聚阴离子型LiMPO_4(M=Fe,Mn)和Li_3V_2(PO_4)_3锂离子电池正极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池以其高的比能量、无环境污染、循环使用寿命长以及无记忆效应等诸多优点而受到了人们的广泛关注。目前,它已经普遍应用在我们生活的方方面面,比如手机、笔记本电脑、数码相机以及作为太阳能、风能等的储备电源及储能装置等。锂离子电池的负极材料通常采用石墨材料,已获得很大的进展,而正极材料已成为制约电池性能和价格的重要因素。1997年,Goodenough等首次报道了基于LiFePO_4的锂离子电池正极材料,因为其具有非常好的结构稳定性、高的安全性能以及优异的循环性能,LiFePO_4材料引起了广大科学工作者的高度重视。随后,又陆续涌现出一系列聚阴离子型锂离子电池正极材料,如LiMnPO_4、Li_3V_2(PO_4)_3、Li_2MnSiO_4和Li_2FeSiO_4等。其中LiFePO_4、LiMnPO_4和Li_3V_2(PO_4)_3以其较高的比能量而被认为是理想的动力电池正极材料。但是低的电子电导率和锂离子扩散系数等缺点极大地限制了它们的电化学性能。在本论文中,我们以改善LiFePO_4、LiMnPO_4和Li_3V_2(PO_4)_3的电化学性能为目的对其进行了研究。
     首先,我们以酚醛树脂为碳源、六次甲基四胺为均匀沉淀剂,通过原位聚合限制法合成了LiFePO_4/C复合材料,并讨论了不同的烧结温度对其电化学性能的影响。基本原理是六次甲基四胺在酸性条件下水解生成甲醛和铵根离子。这一方面升高了溶液的pH值,利于磷酸铁沉淀的生成;另一方面,水解生成的甲醛可作为酚醛树脂的原材料。同时,酚醛树脂在惰性气氛下裂解生成的碳有助于提高材料表面的电子电导率。通过X-射线衍射和拉曼光谱分析了材料的结构,并分析了烧结温度对其结构的影响;采用热重分析计算了复合材料中碳的含量;通过扫描电子显微镜和透射电子显微镜观察了材料的形貌和颗粒尺寸;通过循环伏安和充放电性能测试分析了材料结构的稳定性和电化学性能。电化学结果表明,当烧结温度为750°C时,所得的LiFePO_4/C复合材料具有最佳的倍率性能和循环性能。10C,20C和50C倍率下,初始放电容量分别为115.6、84.5和67.8mAh/g。电极循环1000次以后,容量的保持率分别为89.5%,90.9%和85.7%。
     然后,我们采用一种更为简便的方法来合成LiFePO_4/C复合材料。在酸性条件或者加热状态下,糠醇能够发生聚合反应生成聚糠醇。借助于这个聚合过程,我们采用原位聚合限制法制备出LiFePO_4/C复合材料,并讨论了不同的烧结温度对其电化学性能的影响。通过XRD和Raman图谱分析了材料的结构,并分析了烧结温度对其结构的影响;通过SEM和TEM观察了材料的形貌和颗粒尺寸大小;通过循环伏安和充放电性能测试分析了材料的结构稳定性和电化学性能。电化学性能测试得知,在0.5C倍率下材料初始的放电容量为156.1mAh/g,循环50次以后容量仍能达到145.2mAh/g。在5C,10C,20C和50C倍率下循环500次以后,容量的保持率分别为94.4%,90.6%,87.8%和90.9%。
     再者,我们采用一种碳凝胶方法制备了LiFe_(0.4)Mn_(0.6)PO_4/C复合材料。借助于碳凝胶的过程,使得所有的离子均匀分布在碳凝胶中,达到了分子级别的混合,有利于LiFe_(0.4)Mn_(0.6)PO_4的制备。同时Fe~(2+)的掺杂降低了Mn的含量,有助于提高材料的结构稳定性。碳凝胶裂解产生的碳能够改善材料的电子电导率。电化学结果表明,10C时首次放电容量为64.6mAh/g,循环1000次后放电容量为53.8mAh/g。
     最后,我们利用燃烧法合成了Li_3V_2(PO_4)_3/C复合材料。采用X射线衍射和Raman光谱分析了材料的结构;通过SEM和TEM观察了材料的形貌、颗粒尺寸和表面包覆碳层的厚度;通过恒流充放电性能测试深入分析了不同碳含量和烧结温度对其电化学性能的影响。充放电性能测试表明适宜的碳含量和烧结温度对材料的电化学性能有着重要影响。
     总之,通过本文一系列的研究,我们对LiFePO_4、LiMnPO_4和Li_3V_2(PO_4)_3的结构特征、存在的问题以及电化学性能等有了更深入的认识,为上述材料的实际应用提供了一定的理论基础以及合成指导。
Lithium-ion batteries have attracted extensive attention due to the superiorenergy density, environmental benignity, outstanding cycling performance and nomemory effect, etc. At present, it has been widely used in every aspect of our lives,such as cell phones, laptop computers, digital cameras, and energy storage devices forsolar and wind electricity generation. Usually, the used anode materials of lithium ionbatteries are graphite, and cathode materials have become the important factor for theproperties and price of Li-ion batteries. In1997, Goodenough et al. proposed LiFePO_4as cathode material due to its good structure stability, high safety and excellentcycling performance. Since then, some polyanion materials have been investigated toimprove the electrochemical performance, such as LiMnPO_4, Li_3V_2(PO_4)_3, Li_2MnSiO_4,Li_2FeSiO_4and so on. Among them, LiFePO_4, LiMnPO_4and Li_3V_2(PO_4)_3have highenergy density, and both of them are considered ideal cathode materials of powerbatteries. However, the electrochemical performance is greatly limited by the poorelectronic conductivity and low lithium ion diffusivity. Therefore, this thesis isdevoted to improve the electrochemical performances of the LiFePO_4, LiMnPO_4andLi_3V_2(PO_4)_3materials.
     Firstly, the LiFePO_4/C composite was prepared by an in situ polymerizationrestriction method using resorcinol-formaldehyde (RF) gel as carbon source andhexamethylenetetramine as potential precipitant, and we also discussed the effect ofvarious calcination temperatures for the electrochemical performance of LiFePO_4/C.It is known that hexamethylenetetramine can be cleaved to give formaldehyde andammonium ions under acidic conditions. On the one hand, the pH value of thesolution increases and facilitates the formation of FePO4precipitation; on the other hand, formaldehyde, formed in situ, as one reactant for the raw material of theresorcinol-formaldehyde gel. The residual carbon from the pyrolysis of RF gel caneffectively increase the electron conduction. We studied the structure properties of thematerial using XRD and Raman, and we also discussed the effect of variouscalcination temperatures for the structure of LiFePO_4/C. The carbon content of theLiFePO_4/C was determined by thermogravimetric analysis, and the morphology andparticle size were observed through SEM and TEM. Then we studied the structurestability and electrochemical properties of the material by galvanostaticcharge/discharge tests and cyclic voltammetry (CV). Electrochemical test indicatedthat the obtained LiFePO_4/C at750°C delivered better electrochemical properties.Even at the high rates of10C,20C and50C, the initial discharge capacities of theelectrodes exhibited115.6mAh/g,84.5mAh/g and67.8mAh/g, and the electrodesdelivered capacity retention of89.5%,90.9%and85.7%after1000cycles,respectively.
     Then, we developed a more convenient method for the synthesis of LiFePO_4/Ccomposite. Poly(furfuryl alcohol)(PFA) can be easily obtained from FA by heating oracidic catalysis. The mixture of poly(furfuryl alcohol) and FePO4was preparedthrough the polymerization of furfuryl alcohol under heating and acidic conditions.The LiFePO_4/C composite was synthesized by an in situ polymerization restrictionmethod, and we also discussed the effect of various calcination temperatures for theelectrochemical performance. We studied the structure properties of the material usingvaries techniques including XRD, Raman, SEM and TEM. Then we studied theelectrochemical properties of the material by galvanostatic charge/discharge tests andcyclic voltammetry (CV). The material delivered a high discharge capacity of156.1mAh/g in the first cycle at0.5C, and it remained145.2mAh/g after50cycles. Thedischarge capacity retention of sample after500cycles was94.4%,90.6%,87.8%and90.9%at rates of5C,10C,20C and50C, respectively.
