F, Maus A D, et al. Human bronchial epithelial and endothelial cells express alpha7 nicotinic acetylcholine receptors. Mol Pharmacol. 2001, 60(6): 1201-1209.
    [18] Heeschen C, Jang J J, Weis M, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001, 7(7): 833-839.
    [19] Heeschen C, Weis M, Cooke J P. Nicotine promotes arteriogenesis. J Am Coll Cardiol. 2003, 41(3): 489-496.
    [20] Heeschen C, Weis M, Aicher A, et al. A novel angiogenic pathway mediated bynon-neuronal nicotinic acetylcholine receptors. J Clin Invest. 2002, 110(4): 527-536.
    [21] Heeschen C, Chang E, Aicher A, et al. Endothelial progenitor cells participate in nicotine-mediated angiogenesis. J Am Coll Cardiol. 2006, 48(12): 2553-2560.
    [22] Wang Y, Wang Z, Zhou Y, et al. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells. Int J Biochem Cell Biol. 2006, 38(2): 170-182.
    [23] Yamamuro Y, Yoshimura K, Tsuchiya K, et al. Functional development of oligodendrocytes and open-field behavior in developing rats: an approach using monoclonal antibody to immature oligodendrocytes. Exp Anim. 2004, 53(2): 145-150.
    [24]Saeed R W, Varma S, Peng-Nemeroff T, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005, 201(7): 1113-1123.
    [25] Chen Y H, Chen S H, Jong A, et al. Enhanced Escherichia coli invasion of human brain microvascular endothelial cells is associated with alternations in cytoskeleton induced by nicotine. Cell Microbiol. 2002, 4(8): 503-514.
    [26] Doll R, Hill A B. Lung cancer and other causes of death in relation to smoking; a second report on the mortality of British doctors. Br Med J. 1956, 2(5001): 1071-1081.
    [27] Hammond E C, Horn D. Smoking and death rates; report on forty-four months of follow-up of 187,783 men. I. Total mortality. J Am Med Assoc. 1958, 166(10): 1159-1172.
    [28] Gifford R J. The role of multiple risk factors in cardiovascular morbidity and mortality. Cleve Clin J Med. 1993, 60(3): 211-218.
    [29] Ezzati M, Henley S J, Thun M J, et al. Role of smoking in global and regional cardiovascular mortality. Circulation. 2005, 112(4): 489-497.
    [30] Stedman R L. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968, 68(2): 153-207.
    [31] Porchet H C, Benowitz N L, Sheiner L B. Pharmacodynamic model of tolerance:application to nicotine. J Pharmacol Exp Ther. 1988, 244(1): 231-236.
    [32] Henningfield J E, Keenan R M. Nicotine delivery kinetics and abuse liability. J Consult Clin Psychol. 1993, 61(5): 743-750
    [33] Benowitz N L. Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol. 1996, 36: 597-613.
    [34] Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004, 109(23 Suppl 1): I27-I32.
    [35] Savoia C, Schiffrin E L. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond). 2007, 112(7): 375-384.
    [36] Desjardins F, Balligand J L. Nitric oxide-dependent endothelial function and cardiovascular disease. Acta Clin Belg. 2006, 61(6): 326-334.
    [37] Mangoni A A, Sherwood R A, Asonganyi B, et al. Folic acid: a marker of endothelial function in type 2 diabetes? Vasc Health Risk Manag. 2005, 1(1): 79-83.
    [38] Papaharalambus C A, Griendling K K. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med. 2007, 17(2): 48-54.
    [39] Jindal S, Singh M, Balakumar P. Effect of bis (maltolato) oxovanadium (BMOV) in uric acid and sodium arsenite-induced vascular endothelial dysfunction in rats. Int J Cardiol. 2008, 128(3): 383-391.
    [40] Quyyumi A A. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. Am J Med. 1998, 105(1A): 32S-39S.
    [41] Schalkwijk C G, Stehouwer C D. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005, 109(2): 143-159.
    [42] Grabczewska Z, Thews M, Goralczyk K, et al. Endothelial function in patients with chest pain and normal coronary angiograms. Kardiol Pol. 2007, 65(10): 1199-1206, 1207.
    [43] Kawashima S. The two faces of endothelial nitric oxide synthase in thepathophysiology of atherosclerosis. Endothelium. 2004, 11(2): 99-107.
    [44] Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004, 24(6): 998-1005.
    [45] Balakumar P, Kaur T, Singh M. Potential target sites to modulate vascular endothelial dysfunction: current perspectives and future directions. Toxicology. 2008, 245(1-2): 49-64.
    [46] Cai H, Harrison D G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000, 87(10): 840-844.
    [47] Balakumar P, Chakkarwar V A, Krishan P, et al. Vascular endothelial dysfunction: a tug of war in diabetic nephropathy? Biomed Pharmacother. 2009, 63(3): 171-179.
    [48] Kuhlmann C R, Trumper J R, Tillmanns H, et al. Nicotine inhibits large conductance Ca(2+)-activated K(+) channels and the NO/-cGMP signaling pathway in cultured human endothelial cells. Scand Cardiovasc J. 2005, 39(6): 348-352.
    [49] Jiang D J, Jia S J, Yan J, et al. Involvement of DDAH/ADMA/NOS pathway in nicotine-induced endothelial dysfunction. Biochem Biophys Res Commun. 2006, 349(2): 683-693.
    [50] Argacha J F, Adamopoulos D, Gujic M, et al. Acute effects of passive smoking on peripheral vascular function. Hypertension. 2008, 51(6): 1506-1511.
    [51] Neunteufl T, Heher S, Kostner K, et al. Contribution of nicotine to acute endothelial dysfunction in long-term smokers. J Am Coll Cardiol. 2002, 39(2): 251-256.
    [52] Luo H L, Zang W J, Lu J, et al. The protective effect of captopril on nicotine-induced endothelial dysfunction in rat. Basic Clin Pharmacol Toxicol. 2006, 99(3): 237-245.
    [53] Barr J, Sharma C S, Sarkar S, et al. Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem. 2007, 297(1-2): 93-99.
    [54] Cooper R G, Magwere T. Nitric oxide-mediated pathogenesis during nicotine and alcohol consumption. Indian J Physiol Pharmacol. 2008, 52(1): 11-18.
    [55] Glantz S A, Parmley W W. Passive and active smoking. A problem for adults. Circulation. 1996, 94(4): 596-598.
    [56] Ashakumary L, Vijayammal P L. Effect of nicotine on antioxidant defence mechanisms in rats fed a high-fat diet. Pharmacology. 1996, 52(3): 153-158.
    [57] Gidding S S. Active and passive tobacco exposure. Prog Pediatr Cardiol. 2001, 12(2): 195-198.
    [58] Pfueller S L, Burns P, Mak K, et al. Effects of nicotine on platelet function. Haemostasis. 1988, 18(3): 163-169.
    [59] Benowitz N L. The role of nicotine in smoking-related cardiovascular disease. Prev Med. 1997, 26(4): 412-417.
    [60] Benowitz N L, Fitzgerald G A, Wilson M, et al. Nicotine effects on eicosanoid formation and hemostatic function: comparison of transdermal nicotine and cigarette smoking. J Am Coll Cardiol. 1993, 22(4): 1159-1167.
    [61] Mundal H H, Hjemdahl P, Gjesdal K. Acute effects of low dose nicotine gum on platelet function in non-smoking hypertensive and normotensive men. Eur J Clin Pharmacol. 1995, 47(5): 411-416.
    [62] Bierenbaum M L, Fleischman A I, Stier A, et al. Effect of cigarette smoking upon in vivo platelet function in man. Thromb Res. 1978, 12(6): 1051-1057.
    [63] Kershbaum A, Bellet S. CIGARETTE SMOKING AND BLOOD LIPIDS. JAMA. 1964, 187: 32-36.
    [64] Folts J D, Bonebrake F C. The effects of cigarette smoke and nicotine on platelet thrombus formation in stenosed dog coronary arteries: inhibition with phentolamine. Circulation. 1982, 65(3): 465-470.
    [65] Argacha J F, Garcia C, Xhaet O, et al. Nicotine does not compromise resting myocardial blood flow autoregulation in smokers at high cardiovascular risk. Nicotine Tob Res. 2008, 10(7): 1131-1137.
    [66] Waeber B, Schaller M D, Nussberger J, et al. Skin blood flow reduction induced bycigarette smoking: role of vasopressin. Am J Physiol. 1984, 247(6 Pt 2): H895-H901.
    [67] Downey H F, Crystal G J, Bashour F A. Regional renal and splanchnic blood flows during nicotine infusion: effects of alpha and of combined alpha and beta adrenergic blockade. J Pharmacol Exp Ther. 1982, 220(2): 375-381.
    [68] Li Z, Duckles S P. Acute effects of nicotine on rat mesenteric vasculature and tail artery. J Pharmacol Exp Ther. 1993, 264(3): 1305-1310.
    [69] Pickering T G, Schwartz J E, James G D. Ambulatory blood pressure monitoring for evaluating the relationships between lifestyle, hypertension and cardiovascular risk. Clin Exp Pharmacol Physiol. 1995, 22(3): 226-231.
    [70] Kannel W B, D'Agostino R B, Belanger A J. Fibrinogen, cigarette smoking, and risk of cardiovascular disease: insights from the Framingham Study. Am Heart J. 1987, 113(4): 1006-1010.
    [71] Green K G, Heady A, Oliver M F. Blood pressure, cigarette smoking and heart attack in the WHO co-operative trial of clofibrate. Int J Epidemiol. 1989, 18(2): 355-360.
    [72] Allen D R, Browse N L, Rutt D L. Effects of cigarette smoke, carbon monoxide and nicotine on the uptake of fibrinogen by the canine arterial wall. Atherosclerosis. 1989, 77(1): 83-88.