     Thirdly, the LiFe_(0.4)Mn_(0.6)PO_4/C composite was prepared via a carbon gel process.The carbon gel process between resorcinol and formaldehyde can ensure themolecular-level homogeneity of the chemical product, and the doping of Fe~(2+)can improve the structure stability of the material. The produced carbon can effectivelyimprove the electronic conductivity. The initial discharge capacity of the electrodewas64.6mAh/g, and it remained53.8mAh/g after1000cycles.
     Finally, The Li_3V_2(PO_4)_3/C composites were prepared by a combustion method.The structure properties of the material were studied by XRD, Raman, SEM and TEM.It was discussed that the effects of the content of carbon and synthesis temperature forthe electrochemical performances of the Li_3V_2(PO_4)_3/C composites by galvanostaticcharge/discharge tests. The results showed that a suitable carbon content andcalcination temperature had an important influence for the electrochemical propertiesof the material.
     In short, these works give us the understanding in depth on the structure of LiFePO_4,LiMnPO_4and Li_3V_2(PO_4)_3materials, as well as their existing problems andelectrochemical properties, and the theoretical and technical guidance for the practicalapplication of the materials.
引文
[1]吴宇平,戴晓兵,马军旗,等.锂离子电池─应用与实践[M].北京:化学工业出版社,2004.
    [2]桂长清.风能和太阳能发电系统中的储能电池[J].电池工业,2008,13:50-54.
    [3]吴锋.绿色二次电池材料的研究进展[J].中国材料进展,2009,28:41-47.
    [4] Tarascon J M, Armand M. Issues and challenges facing recharge lithiumbattteries [J]. Nature,2001,414:359-367.
    [5] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0x≤1): A NEWCATHODE MATERIAL FOR BATTERIE OF HIGH ENERGY DENSITY [J].Materials Research Bulletin,1980,15:783-789.
    [6]黄彦瑜.锂电池发展简史[J].物理学史和物理学家,2007,36:643-651.
    [7]戴永年,杨斌,姚耀春,等.锂离子电池的发展状况[J].电池,2005,35:193-195.
    [8] Goodenough J B, Park K S. The Li-Ion Recharge Battery: A Perspective [J].Journal of the American Chemical Society,2013,135:1167-1176.
    [9] Xu B, Qian D, Wang Z, et al. Recent progress in cathode materials research foradvanced lithium ion battery [J]. Materials Science and Engineering R,2012,73:51-65.
    [10] Kim S H, Kim C S. Improving the rate performance of LiCoO2by Zr doping [J].Journal of Electroceramics,2009,23:254-257.
    [11] Stoyanova R, Barra A L, Yoncheva M, et al. High-Frequency ElectronParamagnetic Resonance Analysis of the Oxidation State and Local Structure ofNi and Mn Ions in Ni, Mn-Codoped LiCoO2[J]. Inorganic Chemistry,2010,49:1932-1941.
    [12] Nobili F, Croce F, Tossici R, et al. Sol-gel synthesis and electrochemicalcharacterization of Mg-/Zr-doped LiCoO2cathodes for Li-ion batteries [J].Journal of Power Sources,2012,197:276-284.
    [13] Needham S A, Wang G X, Liu H K, et al. Synthesis and electrochemicalperformance of doped LiCoO2materials [J]. Journal of Power Sources,2007,174:828-831.
    [14] Ghosh P, Mahanty S, Basu R N. Lanthanum-doped LiCoO2cathode with highrate capability [J]. Electrochimica Acta,2009,54:1654-1661.
    [15] Shi S, Ouyang C, Lei M, et al. Effect of Mg-doping on the structural andelectronic properties of LiCoO2: A first-principles investigation [J]. Journal ofPower Sources,2007,171:908-912.
    [16] Gonzalo E C, Moran E, Parada C, et al. Microwave-assisted synthesis ofLiCoO2and LiCo1xGaxO2: Structural features, magnetism and electrochemicalcharacterization [J]. Materials Chemistry and Physics,2010,121:484-488.
    [17] Yu J, Han Z, Hu X, et al. Solid-state synthesis of LiCoO2/LiCo0.99Ti0.01O2composite as cathode material for lithium ion batteries [J]. Journal of PowerSources,2013,225:34-39.
    [18] Rao M C, Hussain O M. Synthesis and electrochemical properties of Ti dopedLiCoO2thin film cathodes [J]. Journal of Alloys and Compounds,2010,491:503-506.
    [19] Hao Q, Ma H, Ju Z, et al. Nano-CuO coated LiCoO2: Synthesis, improvedcycling stability and good performance at high rates [J]. Electrochimica Acta,2011,56:9027-9031.
    [20] Kosova N, Devyatkina E, Slobodyuk A, et al. Surface chemistry study ofLiCoO2coated with alumina [J]. Solid State Ionics,2008,179:1745-1749.
    [21] Hwang B J, Chen C Y, Cheng M Y, et al. Mechanism study of enhancedelectrochemical performance of ZrO2-coated LiCoO2in high voltage region [J].Journal of Power Sources,2010,195:4255-4265.
    [22] Chen J M, Cho Y D, Hsiao C L, et al. Electrochemical studies on LiCoO2surface coated with Y3Al5O12for lithium-ion cells [J]. Journal of Power Sources,2009,189:279-287.
    [23] Yi T F, Shu J, Yue C B, et al. Enhanced cycling stability of microsized LiCoO2cathode by Li4Ti5O12coating for lithium ion battery [J]. Materials ResearchBulletin,2010,45:456-459.
    [24] Sun Y K, Cho S W, Myung S T, et al. Effect of AlF3coating amount on highvoltage cycling performance of LiCoO2[J]. Electrochimica Acta,2007,53:1013-1019.
    [25] Yang Z, Qiao Q, Yang W. Improvement of structural and electrochemicalproperties of commercial LiCoO2by coating with LaF3[J]. Electrochimica Acta,2011,56:4791-4796.
    [26] Sakuda A, Hayashi A, Tatsumisago M. Electrochemical performance ofall-solid-state lithium secondary batteries improved by the coating of Li2O-TiO2films on LiCoO2electrode [J]. Journal of Power Sources,2010,195:599-603.
    [27] Liu G Q, Kuo H T, Liu R S, et al. Study of electrochemical properties of coatingZrO2on LiCoO2[J]. Journal of Alloys and Compounds,2010,496:512-516.
    [28] Jeong S, Park S, Cho J. High-Performance, Layered,3D-LiCoO2Cathodes witha Nanoscale Co3O4Coating via Chemical Etching [J]. Advanced EnergyMaterials,2011,1:368-372.
    [29] Jung E, Park Y J. Suppression of interface reaction of LiCoO2thin films byAl2O3-coating [J]. Journal of Electroceramics,2012,29:23-28.
    [30] Oh Y, Ahn D, Nam S, et al. The effect of Al2O3-coating coverage on theelectrochemical properties in LiCoO2thin films [J]. Journal of Solid StateElectrochemistry,2010,14:1235-1240.
    [31] Song M, Kwon S, Kwon I, et al. Variation of LiNiO2cathode properties withsubstitution of Ga, In and Tl by the combustion method [J]. Journal of AppliedElectrochemistry,2007,37:421-427.
    [32] Kim Y. First principles investigation of the structure and stability of LiNiO2doped with Co and Mn [J]. Journal of Materials Science,2012,47:7558-7563.
    [33] Song M Y, Kwon I, Shim S, et al. Electrochemical characterizations ofFe-substituted LiNiO2synthesized in air by the combustion method [J].Ceramics International,2010,36:1225-1231.
    [34] Chowdari B V R, Subba Rao G V, Chow S Y. Cathodic behavior of (Co, Ti,Mg)-doped LiNiO2[J]. Solid State Ionics,2001,140:55-62.
    [35] Muto S, Tatsumi K, Kojima Y, et al. Effect of Mg-doping on the degradation ofLiNiO2-based cathode materials by combined spectroscopic methods [J].Journal of Power Sources,2012,205:449-455.
    [36] Kim J, Kim B H, Baik Y H, et al. Effect of (Al, Mg) substitution in LiNiO2electrode for lithium batteries [J]. Journal of Power Sources,2006,158:641-645.
    [37] Cui P, Jia Z, Li L, et al. Preparation and characteristics of Sb-doped LiNiO2cathode materials for Li-ion batteries [J]. Journal of Physics and Chemistry ofSolids,2011,72:899-903.
    [38] Guo X, Greenbaum S, Ronci F, et al. X-ray diffraction and7Li nuclear magneticresonance studies of iron-and cobalt-substituted LiNiO2prepared frominorganic transition metal nitrates [J]. Solid State Ionics,2004,168:37-49.
    [39] Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, et al. Influence of Mg dopingon the performance of LiNiO2matrix ceramic nanoparticles in high-voltagelithium-ion cells [J]. Journal of Power Sources,2007,171:922-927.
    [40] Kim H U, Song J, Mumn D R, et al. Effects of Zn or Ti substitution for Ni onthe electrochemical properties of LiNiO2[J]. Ceramics International,2011,37:779-782.
    [41] Cho G, Choe H, Kim B, et al. Electrochemical and mechanical properties ofsuperelastic electrode consisting of Ti substitute LiNiO2film on Ti-50Ni alloy[J]. Journal of Alloys and Compounds,2009,488:L17-L20.
    [42] Cho J, Kim T J, Kim Y J, et al. High-Performance ZrO2-Coated LiNiO2CathodeMaterial [J]. Electrochemical and Solid-State Letters,2001,4:A159-A161.
    [43] Zhecheva E, Stoyanova R, Tyuliev G, et al. Surface interaction of LiNi0.8Co0.2O2cathodes with MgO [J]. Solid State Sciences,2003,5:711-720.
    [44] Kweon H J, Kim S J, Park D G. Modification of LixNi1-yCoyO2by applying asurface coating of MgO [J]. Journal of Power Sources,2000,88:255-261.
    [45] Deng X, Hu G, Du K, et al. Synthesis and electrochemical properties of Co,Mn-coated LiNiO2lithium-ion battery cathode materials [J]. MaterialsChemistry and Physics,2008,109:469-474.
    [46] Ryu K S, Lee S H, Koo B K, et al. Effects of Co3(PO4)2coatings onLiNi0.8Co0.16Al0.04O2cathodes during application of high current [J]. Journal ofApplied Electrochemistry,2008,38:1385-1390.
    [47] Periasamy P, Kalaiselvi N. Electrochemical performance behavior ofcombustion-synthesized LiNi0.5Mn0.5O2lithium-intercalation cathodes [J].Journal of Power Sources,2006,159:1360-1364.
    [48] Shi S J, Tu J P, Tang Y Y, et al. Enhanced electrochemical performance ofLiF-modified LiNi1/3Co1/3Mn1/3O2cathode materials for Li-ion batteries [J].Journal of Power Sources,2013,225:338-346.
    [49] Yoo K S, Cho N W, Oh Y J. Structural and electrical characterization ofLi(Mn1-Ti)2O4electrode materials [J]. Solid State Ionics,1998,113-115:43-49.
    [50] Wan C, Cheng M, Wu D. Synthesis of spherical spinel LiMn2O4withcommercial manganese carbonate [J]. Powder Technology,2011,210:47-51.
    [51] Nakayama M, Watanabe K, Ikuta H, et al. Grain size control of LiMn2O4cathode material using microwave synthesis method [J]. Solid State Ionics,2003,164:35-42.
    [52] Sinha N N, Munichandraiah N. Synthesis and characterization of submicronsize particles of LiMn2O4by microemulsion route [J]. Journal of Solid StateElectrochemistry,2008,12:1619-1627.
    [53] Yanna C, Nuli Y, Wu Q, et al. Submicro-sized LiMn2O4prepared by a sol-gel,spray-drying method [J]. Journal of Applied Electrochemistry,2003,33:107-112.
    [54] Yi T F, Hu X G, Dai C S, et al. Effects of different particle sizes onelectrochemical performance of spinel LiMn2O4cathode materials [J]. Journalof Materials Science,2007,42:3825-3830.
    [55] Xiao L, Zhao Y, Yang Y, et al. Enhanced electrochemical stability of Al-dopedLiMn2O4synthesized by a polymer-pyrolysis method [J]. Electrochimica Acta,2008,54:545-550.
    [56] Iturrondobeitia A, Goni A, Palomares V, et al. Effect of doping LiMn2O4spinelwith a tetravalent species such as Si(IV) versus with a trivalent species such asGa(III). Electrochemical, magnetic and ESR study [J]. Journal of PowerSources,2012,216:482-488.
    [57] Balaji S, Manichandran T, Mutharasu D. A comprehensive study on influence ofNd3+substitution on properties of LiMn2O4[J]. Bulletin of Materials Science,2012,35:471-480.
    [58] Ryu W H, Eom J Y, Yin R Z, et al. Synergistic effects of various morphologiesand Al doping of spinel LiMn2O4nanostructures on the electrochemicalperformance of lithium-rechargeable batteries [J]. Journal of MaterialsChemistry,2011,21:15337-15342.
    [59] Kim W K, Han D W, Ryu W H, et al. Al2O3coating on LiMn2O4by electrostaticattraction forces and its effects on the high temperature cyclic performance [J].Electrochimica Acta,2012,71:17-21.
    [60] Cho J. Direct micron-sized LiMn2O4particle coating on LiCoO2cathodematerial using surfactant [J]. Solid State Ionics,2003,160:241-245.
    [61] Qing C, Bai Y, Yang J, et al. Enhanced cycling stability of LiMn2O4cathode byamorphous FePO4coating [J]. Electrochimica Acta,2011,56:6612-6618.
    [62] Gnanaraj J S, Pol V G, Gedanken A, et al. Improving the high-temperatureperformance of LiMn2O4spinel electrodes by coating the active mass withMgO via a sonochemical method [J]. Electrochemistry Communications,2003,5:940-945.
    [63] Lai C, Ye W, Liu H, et al. Preparation of TiO2-coated LiMn2O4by carriertransfer method [J]. Ionics,2009,15:389-392.
    [64] Guan D, Wang Y. Ultrathin surface coatings to enhance cycling stability ofLiMn2O4cathode in lithium-ion batteries [J]. Ionics,2013,19:1-8.
    [65] Wang Y, Wang X, Yang S, et al. Effect of MgF2coating on the electrochemicalperformance of LiMn2O4cathode materials [J]. Journal of Solid StateElectrochemistry,2012,16:2913-2920.
    [66] Chen Q, Wang Y, Zhang T, et al. Electrochemical performance of LaF3-coatedLiMn2O4cathode materials for lithium ion batteries [J]. Electrochimica Acta,2012,83:65-72.
    [67] Liu Y, Tan L, Li L. Tris(trimethylsilyl) borate as an electrolyte additive toimprove the cyclability of LiMn2O4cathode for lithium-ion battery [J]. Journalof Power Sources,2013,221:90-96.
    [68] Fu M H, Huang K L, Liu S Q, et al. Lithium difluoro(oxalato)borate/ethylenecarbonate+propylene carbonate+ethyl(methyl) carbonate electrolyte forLiMn2O4cathode [J]. Journal of Power Sources,2010,195:862-866.
    [69] Kusachi Y, Dong J, Zhang Z, et al. Tri(ethylene glycol)-substitutedtrimethylsilane/lithium bis(oxalate)borate electrolyte for LiMn2O4/graphitesystem [J]. Journal of Power Sources,2011,196:8301-8306.
    [70] Wu X, Li X, Wang Z, et al. Investigation on the storage performance ofLiMn2O4at elevated temperature with the mixture of electrolyte stabilizer [J].Ionics,2012,18:907-911.