    [73] Cordoba P A, Blanco V F, Gonzalez S F. [Hyperhomocysteinemia: a new marker of vascular risk: affected vascular areas, its role in the pathogenesis of arteriosclerosis and thrombosis and treatment] Med Clin (Barc). 1997, 109(18): 715-725.
    [74] Libby P. Inflammation in atherosclerosis. Nature. 2002, 420(6917): 868-874.
    [75] Mitchell J A, Warner T D. Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J Pharmacol. 1999, 128(6): 1121-1132.
    [76] Linton M F, Fazio S. Cyclooxygenase-2 and atherosclerosis. Curr Opin Lipidol. 2002, 13(5): 497-504.
    [77] Crofford L J. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl. 1997, 49: 15-19.
    [78] Giroux M, Descoteaux A. Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-alpha. J Immunol. 2000, 165(7): 3985-3991.
    [79] Altman R. Acute coronary disease Athero-Inflammation: Therapeutic approach. Thromb J. 2003, 1(1): 2.
    [80] Inoue H, Taba Y, Miwa Y, et al. Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002, 22(9): 1415-1420.
    [81] Ohnaka K, Numaguchi K, Yamakawa T, et al. Induction of cyclooxygenase-2 by angiotensin II in cultured rat vascular smooth muscle cells. Hypertension. 2000, 35(1 Pt 1): 68-75.
    [82] Burleigh M E, Babaev V R, Oates J A, et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation. 2002, 105(15): 1816-1823.
    [83] Belton O.A, Duffy A, Toomey S, Fitzgerald D.J. Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 2003; 108(24): 3017-23.
    [84] Altman R, Luciardi H L, Muntaner J, et al. Efficacy assessment of meloxicam, a preferential cyclooxygenase-2 inhibitor, in acute coronary syndromes without ST-segment elevation: the Nonsteroidal Anti-Inflammatory Drugs in Unstable Angina Treatment-2 (NUT-2) pilot study. Circulation. 2002, 106(2): 191-195.
    [85] Sasaguri T, Miwa Y. Prostaglandin J2 family and the cardiovascular system. Curr Vasc Pharmacol. 2004, 2(2): 103-114.
    [86] Gornas P, Gorski A. [The role of cell adhesion molecules in the pathogenesis of coronary artery disease] Pol Arch Med Wewn. 1996, 96(2): 183-187.
    [87] Khan B V, Harrison D G, Olbrych M T, et al. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci U S A. 1996, 93(17): 9114-9119.
    [88] Li H, Cybulsky M I, Gimbrone M J, et al. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol. 1993, 143(6): 1551-1559.
    [89] Libby P, Sukhova G, Lee R T, et al. Cytokines regulate vascular functions related to stability of the atherosclerotic plaque. J Cardiovasc Pharmacol. 1995, 25 Suppl 2: S9-S12.
    [90] Cybulsky M I, Gimbrone M J. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991, 251(4995): 788-791.
    [91] Schmidt K G, Rasmussen J W, Bonnevie-Nielsen V. Acute platelet activation induced by smoking cigarettes: in vivo and ex vivo studies in humans. Adv Exp Med Biol. 1990, 273: 199-209.
    [92] Blache D, Bouthillier D, Davignon J. Acute influence of smoking on platelet behaviour, endothelium and plasma lipids and normalization by aspirin. Atherosclerosis. 1992, 93(3): 179-188.
    [93] Adams M R, Jessup W, Celermajer D S. Cigarette smoking is associated with increased human monocyte adhesion to endothelial cells: reversibility with oral L-arginine but not vitamin C. J Am Coll Cardiol. 1997, 29(3): 491-497.
    [94] Albaugh G, Bellavance E, Strande L, et al. Nicotine induces mononuclear leukocyte adhesion and expression of adhesion molecules, VCAM and ICAM, in endothelial cells in vitro. Ann Vasc Surg. 2004, 18(3): 302-307.
    [95] Cucina A, Sapienza P, Corvino V, et al. Nicotine induces platelet-derived growth factor release and cytoskeletal alteration in aortic smooth muscle cells. Surgery. 2000, 127(1): 72-78.
    [96] Kanda Y, Watanabe Y. Nicotine-induced vascular endothelial growth factor release via the EGFR-ERK pathway in rat vascular smooth muscle cells. Life Sci. 2007, 80(15): 1409-1414.
    [97] Carty C S, Soloway P D, Kayastha S, et al. Nicotine and cotinine stimulate secretion of basic fibroblast growth factor and affect expression of matrix metalloproteinases incultured human smooth muscle cells. J Vasc Surg. 1996, 24(6): 927-934, 934-935.
    [98] Stefanovich V, Gore I, Kajiyama G, et al. The effect of nicotine on dietary atherogenesis in rabbits. Exp Mol Pathol. 1969, 11(1): 71-81.
    [99] Strohschneider T, Oberhoff M, Hanke H, et al. Effect of chronic nicotine delivery on the proliferation rate of endothelial and smooth muscle cells in experimentally induced vascular wall plaques. Clin Investig. 1994, 72(11): 908-912.