    [71] Guo Y, Yin Z, Tao Z, et al. An advanced electrolyte for improving surfacecharacteristics of LiMn2O4electrode [J]. Journal of Power Sources,2008,184:513-516.
    [72] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines asPositive-Electrode Materials for Rechargeable Lithium Batteries [J]. Journal ofThe Electrochemical Society,1997,144:1188-1194.
    [73] Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity improvements tospray-produced LiFePO4by addition of a carbon source [J]. Materials Letters,2004,58:1788-1791.
    [74] Deoff M M, Hu Y, McLarnon F, et al. Effect of Surface Carbon Structure on theElectrochemical Performance of LiFePO4[J]. Electrochemical and Solid-StateLetters,2003,6: A207-A209.
    [75] Huang H, Yin S C, Nazar L F. Approaching Theoretical Capacity of LiFePO4atRoom Temperature at High Rates [J]. Electrochemical and Solid-State Letters,2001,4: A170-A172.
    [76] Franger S, Bourbon C, Le Cras F. Optimized Lithium Iron Phosphate forHigh-Rate Electrochemical Applications [J]. Journal of The ElectrochemicalSociety,2004,151:A1024-A1027.
    [77] Barker J, Saidi M Y, Swoyer J L. Lithium Iron (II) Phospho-olivines Preparedby a Novel Carbothermal Reduction Method [J]. Electrochemical andSolid-State Letters,2003,6: A53-A55.
    [78] Bauer E M, Bellitto C, Pasquali M, et al. Versatile Synthesis of Carbon-RichLiFePO4Enhancing Its Electrochemical Properties [J]. Electrochemical andSolid-State Letters,2004,7:A85-A87.
    [79] Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of aLiFePO4-based composite cathode [J]. Electrochimica Acta,2001,46:3517-3523.
    [80] Croce F, Epifanio A D, Hassoun J, et al. A Novel Concept for the Synthesis ofan Improved LiFePO4Lithium Battery Cathode [J]. Electrochemical andSolid-State Letters,2002,5:A47-A50.
    [81] Park K S, Son J T, Chung H T, et al. Surface modification by silver coating forimproving electrochemical properties of LiFePO4[J]. Solid StateCommunication,2004,129:311-314.
    [82] Lin Y, Lin Y, Zhou T, et al. Enhanced electrochemical performances ofLiFePO4/C by surface modification with Sn nanoparticles [J]. Journal of PowerSources,2013,226:20-26.
    [83] Wang F, Chen J, Wu M, et al. Propylene oxide-assisted fast sol-gel synthesis ofmesoporous and nano-structured LiFePO4/C cathode materials [J]. Ionics,2013,19:451-460.
    [84] Wu L, Zhong S K, Liu J Q, et al. High tap-density and high performanceLiFePO4/C cathode material synthesized by the combined sol spray-drying andliquid nitrogen quenching method [J]. Materials Letters,2012,89:32-35.
    [85] Deng H, Jin S, Zhan L, et al. Synthesis of cage-like LiFePO4/C microspheresfor high performance lithium ion batteries [J]. Journal of Power Sources,2012,220:342-347.
    [86] Weng S, Yang Z, Wang Q, et al. A carbothermal reduction method for enhancingthe electrochemical performance of LiFePO4/C composite cathode materials [J].Ionics,2013,19:235-243.
    [87] Chen W M, Huang Y H, Yuan L X. Self-assembly LiFePO4/polyanilinecomposite cathode materials with inorganic acids as dopants for lithium-ionbatteries [J]. Journal of Electroanalytical Chemistry,2011,660:108-113.
    [88] Chen W M, Qie L, Yuan L X, et al. Insight into the improvement of ratecapability and cyclability in LiFePO4/polyaniline composite cathode [J].Electrochimica Acta,2011,56:2689-2695.
    [89] Lei G, Yi X, Wang L, et al. An investigation of the electrochemical performanceof polyaniline coated LiFePO4materials [J]. Polymers for AdvancedTechnologies,2009,20:576-580.
    [90] Fedorkova A, Orinakova R, Orinak A, et al. Electrochemical and XPS study ofLiFePO4cathode nanocomposite with PPy/PEG conductive network [J]. SolidState Sciences,2012,14:1238-1243.
    [91] Gong Q, He Y S, Yang Y, et al. Synthesis and electrochemical characterizationof LiFePO4/C-polypyrrole composite prepared by a simple chemical vapordeposition method [J]. Journal of Solid State Electrochemistry,2012,16:1383-1388.
    [92] Boyano I, Alberto Blazquez J, Meatza I, et al. Preparation ofC-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potentialsteps electrodeposition [J]. Journal of Power Sources,2010,195:5351-5359.
    [93] Wang G X, Yang L, Chen Y, et al. An investigation of polypyrrole-LiFePO4composite cathode materials for lithium-ion batteries [J].Electrochimica Acta,2005,50:4649-4654.
    [94] Zhou J P, Tu J P, Cheng L J, et al. LiFePO4/Polyacene NanocompositeSynthesized from a Pretreatment of Iron Phosphate: In-situ Polymerization withPhenolic-Formaldehyde Resin [J]. Journal of The Electrochemical Society,2011,158:A1237-1242.
    [95] Bai Y, Qiu P, Wen Z, et al. Improvement of electrochemical performances ofLiFePO4cathode materials by coating of polythiophene [J]. Journal of Alloysand Compounds,2010,508:1-4.
    [96] Zhang H, Xu Y, Zhao C, et al. Effects of carbon coating and metal ions dopingon low temperature electrochemical properties of LiFePO4cathode material [J].Electrochimica Acta,2012,83:341-347.
    [97] Ma Z, Shao G, Wang G, et al. Electrochemical performance of Mo-dopedLiFePO4/C composites prepared by two-step solid-state reaction [J]. Ionics,2013,19:437-443.
    [98] Teng T H, Yang M R, Wu S, et a1. Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spraypyrolysis [J]. SolidState Communications,2007,142:389-392.
    [99] Yang R, Son X, Zhao M, et a1. Characteristics of Li0.98Cu0.01FePO4preparedfrom improved co-precipitation [J]. Journal of Alloys and Compounds,2009,468:365-369.
    [100] Liu Q, Liu Z, Xiao G, et al. Enhancement of capacity at high charge/dischargerate and cyclic stability of LiFePO4/C by nickel doping [J]. Ionics,2013,19:445-450.
    [101] Yang M R, Ke W H. The Doping Effect on the Electrochemical Properties ofLiFe0.95M0.05PO4(M=Mg2+, Ni2+, Al3+, or V3+) as Cathode Materials forLithium-Ion Cells [J]. Journal of The Electrochemical Society,2008,155:A729-A732.
    [102] Kang B, Ceder G. Battery materials for ultrafast charging and discharging [J].Nature,2009,458:190-193.
    [103] Gibot P, Casas-Cabanas M, Laffont L, et al. Room-temperature single-phase Liinsertion/extraction in nanoscale LixFePO4[J]. Nature Materials,2008,7:741–747.
    [104] Meligrana G, Gerbaldi C, Tuel A, et al. Hydrothermal synthesis of high surfaceLiFePO4powders as cathode for Li-ion cells [J]. Journal of Power Sources,2006,160:516-522.
    [105] Wei W, Chen D, Wang R, et al. Hierarchical LiFePO4/C microspheres with hightap density assembled by nanosheets as cathode materials for high-performanceLi-ion batteries [J]. Nanotechnology,2012,23:475401.
    [106] Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructuredLiFePO4for high rate Li-ion batteries [J]. Journal of Power Sources,2007,163:1064-1069.
    [107] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of Structure on theFe3+/Fe2+Redox Couple in Iron Phosphates [J]. Journal of The ElectrochemicalSociety,1997,144:1609-1613.
    [108] Herstedt M, Stjerndahl M, Nyten A, et al. Surface Chemistry of Carbon-TreatedLiFePO4Particles for Li-Ion Battery Cathode Studies by PES [J].Electrochemical and Solid-State Letters,2003,6:A202-A206.