    [100] Chelland C S, Moffatt R J, Stamford B A. Smoking and smoking cessation -- the relationship between cardiovascular disease and lipoprotein metabolism: a review. Atherosclerosis. 2008, 201(2): 225-235.
    [101] Freeman D J, Caslake M J, Griffin B A, et al. The effect of smoking on post-heparin lipoprotein and hepatic lipase, cholesteryl ester transfer protein and lecithin:cholesterol acyl transferase activities in human plasma. Eur J Clin Invest. 1998, 28(7): 584-591.
    [102] Benowitz N L, Gourlay S G. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Coll Cardiol. 1997, 29(7): 1422-1431.
    [103] Cooke J P. Angiogenesis and the role of the endothelial nicotinic acetylcholine receptor. Life Sci. 2007, 80(24-25): 2347-2351.
    [104] Li X W, Wang H. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Sci. 2006, 78(16): 1863-1870.
    [105] Toiber D, Soreq H. Cellular stress reactions as putative cholinergic links in Alzheimer's disease. Neurochem Res. 2005, 30(6-7): 909-919.
    [106] Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset.. Am J Public Health. 1998, 88(9): 1337-1342.
    [107] Ferri C P, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005, 366(9503): 2112-2117.
    [108]易璇,齐朝晖.预防保健对老年痴呆的重要性中国民康医学. 2008(10).
    [109] Rubio A, Perez M, Avila J. Acetylcholine receptors and tau phosphorylation. CurrMol Med. 2006, 6(4): 423-428.
    [110] Tolnay M, Probst A. REVIEW: tau protein pathology in Alzheimer's disease and related disorders. Neuropathol Appl Neurobiol. 1999, 25(3): 171-187.
    [111] Kosik K S, Joachim C L, Selkoe D J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986, 83(11): 4044-4048.
    [112] Terry R D, Masliah E, Salmon D P, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment.. Ann Neurol. 1991, 30(4): 572-580.
    [113] Wilson C A, Doms R W, Lee V M. Intracellular APP processing and A beta production in Alzheimer disease. J Neuropathol Exp Neurol. 1999, 58(8): 787-794.
    [114] Streit W J, Walter S A, Pennell N A. Reactive microgliosis. Prog Neurobiol. 1999, 57(6): 563-581.
    [115] Streit W J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002, 40(2): 133-139.
    [116] Klegeris A, Mcgeer P L. Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol Aging. 2002, 23(5): 787-794.
    [117] Glenner G G, Wong C W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984, 120(3): 885-890.
    [118] Terry R D. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis.[J]. J Neuropathol Exp Neurol. 1996, 55(10): 1023-1025.
    [119] Klein W L. Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int. 2002, 41(5): 345-352.
    [120] Luheshi L M, Tartaglia G G, Brorsson A C, et al. Systematic in vivo analysis of the intrinsic determinants of amyloid Beta pathogenicity. PLoS Biol. 2007, 5(11): e290.
    [121] Roychaudhuri R, Yang M, Hoshi M M, et al. Amyloid beta-protein assembly andAlzheimer disease. J Biol Chem. 2009, 284(8): 4749-4753.
    [122] Walsh D M, Selkoe D J. A beta oligomers - a decade of discovery. J Neurochem. 2007, 101(5): 1172-1184.
    [123] Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.[J]. Science. 2002, 297(5580): 353-356.
    [124] Kihara T, Shimohama S, Urushitani M, et al. Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits beta-amyloid toxicity. Brain Res. 1998, 792(2): 331-334.
    [125] Rusted J M, Newhouse P A, Levin E D. Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer's disease and Parkinson's disease. Behav Brain Res. 2000, 113(1-2): 121-129.
    [126] Kihara T, Shimohama S, Sawada H, et al. alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem. 2001, 276(17): 13541-13546.
    [127] Takada-Takatori Y, Kume T, Sugimoto M, et al. Acetylcholinesterase inhibitors used in treatment of Alzheimer's disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology. 2006, 51(3): 474-486.
    [128] Schrattenholz A, Pereira E F, Roth U, et al. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol. 1996, 49(1): 1-6.
    [129] Coyle J T, Geerts H, Sorra K, et al. Beyond in vitro data: a review of in vivo evidence regarding the allosteric potentiating effect of galantamine on nicotinic acetylcholine receptors in Alzheimer's neuropathology. J Alzheimers Dis. 2007, 11(4): 491-507.
    [130] Martin S E, de Fiebre N E, de Fiebre C M. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures. Brain Res. 2004,1022(1-2): 254-256.
    [131] Bell K A, O'Riordan K J, Sweatt J D, et al. MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time.[J]. J Neurochem. 2004, 91(2): 349-361.
    [132] Gentry C L, Lukas R J. Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord. 2002, 1(4): 359-385.
    [133] Ke L, Eisenhour C M, Bencherif M, et al. Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtypes. I. Dose- and time-dependent effects of nicotine treatment. J Pharmacol Exp Ther. 1998, 286(2): 825-840.