    [109]庞文琴.无机合成[M].北京:高等教育出版社,1991.
    [110] Yang S, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of lithium ironphosphates cathodes [J]. Electrochemistry Communications,2001,3:505-508.
    [111] Meligrana G, Gerbaldi C, Tuelb A, et al. Hydrothermal synthesis of high surfaceLiFePO4powders as cathode for Li-ion cells [J]. Journal of Power Sources,2006,160:516-522.
    [112]杨南如,余桂郁.溶胶-凝胶法的基本原理与过程[J].硅酸盐通报,1992,2:56-63.
    [113] Yang J, Xu J J. Nonaqueous sol-gel synthesis of high-performance LiFePO4[J].Electrochemical and Solid-State Letters,2004,7:A515-A518.
    [114] Peng W, Jiao L, Gao H, et al. A novel sol-gel method based on FePO4·2H2O tosynthesize submicrometer structured LiFePO4/C cathode material [J]. Journal ofPower Sources,2011,196:2841-2847.
    [115] Yu F, Zhang J, Yang Y, et al. Porous micro-spherical aggregates of LiFePO4/Cnanocomposites: A novel and simple template-free concept and synthesis viasol-gel spray drying method [J]. Journal of Power Sources,2010,195:6873-6878.
    [116] Guo X F, Zhan H, Zhou Y H. Rapid synthesis of LiFePO4/C composite bymicrowave method [J]. Solid State Ionics,2009,180:386-391.
    [117] Bilecka I, Hintennach A, Rossell M D, et al. Microwave-assisted solutionsynthesis of doped LiFePO4with high specific charge and outstanding cyclingperformance [J]. Journal of Materials Chemistry,2011,21:5881-5890.
    [118] Liu Y, Cao C. Enhanced electrochemical performance of nano-sized LiFePO4/Csynthesized by an ultrasonic-assisted co-precipitation method [J].Electrochimica Acta,2010,55:4694-4699.
    [119] Gu N, He X, Li Y. LiFePO4@C cathode materials synthesized fromFePO4@PAn composites [J]. Materials Letters,2012,81:115-118.
    [120] Park K S, Kang K T, Lee S B, et a1. Synthesis of LiFePO4with fine particle byco-precipitation method [J]. Materials Research Bulletin,2004,39:1803-1810.
    [121] Myung S T, Komaba S, Hirosaki N, et a1. Emulsion drying synthesisof olivineLiFePO4/C composite and its electrochemical properties as lithium intercalationmaterial [J]. Electrochimica Acta,2004,49:4213-4222.
    [122] Sides C R, Croce F, Young V Y, et a1. A High-Rate, NanocompositeLiFePO4/Carbon Cathode [J]. Electrochemical and Solid-State Letters,2005,8:A484-A487.
    [123] Lu J, Tang Z, Zhang Z, et a1. Preparation of LiFePO4with inverse opalstructure and its satisfactory electrochemical properties [J]. Materials ResearchBulletin,2005,40:2039-2046.
    [124] Saravanan K, Ramar V, Balaya P, et al. Li(MnxFe1-x)PO4/C (x=0.5,0.75and1)nanoplates for lithium storage application [J]. Journal of Materials Chemistry,2011,21:14925-14935.
    [125] Yoshida J, Stark M, Holzbock J, et al. Analysis of the size effect of LiMnPO4particles on the battery properties by using STEM-EELS [J]. Journal of PowerSources,2013,226:122-126.
    [126] Ni J, Gao L. Effect of copper doping on LiMnPO4prepared via hydrothermalroute [J]. Journal of Power Sources,2011,196:6498-6501.
    [127] Bakenov Z, Taniguchi I. Physical and electrochemical properties of LiMnPO4/Ccomposite cathode prepared with different conductive carbons [J]. Journal ofPower Sources,2010,195:7445-7451.
    [128] Fang H, Yi H, Hu C, et al. Effect of Zn doping on the performance of LiMnPO4cathode for lithium ion batteries [J]. Electrochimica Acta,2012,71:266-269.
    [129] Bakenov Z, Taniguchi I. Synthesis of spherical LiMnPO4/C compositemicroparticles [J]. Materials Research Bulletin,2011,46:1311-1314.
    [130] Wang D, Buqa H, Crouzet M, et al. High-performance, nano-structuredLiMnPO4synthesized via a polyol method [J]. Journal of Power Sources,2009,189:624-628.
    [131] Okada S, Sawa S, Egashira M, et al. Cathode properties of phosphor-olivineLiMnPO4for lithium secondary batteries [J]. Journal of Power Sources,2001,97-98:430-432.
    [132] Huang H, Yin S C, Kerr T, et al. Nanostructured Composite: A High Capacity,Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium batteries [J].Advanced Materials,2002,14:1525-1528.
    [133]张露露.锂离子电池正极材料磷酸钒锂及其改性研究[D].武汉:华中科技大学材料科学与工程学院,2012.
    [134] Ren M M, Zhou Z, Gao X P, et al. Core-Shell Li3V2(PO4)3@C Composites asCathode Materials for Lithium-Ion Batteries [J]. The Journal of PhysicalChemisty C,2008,112:5689-5693.
    [135] Pan A, Choi D, Zhang J G, et al. High-rate cathodes based on Li3V2(PO4)3nanobelts prepared via surfactant-assisted fabrication [J]. Journal of PowerSources,2011,196:3646-3649.
    [136] Liu H, Cheng C, Huang X, et al. Hydrothermal synthesis and rate capacitystudies of Li3V2(PO4)3nanorods as cathode material for lithium-ion batteries [J].Electrochimica Acta,2010,55:8461-8465.
    [137] Qiao Y Q, Wang X L, Mai Y J, et al. Synthesis of plate-like Li3V2(PO4)3/C as acathode material for Li-ion batteries [J]. Journal of Power Sources,2011,196:8706-8709.
    [138] Qiao Y Q, Wang X L, Xiang J Y, et al. Electrochemical performance ofLi3V2(PO4)3/C cathode materials using stearic acid as a carbon source [J].Electrochimica Acta,2011,56:2269-2275.
    [139] Qiao Y Q, Tu J P, Xiang J Y, et al. Effects of synthetic route on structure andelectrochemical performance of Li3V2(PO4)3/C cathode materials [J].Electrochimica Acta,2011,56:4139-4145.
    [140] Qiao Y Q, Tu J P, Wang X L, et al. The low and high temperatureelectrochemical performances of Li3V2(PO4)3/C cathode material for Li-ionbatteries [J]. Journal of Power Sources,2012,199:287-292.
    [141] Sun C, Rajasekhara S, Dong Y, et al. Hydrothermal Synthesis andElectrochemical Properties of Li3V2(PO4)3/C-Based Composites forLithium-Ion Batteries [J]. Applied Materials and Interfaces,2011,3:3772-3776.
    [142] Dai C, Chen Z, Jin H, et al. Synthesis and performance of Li3(V1xMgx)2(PO4)3cathode materials [J]. Journal of Power Sources,2010,195:5775-5779.
    [143] Cho A R, Son J N, Aravindan V, et al. Carbon supported, Al doped-Li3V2(PO4)3as a high rate cathode material for lithium-ion batteries [J]. Journal of MaterialsChemistry,2012,22:6556-6560.
    [1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines asPositive-Electrode Materials for Rechargeable Lithium Batteries [J]. Journal ofThe Electrochemical Society,1997,144:1188-1194.
    [2] Wang G, Liu H, Liu J, et al. Mesoporous LiFePO4/C Nanocomposite CathodeMaterials for High Power Lithium Ion Batteries with Superior Performance [J].Advanced Materials,2010,22:4944-4948.
    [3] Yin Y, Gao M, Ding J, et al. A carbon-free LiFePO4cathode material ofhigh-rate capability prepared by a mechanical activation method [J]. Journal ofAlloys and Compounds,2011,509:10161-10166.
    [4] Wang Q, Deng S X, Wang H, et al. Hydrothermal synthesis of hierarchicalLiFePO4microspheres for lithium ion battery [J]. Journal of Alloys andCompounds,2013,553:69-74.