    [134] Nuutinen S, Ekokoski E, Lahdensuo E, et al. Nicotine-induced upregulation of human neuronal nicotinic alpha7-receptors is potentiated by modulation of cAMP and PKC in SH-EP1-halpha7 cells. Eur J Pharmacol. 2006, 544(1-3): 21-30.
    [135] Nguyen H N, Rasmussen B A, Perry D C. Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J Pharmacol Exp Ther. 2003, 307(3): 1090-1097.
    [136] Kume T, Sugimoto M, Takada Y, et al. Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholinesterase inhibitors in rat cortical neurons. Eur J Pharmacol. 2005, 527(1-3): 77-85.
    [137] Jonnala R R, Buccafusco J J. Relationship between the increased cell surface alpha7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. J Neurosci Res. 2001, 66(4): 565-572.
    [138] Qi X L, Nordberg A, Xiu J, et al. The consequences of reducing expression of the alpha7 nicotinic receptor by RNA interference and of stimulating its activity with an alpha7 agonist in SH-SY5Y cells indicate that this receptor plays a neuroprotective role in connection with the pathogenesis of Alzheimer's disease. Neurochem Int. 2007, 51(6-7):377-383.
    [139] Kihara T, Sawada H, Nakamizo T, et al. Galantamine modulates nicotinic receptor and blocks Abeta-enhanced glutamate toxicity. Biochem Biophys Res Commun. 2004, 325(3): 976-982.
    [140] Takada Y, Yonezawa A, Kume T, et al. Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther. 2003, 306(2): 772-777.
    [141] Williams M E, Burton B, Urrutia A, et al. Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells. J Biol Chem. 2005, 280(2): 1257-1263.
    [142] Charpantier E, Wiesner A, Huh K H, et al. Alpha7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and Src-family kinases. J Neurosci. 2005, 25(43): 9836-9849.
    [143] Sharma G, Vijayaraghavan S. Nicotinic receptors containing the alpha7 subunit: a model for rational drug design. Curr Med Chem. 2008, 15(28): 2921-2932.
    [144] Gotti C, Moretti M, Gaimarri A, et al. Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol. 2007, 74(8): 1102-1111.
    [145] Banerjee C, Nyengaard J R, Wevers A, et al. Cellular expression of alpha7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer's and Parkinson's disease--a stereological approach. Neurobiol Dis. 2000, 7(6 Pt B): 666-672.
    [146] Lacor P N, Buniel M C, Chang L, et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J Neurosci. 2004, 24(45): 10191-10200.
    [147] Marrero M B, Bencherif M. Convergence of alpha 7 nicotinic acetylcholine receptor-activated pathways for anti-apoptosis and anti-inflammation: central role for JAK2 activation of STAT3 and NF-kappaB. Brain Res. 2009, 1256: 1-7.
    [148] Bencherif M. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance. Acta Pharmacol Sin.2009, 30(6): 702-714.
    [149] Dziewczapolski G, Glogowski C M, Masliah E, et al. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. J Neurosci. 2009, 29(27): 8805-8815.
    [150] Dineley K T. Beta-amyloid peptide--nicotinic acetylcholine receptor interaction: the two faces of health and disease. Front Biosci. 2007, 12: 5030-5038.
    [151] Liu Q, Zhang J, Zhu H, et al. Dissecting the signaling pathway of nicotine-mediated neuroprotection in a mouse Alzheimer disease model. FASEB J. 2007, 21(1): 61-73.
    [152] Shaw S, Bencherif M, Marrero M B. Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1-42) amyloid. J Biol Chem. 2002, 277(47): 44920-44924.
    [153] Marrero M B, Papke R L, Bhatti B S, et al. The neuroprotective effect of 2-(3-pyridyl)-1-azabicyclo[3.2.2]nonane (TC-1698), a novel alpha7 ligand, is prevented through angiotensin II activation of a tyrosine phosphatase. J Pharmacol Exp Ther. 2004, 309(1): 16-27.
    [154] Wang H Y, Lee D H, D'Andrea M R, et al. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem. 2000, 275(8): 5626-5632.
    [155] Wang H Y, Lee D H, Davis C B, et al. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem. 2000, 75(3): 1155-1161.
    [156] Gyure K A, Durham R, Stewart W F, et al. Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med. 2001, 125(4): 489-492.
    [157] Shie F S, Leboeuf R C, Jin L W. Early intraneuronal Abeta deposition in the hippocampus of APP transgenic mice. Neuroreport. 2003, 14(1): 123-129.
    [158] Wirths O, Multhaup G, Czech C, et al. Intraneuronal Abeta accumulation precedesplaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett. 2001, 306(1-2): 116-120.
    [159] Bitner R S, Nikkel A L, Markosyan S, et al. Selective alpha7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3beta and decreases tau phosphorylation in vivo. Brain Res. 2009, 1265: 65-74.
    [160] Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP x Tau transgenic mice. 2007, 171(6): 2012-2020.
    [161] Wang H Y, Li W, Benedetti N J, et al. Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J Biol Chem. 2003, 278(34): 31547-31553.
    [162] Ren K, Thinschmidt J, Liu J, et al. alpha7 Nicotinic receptor gene delivery into mouse hippocampal neurons leads to functional receptor expression, improved spatial memory-related performance, and tau hyperphosphorylation. Neuroscience. 2007, 145(1): 314-322.
    [163] Bu G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009, 10(5): 333-344.
    [164] Gay E A, Bienstock R J, Lamb P W, et al. Structural determinates for apolipoprotein E-derived peptide interaction with the alpha7 nicotinic acetylcholine receptor. Mol Pharmacol. 2007, 72(4): 838-849.
    [165] Eddins D, Klein R C, Yakel J L, et al. Hippocampal infusions of apolipoprotein E peptides induce long-lasting cognitive impairment. Brain Res Bull. 2009, 79(2): 111-115.
    [166] Shytle R D, Mori T, Townsend K, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 2004, 89(2): 337-343.
    [167] De Rosa M J, Esandi M C, Garelli A, et al. Relationship between alpha 7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol. 2005, 160(1-2): 154-161.
    [168] Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release andimprove survival in experimental sepsis. Nat Med. 2004, 10(11): 1216-1221.
    [169] Suzuki T, Hide I, Matsubara A, et al. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res. 2006, 83(8): 1461-1470.
    [170] Frautschy S A, Cole G M, Baird A. Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid. Am J Pathol. 1992, 140(6): 1389-1399.
    [171] Rogers J, Lue L F, Walker D G, et al. Elucidating molecular mechanisms of Alzheimer's disease in microglial cultures. Ernst Schering Res Found Workshop. 2002(39): 25-44.
    [172] Kitazawa M, Oddo S, Yamasaki T R, et al. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci. 2005, 25(39): 8843-8853.
    [173] Kitagawa H, Takenouchi T, Azuma R, et al. Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology. 2003, 28(3): 542-551.
    [174] Gerzanich V, Peng X, Wang F, et al. Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors. Mol Pharmacol. 1995, 48(4): 774-782.
    [175] Rezvani A H, Kholdebarin E, Brucato F H, et al. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009, 33(2): 269-275.
    [176] Akk G, Steinbach J H. Galantamine activates muscle-type nicotinic acetylcholine receptors without binding to the acetylcholine-binding site.[J]. J Neurosci. 2005, 25(8): 1992-2001.
    [177]张学景,邹永,钟荣清,等.白藜芦醇的雌激素样作用及相关治疗意义.中国新药杂志. 2004, (08).
    [178]谢桂琴.红景天素、褪黑素防治实验性老年性痴呆作用和机制的研究.南京医科大学; 2003.
    [179]阳初玉,吕泽平,郑陈光.石杉碱甲治疗轻中度阿尔茨海默病的有效性及安全性研究.中国临床康复. 2003, (31).
    [180]陈美娟,高之旭,邓红玉,等.石杉碱甲胶囊和片剂治疗阿尔采末病的多中心双盲研究.中国新药与临床杂志2000, 19(1)
    [181]薛寿儒,张正春,吴爱勤,等.加兰他敏与吡拉西坦治疗老年性痴呆和良性衰老性遗忘症的比较.中国新药与临床杂志. 1999,(04).
    [182] Mohan LS, Wieslaw K. Immunodulatory effects of cigarette smoke. J. Neuroimmunol, 1998, 83:148-156.
    [183] Dimmeler S, Hermann C, Zeiher A.M. Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis? Eur Cytokine Netw 1998; 9(4): 697-8.
    [184] Zhang S, Day I, Ye S. Nicotine induced changes in gene expression by human coronary artery endothelial cells. Atherosclerosis 2001; 154(2): 277-83.
    [185]王莲芸王怀云张瑄等.香烟烟对血管内皮表达细胞间粘附分子-1的影响中华预防医学杂志2001, 35(2):105-107.
    [186] Morzycki W, Sadowska J, Issekutz AC. Interleukin-1 and tumor necrosis factor-αinduced polymorphonuclear leukocyte-endothelial cell adhesion and transendothelial migration in vitro: The effects of apical versus basal monolayer stimulation. Immunol Lett, 1990, 25:33-40.
    [187] Labarrere C.A, Nelson D.R, Faulk W.P. Endothelial activation and development of coronary artery disease in transplanted human hearts. JAMA 1997; 278(14): 1169-75.
    [188] Hwang S.J, Ballantyne C.M, Sharrett A.R, Smith L.C, Davis C.E.Jr, Gotto A.M, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997; 96(12): 4219-25
    [189] Kitagawa K, Matsumoto M, Sasaki T, Hashimoto H, Kuwabara K, Ohtsuki T, et al.Involvement of ICAM-1 in the progression of atherosclerosis in APOE-knockout mice. Atherosclerosis 2002; 160(2): 305-10.
    [190] Mitchell J.A, Warner T.D. COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug Discov 2006; 5(1): 75-86
    [191] Baker C.S, Hall R.J, Evans T.J. Pomerance A, Maclouf J, Creminon C, et al. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 1999; 19(3): 646-55.