    [5] Lee J, Kumar P, Lee J, et al. ZnO incorporated LiFePO4for high rateelectrochemical performance in lithium ion rechargeable batteries [J]. Journal ofAlloys and Compounds,2013,550:536-544.
    [6] Chen M, Du C, Song B, et al. High-performance LiFePO4cathode material fromFePO4microspheres with carbon nanotube networks embedded for lithium ionbatteries [J]. Journal of Power Sources,2013,223:100-106.
    [7] Trinh N D, Saulnier M, Lepage D, et al. Conductive polymer film supportingLiFePO4as composite cathode for lithium ion batteries [J]. Journal of PowerSources,2013,221:284-289.
    [8] Cheng F, Wang S, Lu A H, et al. Immobilization of nanosized LiFePO4spheresby3D coralloid carbon structure with large pore volume and thin walls for highpower lithium-ion batteries [J]. Journal of Power Sources,2013,229:249-257.
    [9] Konarova M, Taniguchi I. Synthesis of carbon-coated LiFePO4nanoparticleswith high rate performance in lithium secondary batteries [J]. Journal of PowerSources,2010,195:3661-3667.
    [10] Toprakci O, Ji L, Lin Z, et al. Fabrication and electrochemical characteristics ofelectrospun LiFePO4/carbon composite fibers for lithium-ion batteries [J].Journal of Power Sources,2011,196:7692-7699.
    [11] Chang Z R, Lv H Z, Tang H, et al. Synthesis and performance of high tap densityLiFePO4/C cathode materials doped with copper ions [J]. Journal of Alloys andCompounds,2010,501:14-17.
    [12] Shu H, Wang X, Wen W, et al. Effective enhancement of electrochemicalproperties for LiFePO4/C cathode materials by Na and Ti co-doping [J].Electrochimica Acta,2013,89:479-487.
    [13] Zhao R, Hung I M, Li Y T, et al. Synthesis and properties of Co-doped LiFePO4as cathode material via a hydrothermal route for lithium-ion batteries [J]. Journalof Alloys and Compounds,2012,513:282-288.
    [14] Bilecka I, Hintennach A, Rossell M D, et al. Microwave-assisted solutionsynthesis of doped LiFePO4with high specific charge and outstanding cyclingperformance [J]. Journal of Materials Chemistry,2011,21:5881-5890.
    [15] Palomares V, Go i A, Gil de Muro I, et al. Conductive additive content balancein Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon fromLiFePO4/C composites [J]. Journal of Power Sources,2010,195:7661-7668.
    [16] Jiang Z Q, Jiang Z J. Effects of carbon content on the electrochemicalperformance of LiFePO4/C core/shell nanocomposites fabricated usingFePO4/polyaniline as an iron source [J]. Journal of Alloys and Compounds,2012,537:308-317.
    [17] Konarova M, Taniguchi I. Preparation of LiFePO4/C composite powders byultrasonic spray pyrolysis followed by heat treatment and their electrochemicalproperties [J]. Materials Research Bulletin,2008,43:3305-3317.
    [18] Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructuredLiFePO4for high rate Li-ion batteries [J]. Journal of Power Sources,2007,163:1064-1069.
    [19] Wang D, Li H, Shi S, et al. Improving the rate performance of LiFePO4byFe-site doping [J]. Electrochimica Acta,2005,50:2955-2958.
    [20] Cho Y D, Fey G T K, Kao H M. The effect of carbon coating thickness on thecapacity of LiFePO4/C composite cathodes [J]. Journal of Power Sources,2009,189:256-262.
    [21] Zhang D, Yu X, Wang, Y, et al. Ballmilling-Assisted Synthesis andElectrochemical Performance of LiFePO4/C for Lithium-Ion Battery AdoptingCitric Acid as Carbon Precursor [J]. Journal of The Electrochemical Society,2009,156:A802-A808.
    [22] Liu D, Lei J H, Guo L P, et al. Simple hydrothermal synthesis of orderedmesoporous carbons from resorcinol and hexamine [J]. Carbon,2011,49:2113-2119.
    [23] Wang L, Liang G C, Ou X Q, et al. Effect of synthesis temperature on theproperties of LiFePO4/C composites prepared by carbothermal reduction [J].Journal of Power Sources,2009,189:423-428.
    [24] Wu Y, Wen Z, Li J. Hierarchical Carbon-Coated LiFePO4NanoplateMicrospheres with High Electrochemical Performanc for Li-Ion Batteries [J].Advanced Materials,2011,23:1126-1129.
    [25] Ferrari S, Lavall L R, Capsoni D, et al. Influence of Particle Size and CrystalOrientation on the Electrochemical Behavior of Carbon-Coated LiFePO4[J]. TheJournal of Physical Chemistry C,2010,114:12598-12603.
    [26] Dominko R, Bele M, Gaberscek M, et al. Impact of the Carbon CoatingThickness on the Electrochemical Performance of LiFePO4/C Composites [J].Journal of The Electrochemical Society,2005,152:A607-A610.
    [27] Qian J, Zhou M, Cao Y, et al. Template-Free Hydrothermal Synthesis ofNanoembossed Mesoporous LiFePO4Microspheres for High-PerformanceLithium-Ion Batteries [J]. The Journal of Physical Chemistry C,2010,114:3477-3482.
    [28] Wu X L, Jiang L Y, Cao Y Y, et al. LiFePO4Nanoparticles Embedded in aNanoporous Carbon Matrix: Superior Cathode Material for ElectrochemicalEnergy-Storage Devices [J]. Advanced Materials,2009,21:2710-2714.
    [29] Yi H, Hu C, Fang H, et al. Optimized electrochemical performance ofLiMn0.9Fe0.1xMgxPO4/C for lithium ion batteries [J]. Electrochimica Acta,2011,56:4052-4057.
    [30] Lou X, Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-ratecapability and high tap density for lithium-ion batteries [J]. Journal of MaterialsChemistry,2011,21:4156-4160.
    [31] Zhao J, He J, Zhou J, et al. Facile Synthesis for LiFePO4Nanospheres inTridimensional Porous Carbon Framework for Lithium Ion Batteries [J]. TheJournal of Physical Chemistry C,2010,115:2888-2894.
    [32] Dokko K, Shiraishi K, Kanamura K. Identification of Surface Impurities onLiFePO4Particles Prepared by a Hydrothermal Process [J]. Journal of TheElectrochemical Society,2005,152:A2199-A2202.
    [33] Shiraishi K, Dokko K, Kanamura K. Formation of impurities on phospho-olivineLiFePO4during hydrothermal synthesis [J]. Journal of Power Sources,2005,146:555-558.
    [1] Armand M. The history of polymer electrolytes [J]. Solid State Ionics,1994,69:309-319.
    [2] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines asPositive-Electrode Materials for Rechargeable Lithium Batteries [J]. Journal ofThe Electrochemical Society,1997,144:1188-1194.
    [3] Wang L, Liang G C, Ou X Q, et al. Effect of synthesis temperature on theproperties of LiFePO4/C composites prepared by carbothermal reduction [J].Journal of Power Sources,2009,189:423-428.
    [4] Gaberscek M, Dominko R, Jamnik J. Is small particle size more important thancarbon coating? An example study on LiFePO4cathodes [J]. ElectrochemistryCommunications,2007,9:2778-2783.
    [5] Wang Y, Wang Y, Hosono E, et al. The Design of a LiFePO4/CarbonNanocomposite With a Core-Shell Structure and Its Synthesis by an In SituPolymerization Restriction Method [J]. Angewandte Chemie InternationalEdition,2008,47:7461-7465.
    [6] Qian L, Xia Y, Zhang W, et al. Electrochemical synthesis of mesoporous FePO4nanoparticles for fabricating high performance LiFePO4/C cathode materials [J].Microporous and Mesoporous Materials,2012,152:128-133.
    [7] Dominko R, Bele M, Gaberscek M, et al. Porous olivine composites synthesizedby sol-gel technique [J]. Journal of Power Sources,2006,153:274-280.