    [192] Cipollone F, Cicolini G, Bucci M. Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol Ther 2008; 118(2): 161-80.
    [193] Burleigh M.E, Babaev V.R, Yancey P.G, Major A.S, McCaleb J.L, Oates J.A, et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in ApoE-deficient and C57BL/6 mice. J Mol Cell Cardiol. 2005; 39(3):443-52.
    [194] Kapoor M, Kojima F, Qian M, Yang L, Crofford L.J. Shunting of prostanoid biosynthesis in microsomal prostaglandin E synthase-1 null embryo fibroblasts: regulatory effects on inducible nitric oxide synthase expression and nitrite synthesis. FASEB J 2006; 20(13):2387-9.
    [195] Barr J, Sharma C.S, Sarkar S, Wise K, Dong L, Periyakaruppan A, et al. Nicotine induces oxidative stress and activates nuclear transcription factor kappa B in rat mesencephalic cells. Mol Cell Biochem 2007; 297(1-2): 93-9.
    [196] Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, et al. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 2006; 146(1):116-23.
    [197] Das, UN. Cross talk among leukocytes, platelets, and endothelial cells and its relevance to atherosclerosis and coronary heart disease. Curr Nutr Food Sci 2009; 5 (2): 75-93
    [198] Denis M, Cormier Y, Tardif J, et al. Hypersensitivity pneumonitis: Whole micropolyspora faeni or antigens thereof stimulate the release of proinflammatory cytokines from macrophages. Am J Respire Cell Mol Biol, 1991, 5:198-203.
    [199] OuYang Y, Virash N, Hao D, et al. Suppression of human IL-1 beta, IL-2, IFN-gamma and TNF-alpha production by cigarette smoke extracts. Allery Clin Immunol, 2000, 06:280-281.
    [200] Morzycki W, Sadowska J, Issekutz AC. Interleukin-1 and tumor necrosis factor-αinduced polymorphonuclear leukocyte-endothelial cell adhesion and transendothelial migration in vitro: The effects of apical versus basal monolayer stimulation. Immunol Lett, 1990, 25:33-40.
    [201] Hyu KG, Chang H, Li CC. Circulating intercellur adhesion molecule-1 and E-selectin in patients with acute coronary syndrome. Chest, 1996, 109: 1627-1630.
    [202] Hwang SJ, Ballantyne CM, Sharrett AR. Circulating adhesion molecules VCAM-1, ICAM-1 and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: The atherosclerosis risk in communities study. Circulation, 1997, 96(12):4219-4225.
    [203]Ledebur HC. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokine in human endothelial cells. Biol.Chem,1995, 933-943.
    [204] Hashimoto M, Shingu M, Ezaki I, et al. Production of soluble ICAM-1 from human endothelial cells induced by IL-1 beta and TNF-alpha. Inflammation, 1994,18(2):163-173.
    [205] Blann AD, Steele C, Mccollum CN. The influence of smoking on soluble adhesion molecules and endothelial cell markers. Thromb Res, 1997, 85:433-438.
    [206] Diamond MS, Staunton DE, Marlin SD, et al. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and itsregulation by glycosylation. Cell, 1991, 65(6): 961-971.
    [207] Shen Y, Rattsn V, Sultana C, et al. Cigarette smoke condensate induced adhsion molecules expression and transendothelial migration of monocytes. Physiol, 1996, 270: 1624-1633.
    [208] Lawrence MB, Springer TA. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E) J. Cell Biol, 1997, 136(3): 717-727.
    [209] Egan KM, Wang M, Fries S, Lucitt M.B, Zukas A.M, Pure E, et al. Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism. Circulation 2005; 111(3): 334-342.
    [210] Burleigh ME, Babaev VR, Oates JA, Harris RC, Gautam S, Riendeau D, et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 2002; 105(15): 1816-1823.
    [211] Cipollone F, Prontera C, Pini B, Marini M, Fazia M, de Cesare D, et al. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 2001; 104(8): 921-927.
    [212] Park, YS, Kim, J, Misonou, Y et al. , Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase. Arterioscler Thromb Vasc Biol, 2007. 27(6): p. 1319-1325.
    [213] de Winther MP, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25(5): 904-914.
    [214] Liao HL, Zhu Y, Wang N, Verna L, Stemerman MB. Selective activation of endothelial cells by the antioxidant pyrrolidine dithiocarbamate: involvement of C-jun N-terminal kinase and AP-1 activation. Endothelium 2000; 7(2): 121-133.
    [215] Hinz B, Brune K. Cyclooxygenase-2--10 years later. J Pharmacol Exp Ther 2002; 300(2): 367-375.
    [216] Yan SR, Joseph R R, Wang J, Stadnyk A W. Differential pattern of inflammatory molecule regulation in intestinal epithelial cells stimulated with IL-1. J Immunol 2006; 177(8): 5604-5611.