    [8] Chen Z, Dahn J R. Reducing Carbon in LiFePO4/C Composite Electrodes toMaximize Specific Energy, Volumetric Energy, and Tap Density [J]. Journal ofThe Electrochemical Society,2002,149:A1184-A1189.
    [9] Konarova M, Taniguchi I. Synthesis of carbon-coated LiFePO4nanoparticleswith high rate performance in lithium secondary batteries [J]. Journal of PowerSources,2010,195:3661-3667.
    [10] Palomares V, Go i A, Gil de Muro I, et al. Conductive additive content balancein Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon fromLiFePO4/C composites [J]. Journal of Power Sources,2010,195:7661-7668.
    [11] Lin Y, Gao M X, Zhu D, et al. Effects of carbon coating and iron phosphides onthe electrochemical properties of LiFePO4/C [J]. Journal of Power Sources,2008,184:444-448.
    [12] Chung S Y, Bloking J, Chiang Y M. Electronically conductive phosphor-olivinesas lithium storage electrodes [J]. Nature Materials,2002, l:123-128.
    [13] Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in ironand nickel olivine phosphates [J]. Nature Materials,2004,3:147-152.
    [14] Wang D, Li H, Shi S, et al. Improving the rate performance of LiFePO4byFe-site doping [J]. Electrochimica Acta,2005,50:2955-2958.
    [15] Xie H M, Wang R S, Ying J R, et al. Optimized LiFePO4-Polyacene CathodeMaterial for Lithium-Ion Batteries [J]. Advanced Materials,2006,18:2609-2613.
    [16] Wang H, Yao J. Use of Poly(furfuryl alcohol) in the Fabrication ofNanostructured Carbons and Nanocomposites [J]. Industrial&EngineeringChemistry Research,2006,45:6393-6404.
    [17] Song C, Wang T, Jiang H, et al. Gas separation performance of C/CMSmembranes derived from poly(furfuryl alcohol)(PFA) with different chemicalstructure [J]. Journal of Membrane Science,2010,361:22-27.
    [18] Nan C, Lu J, Chen C, et al. Solvothermal synthesis of lithium iron phosphatenanoplates [J]. Journal of Materials Chemistry,2011,21:9994-9996.
    [19] Vadivel Murugan A, Muraliganth T, Manthiram A. Rapidmicrowave-solvothermal synthesis of phospho-olivine nanorods and theircoating with a mixed conducting polymer for lithium ion batteries [J].Electrochemistry Communications,2008,10:903-906.
    [20] Kim J K, Cheruvally G, Choi J W, et al. Effect of mechanical activation processparameters on the properties of LiFePO4cathode material [J]. Journal of PowerSources,2007,166:211-218.
    [21] Zaghib K, Mauger A, Gendron F, et al. Surface Effects on the Physical andElectrochemical Properties of Thin LiFePO4Particles [J]. Chemistry of Materials,2008,20:462-469.
    [22] Shin H C, Cho W I, Jang H. Electrochemical properties of carbon-coatedLiFePO4cathode using graphite, carbon black, and acetylene black [J].Electrochimica Acta,2006,52:1472-1476.
    [23] Zhai Y, Zhao D. Organosilane-assisted synthesis of ordered mesoporouspoly(furfuryl alcohol) composites [J]. Journal of Materials Chemistry,2009,19:131-140.
    [24] Gandini A. Can Furfuryl Alcohol Generate Single-Crystalline Nanostructures byThermal Polymerization?[J]. Small,2007,3:196-197.
    [25] Gao F, Lu Q, Pang H, et al. Sandwich-Type Polymer Nanofiber Structure ofPoly(furfuryl Alcohol): An Effective Template for Ordered Porous Films [J]. TheJournal of Physical Chemistry B,2009,113:12477-12481.
    [26] Bertarione S, Bonino F, Cesano F, et al. Micro-FTIR and Micro-Raman Studiesof a Carbon Film Prepared from Furfuryl Alcohol Polymerization [J]. TheJournal of Physical Chemistry B,2009,113:10571-10574.
    [27] Lu C Z, Fey G T K, Kao H M. Study of LiFePO4cathode materials coated withhigh surface area carbon [J]. Journal of Power Sources,2009,189:155-162.
    [28] Qian J, Zhou M, Cao Y, et al. Template-Free Hydrothermal Synthesis ofNanoembossed Mesoporous LiFePO4Microspheres for High-PerformanceLithium-Ion Batteries [J]. The Journal of Physical Chemistry C,2010,114:3477-3482.
    [29] Wu X L, Jiang L Y, Cao F F, et al. LiFePO4Nanoparticles Embedded in aNanoporous Carbon Matrix: Superior Cathode Material for ElectrochemicalEnergy-Storage Devices [J]. Advanced Materials,2009,21:2710-2714.
    [30] Yi H, Hu C, Fang H, et al. Optimized electrochemical performance ofLiMn0.9Fe0.1xMgxPO4/C for lithium ion batteries [J]. Electrochimica Acta,2011,56:4052-4057.
    [31] Lou X, Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-ratecapability and high tap density for lithium-ion batteries [J]. Journal of MaterialsChemistry,2011,21:4156-4160.
    [32] Zhao J, He J, Zhou J, et al. Synthesis of LiFePO4/C cathode materials with bothhigh-rate capability and high tap density for lithium-ion batteries [J]. The Journalof Physical Chemistry C,2011,115:2888-2894.
    [33] Xia Y, Zhang W, Huang H, et al. Self-assembled mesoporous LiFePO4withhierarchical spindle-like architectures for high-performance lithium-ion batteries[J]. Journal of Power Sources,2011,196:5651-5658.
    [1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines asPositive-Electrode Materials for Rechargeable Lithium Batteries [J]. Journal ofThe Electrochemical Society,1997,144:1188-1194.
    [2] Markevich E, Sharabi R, Haik O, et al. Raman spectroscopy of carbon-coatedLiCoPO4and LiFePO4olivines [J]. Journal of Power Sources,2011,196:6433-6439.
    [3] Delacourt C, Poizot P, Levasseur S, et al. Size Effects on Carbon-Free LiFePO4Powders The Key to Superior Energy Density [J]. Electrochemical andSolid-State Letters,2006,9:A352-A355.
    [4] Konarova M, Taniguchi I. Synthesis of carbon-coated LiFePO4nanoparticleswith high rate performance in lithium secondary batteries [J]. Journal of PowerSources,2010,195:3661-3667.
    [5] Toprakci O, Ji L, Lin Z, et al. Fabrication and electrochemical characteristics ofelectrospun LiFePO4/carbon composite fibers for lithium-ion batteries [J].Journal of Power Sources,2011,196:7692-7699.
    [6] Sun L Q, Li M J, Cui R H, et al. The Optimum Nanomicro Structure ofLiFePO4/Ortho-Rich Polyacene Composites [J]. The Journal of PhysicalChemistry C,2010,114:3297-3303.
    [7] Chung S Y, Bloking J T, Chiang Y M. Electronically conductivephospho-olivines as lithium storage electrodes [J]. Nature Materials,2002,1:123-128.
    [8] Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in ironand nickel olivine phosphates [J]. Nature Materials,2004,3:147-152.
    [9] Wang D, Li H, Shi S, et al. Improving the rate performance of LiFePO4byFe-site doping [J]. Electrochimica Acta,2005,50:2955-2958.
    [10] Oh S M, Myung S T, Park J B, et al. Double-Structured LiMn0.85Fe0.15PO4Coordinated with LiFePO4for Rechargeable Lithium Batteries [J]. AngewandteChemie International Edition,2012,51:1853-1856.
    [11] Saravanan K, Ramar V, Balaya P, et al. Li(MnxFe1-x)PO4/C (x=0.5,0.75and1)nanoplates for lithium storage application [J]. Journal of Materials Chemistry,2011,21:14925-14935.
    [12] Wang H, Yang Y, Liang Y, et al. LiMn1-xFexPO4Nanorods Grown on GrapheneSheets for Ultrahigh Rate-Performance Lithium Ion Batteries [J]. AngewandteChemie International Edition,2011,50:7364-7368.