    [217] Ulivi V, Giannoni P, Gentili C, Cancedda R, Descalzi F. p38/NF-kB-dependent expression of COX-2 during differentiation and inflammatory response of chondrocytes. J Cell Biochem 2008; 104(4): 1393-1406.
    [218] Jr Schmedtje J F, Ji Y S, Liu W L, DuBois R N, Runge M S. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 1997; 272(1): 601-608.
    [219] Cummings J L, Schneider L, Tariot P N, et al. Reduction of behavioral disturbances and caregiver distress by galantamine in patients with Alzheimer's disease. Am J Psychiatry. 2004, 161(3): 532-538.
    [220] Walsh D M, Selkoe D J. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett. 2004, 11(3): 213-228.
    [221] Lehericy S, Hirsch E C, Cervera-Pierot P, et al. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer's disease. J Comp Neurol. 1993, 330(1): 15-31.
    [222] Laferla F M, Tinkle B T, Bieberich C J, et al. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet. 1995, 9(1): 21-30.
    [223] Roth K A. Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol. 2001, 60(9): 829-838.
    [224] Yang D S, Kumar A, Stavrides P, et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. Am J Pathol. 2008, 173(3): 665-681.
    [225] Beach T G, Kuo Y M, Spiegel K, et al. The cholinergic deficit coincides with Abeta deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol ExpNeurol. 2000, 59(4): 308-313.
    [226] Fratiglioni L, Wang H X. Smoking and Parkinson's and Alzheimer's disease: review of the epidemiological studies. Behav Brain Res. 2000, 113(1-2): 117-120.
    [227] Rezvani A H, Levin E D. Cognitive effects of nicotine. Biol Psychiatry. 2001, 49(3): 258-267.
    [228] Woodruff-Pak D S, Gould T J. Neuronal nicotinic acetylcholine receptors: involvement in Alzheimer's disease and schizophrenia. Behav Cogn Neurosci Rev. 2002, 1(1): 5-20.
    [229] Garcia-Alloza M, Gil-Bea F J, Diez-Ariza M, et al. Cholinergic-serotonergic imbalance contributes to cognitive and behavioral symptoms in Alzheimer's disease. Neuropsychologia. 2005, 43(3): 442-449.
    [230] Martin S E, de Fiebre N E, de Fiebre C M. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures. Brain Res. 2004, 1022(1-2): 254-256.
    [231]尹靖先,彭玉华,张三印.花椒药用的研究进展四川中医. 2004(12).
    [232] Gu R X, Gu H, Xie Z Y, et al. Possible drug candidates for Alzheimer's disease deduced from studying their binding interactions with alpha7 nicotinic acetylcholine receptor. Med Chem. 2009, 5(3): 250-262.
    [233] Borovikova L V, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000, 405(6785): 458-462.
    [234] Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005, 4(8): 673-684.
    [235] Van Assche G, Rutgeerts P. Physiological basis for novel drug therapies used to treat the inflammatory bowel diseases. I. Immunology and therapeutic potential of antiadhesion molecule therapy in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2005, 288(2): G169-G174.
    [236] Wittebole X, Hahm S, Coyle S M, et al. Nicotine exposure alters in vivo human responses to endotoxin. Clin Exp Immunol. 2007, 147(1): 28-34.
    [237] Holcomb L, Gordon M N, Mcgowan E, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998, 4(1): 97-100.
    [238] Anderson A J, Stoltzner S, Lai F, et al. Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol Aging. 2000, 21(4): 511-524.
    [239] Rush D K, Aschmies S, Merriman M C. Intracerebral beta-amyloid(25-35) produces tissue damage: is it neurotoxic? Neurobiol Aging. 1992, 13(5): 591-594.
    [240] Ju Y B, Yeon H S. Blockade of 5-HT(3) receptor with MDL 72222 and Y 25130 reduces beta-amyloid protein (25--35)-induced neurotoxicity in cultured rat cortical neurons. Eur J Pharmacol. 2005, 520(1-3): 12-21.
    [241] Ban J Y, Jeon S Y, Bae K, et al. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25-35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci. 2006, 79(24): 2251-2259.
    [242] Yao M, Nguyen T V, Pike C J. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci. 2005, 25(5): 1149-1158.
    [243] Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998, 281(5381): 1322-1326.
    [244] Shacka J J, Roth K A. Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Disord. 2005, 4(1): 25-39.
    [245] Terry A J, Buccafusco J J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drugdevelopment. J Pharmacol Exp Ther. 2003, 306(3): 821-827.
    [246] Perry E K, Morris C M, Court J A, et al. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's disease: possible index of early neuropathology. Neuroscience. 1995, 64(2): 385-395.
    [247] Emilien G, Beyreuther K, Masters C L, et al. Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol. 2000, 57(4): 454-459.
    [248] Burghaus L, Schutz U, Krempel U, et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res. 2000, 76(2): 385-388.
    [249] Bencherif M, Lippiello P M. Alpha7 neuronal nicotinic receptors: the missing link to understanding Alzheimer's etiopathology? Med Hypotheses. 2010, 74(2): 281-285.