    [13] Martha S K, Grinblat J, Haik O, et al. LiMn0.8Fe0.2PO4: An Advanced CathodeMaterial for Rechargeable Lithium Batteries [J]. Angewandte ChemieInternational Edition,2009,48:8559-8563.
    [14] Wang G X, Yang L, Bewlay S L, et al. Electrochemical properties of carboncoated LiFePO4cathode materials [J]. Journal of Power Sources,2005,146:521-524.
    [15] Lu C Z, Fey G T K, Kao H M. Study of LiFePO4cathode materials coated withhigh surface area carbon [J]. Journal of Power Sources,2009,189:155-162.
    [16] Zhang D, Yu X, Wang Y, et al. Ballmilling-Assisted Synthesis andElectrochemical Performance of LiFePO4/C for Lithium-Ion Battery AdoptingCitric Acid as Carbon Precursor [J]. Journal of The Electrochemical Society,2009,156:A802-A808.
    [17] Wang G, Liu H, Liu J, et al. Mesoporous LiFePO4/C Nanocomposite CathodeMaterials for High Power Lithium Ion Batteries with Superior Performance [J].Advanced Materials,2010,22:4944-4948.
    [1] Rui X H, Ding N, Liu J, et al. Analysis of the chemical diffusion coefficient oflithium ions in Li3V2(PO4)3cathode material [J]. Electrochimica Acta,2010,55:2384-2390.
    [2] Zhang L, Xiang H, Zhong L, et al. Porous Li3V2(PO4)3/C cathode with extremelyhigh-rate capacity prepared by a sol-gel-combustion method for fast chargingand discharging [J]. Journal of Power Sources,2012,203:121-125.
    [3] Qiao Y Q, Tu J P, Wang X L, et al. The low and high temperature electrochemicalperformances of Li3V2(PO4)3/C cathode material for Li-ion batteries [J]. Journalof Power Sources,2012,199:287-292.
    [4] Huang J S, Yang L, Liu K Y. One-pot syntheses of Li3V2(PO4)3/C cathodematerial for lithium ion batteries via ascorbic acid reduction approach [J].Materials Chemistry and Physics,2011,128:470-474.
    [5] Qiao Y Q, Wang X L, Zhou Y, et al. Electrochemical performance ofcarbon-coated Li3V2(PO4)3cathode materials derived from polystyrene-basedcarbon-thermal reduction synthesis [J]. Electrochimica Acta,2010,56:510-516.
    [6] Chang C, Xiang J, Shi X, et al. Hydrothermal synthesis of carbon-coated lithiumvanadium phosphate [J]. Electrochimica Acta,2008,54:623-627.
    [7] Huang H, Yin S C, Kerr T, et al. Nanostructured Composites: A High Capacity,Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries [J].Advanced Materials,2002,14:1525-1528.
    [8] Pan A, Liu J, Zhang J G, et al. Nano-structured Li3V2(PO4)3/carbon composite forhigh-rate lithium-ion batteries [J]. Electrochemistry Communications,2010,12:1674-1677.
    [9] Qiao Y Q, Wang X L, Xiang J Y, et al. Electrochemical performance ofLi3V2(PO4)3/C cathode materials using stearic acid as a carbon source [J].Electrochimica Acta,2011,56:2269-2275.
    [10] Sun C, Rajasekhara S, Dong Y, et al. Hydrothermal Synthesis andElectrochemical Properties of Li3V2(PO4)3/C-Based Composites for Lithium-IonBatteries [J]. Applied Materials and Interfaces,2011,3:3772-3776.
    [11] Qiao Y Q, Tu J P, Xiang J Y, et al. Effects of synthetic route on structure andelectrochemical performance of Li3V2(PO4)3/C cathode materials [J].Electrochimica Acta,2011,56:4139-4145.
    [12] Chen Q, Wang J, Tang Z, et al. Electrochemical performance of the carboncoated Li3V2(PO4)3cathode material synthesized by a sol-gel method [J].Electrochimica Acta,2007,52:5251-5257.
    [13] Huang J S, Yang L, Liu K Y, et al. Synthesis and characterization of Li3V(22x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries [J]. Journal of PowerSources,2010,195:5013-5018.
    [14] Dai C, Chen Z, Jin H, et al. Synthesis and performance of Li3(V1-xMgx)2(PO4)3cathode materials [J]. Journal of Power Sources,2010,195:5775-5779.
    [15] Cho A R, Son J N, Aravindan V, et al. Carbon supported, Al doped-Li3V2(PO4)3as a high rate cathode material for lithium-ion batteries [J]. Journal of MaterialsChemistry,2012,22:6556-6560.
    [16] Yao J, Wei S, Zhang P, et al. Synthesis and properties of Li3V2xCex(PO4)3/Ccathode materials for Li-ion batteries [J]. Journal of Alloys and Compounds,2012,532:49-54.
    [17] Liu H, Bi S, Wen G, et al. Synthesis and electrochemical performance ofSn-doped Li3V2(PO4)3/C cathode material for lithium ion battery by microwavesolid-state technique [J]. Journal of Alloys and Compounds,2012,543:99-104.
    [18] Zhang S, Wu Q, Deng C, et al. Synthesis and characterization of Ti-Mn and Ti-Fecodoped Li3V2(PO4)3as cathode material for lithium ion batteries [J]. Journal ofPower Sources,2012,218:56-64.
    [19] Zheng J C, Li X H, Wang Z X, et al. Li3V2(PO4)3cathode material synthesizedby chemical reduction and lithiation method [J]. Journal of Power Sources,2009,189:476-479.
    [20] Pan A, Choi D, Zhang J G, et al. High-rate cathodes based on Li3V2(PO4)3nanobelts prepared via surfactant-assisted fabrication [J]. Journal of PowerSources,2011,196:3646-3649.
    [21] Qiao Y Q, Wang X L, Mai Y J, et al. Synthesis of plate-like Li3V2(PO4)3/C as acathode material for Li-ion batteries [J]. Journal of Power Sources,2011,196:8706-8709.
    [22] Yuan W, Yan J, Tang Z, et al. Synthesis of Li3V2(PO4)3cathode material via a fastsol-gel method based on spontaneous chemical reactions [J]. Journal of PowerSources,2012,201:301-306.
    [23] Li Y, Zhou Z, Gao X, et al. A promising sol-gel route based on citric acid tosynthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries [J].Electrochimica Acta,2007,52:4922-4926.
    [24] Liu H, Gao P, Fang J, et al. Li3V2(PO4)3/graphene nanocomposites as cathodematerial for lithium ion batteries [J]. Chemical Communications,2011,47:9110-9112.
    [25] Rui X H, Li C, Liu J, et al. The Li3V2(PO4)3/C composites with high-ratecapability prepared by a maltose-based sol-gel route [J]. Electrochimica Acta,2010,55:6761-6767.
    [26] Liu H, Cheng C, Huang X, et al. Hydrothermal synthesis and rate capacitystudies of Li3V2(PO4)3nanorods as cathode material for lithium-ion batteries [J].Electrochimica Acta,2010,55:8461-8465.
    [27] Qiao Y Q, Tu J P, Wang X L, et al. Synthesis and improved electrochemicalperformances of porous Li3V2(PO4)3/C spheres as cathode material forlithium-ion batteries [J]. Journal of Power Sources,2011,196:7715-7720.
    [28] Lou X, Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-ratecapability and high tap density for lithium-ion batteries [J]. Journal of MaterialsChemistry,2011,21:4156-4160.
    [29] Wu X L, Jiang L Y, Cao F F, et al. LiFePO4Nanoparticles Embedded in aNanoporous Carbon Matrix: Superior Cathode Material for ElectrochemicalEnergy-Storage Devices [J]. Advanced Materials,2009,21:2710-2714.
    [30] Yi H, Hu C, Fang H, et al. Optimized electrochemical performance ofLiMn0.9Fe0.1xMgxPO4/C for lithium ion batteries [J]. Electrochimica Acta,2011,56:4052-4057.