低成本高效晶体硅材料及太阳电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能光伏发电是一种重要的绿色可再生能源,具有很好的发展前景,成为国际研究和产业的热点。近10年来,晶体硅太阳电池一直占据太阳能光伏市场的主体地位,约90%的太阳电池由晶体硅制造。因此,高效率和低成本的晶体硅太阳电池成为人们长期追求的目标,而晶体硅中杂质和缺陷以及它们对太阳电池效率的影响则是关键的科学问题。
     围绕低成本高效率太阳电池用硅晶体材料,本文发明了低成本铝硅熔体法制备多晶硅技术,开发了低成本高效铸造准单晶硅晶体生长技术和低翘曲薄片太阳电池制备关键技术,同时对低成本技术制备的多晶硅原料(UMG)和铸造准单晶硅材料等进行了杂质与缺陷方面的系统研究,并对太阳电池制备技术的改进方法阐述了相关机理。本文取得了如下主要的创新结果:
     (1)发明了一种利用铝硅熔体提纯多晶硅原材料的方法。利用铝硅合金较低的共熔点,实现了在较低温度下对金属硅的有效提纯;研究了杂质铝对晶体硅及太阳电池性能的影响,发现杂质铝在硅中会形成深能级缺陷,导致少子寿命的降低,从而引起电池效率的降低:同时指出,含铝的晶体硅太阳电池不存在效率的光致衰减。
     (2)研究了铸造准单晶硅材料及太阳电池的性能。铸造准单晶硅氧含量较低,硼氧复合体缺陷较少,没有晶界,但有较高的位错密度(104~106cm-2);铸造准单晶硅太阳电池效率绝对值比铸造多晶硅电池高1%左右,其中材料因素和反射率因素各占约0.3%和0.7%;同时,与普通掺硼直拉单晶硅相比,铸造准单晶电池的光致衰减要小很多,但电池效率平均低0.5%。
     (3)研究了铸造准单晶硅材料中的主要杂质与缺陷行为和物理机制。研究发现,少量的分散的位错对少子寿命以及电池性能的影响不大,但这种影响随密度的增大而增大,而位错聚集体是一种危害很大的缺陷,它会大幅降低材料的机械和电学性能,严重影响电池效率,并且无法通过电池工艺消除;铸造准单晶硅底部少子寿命低主要因为铁杂质的作用,论文通过实验和模拟计算证实,铸造准单晶硅底部低少子寿命区域的形成是坩埚和氮化硅涂层中铁向硅中扩散以及初始凝固的富铁层向两侧扩散共同作用的结果;铸造准单晶硅中位错对硅中硼氧复合体缺陷具有直接影响,高密度的位错会影响硼氧复合体的形成动力学参数,但对其热力学行为不构成影响,在高密度的硅样品中,硼氧复合体形成激活能为0.57±0.02eV,形成速率常数为1.3×105s-1,比无位错硅中高两个数量级,这是因为位错在p型硅中引入带电价态,从而增加了硼氧复合体形成动力学中瞬态复合中心过程必需的空穴俘获势垒。
     (4)研究了低翘曲薄片太阳电池技术。研究提出了利用金属纳米颗粒催化的新型制绒方法:通过优化银纳米颗粒的大小和制绒时间,在硅表面形成了规则排列的微孔金宇塔结构,实验和理论计算证实了这种结构在全波长段内都具有极低的反射率,但基于常规电池工艺制备的太阳电池效率反而下降,这可能是由于多孔结构造成了严重的表面复合并与扩磷过程不兼容的原因。研究还提出了一种新的铝背场技术,通过调制含硼的铝浆并降低铝浆的印刷厚度,实现了减小电池翘曲和降低碎片率的目的:由于硼在硅中固溶度较铝高,这种在硅片背面形成的掺硼铝背场在同样的烧结温度下,硼铝背场的掺杂浓度可以提高一个数量级,因此在低温烧结(≤800℃)条件下降低了硅片的背复合速率以及硅和铝接触电阻,使电池性能在铝浆厚度变化前后保持不变。
As an important renewable energy, photovoltaics (PV) have a promising future and have caught the eyes of the world. Crystalline silicon solar cell has been dominating the PV market in the past ten years. About90%of solar modules are based on crystalline silicon. As a result, low cost and high efficiency solar cells are the long-term objective and trend while scientific issues related to impurities and defects in silicon and their effects on solar cells are significant.
     Towards low cost high efficiency solar grade crystalline silicon materials, aluminum-silicon melt method for solar grade poly-silicon, cast quasi-single crystalline (QSC) silicon technique and low bowing solar cell process for thin wafers were proposed in the study of this thesis. Based on the material prepared by these methods, systematic researches were carried out on the impurities and defects in silicon. Besides, detailed researches were conducted on the mechanism of solar cell process. In the following are the innovative results of this thesis.
     (1) Aluminum-silicon melt purification process was invented to fabricate solar grade poly-silicon. By means of low eutectic point of aluminum and silicon, metallurgical grade silicon can be effectively purified under a comparatively low temperature. The effect of aluminum in silicon on the performance of silicon and solar cells was also investigated. Aluminum is an active impurity in silicon. It can introduce deep energy level defects in silicon, leading to the reduction of the minority carrier lifetime (MCL) and the solar cell efficiency. In addition, aluminum-containing silicon solar cells have no light-induced degradation (LID) in efficiency.
     (2) The performance of QSC silicon and the corresponding solar cells were studied. It is found that QSC silicon contains fewer oxygen and thus fewer boron-oxygen complex defects. Besides, QSC silicon has better quality, i.e. few grain boundaries (GB) and dislocation density in the range of104~106cm-2. Compared to cast multicrystalline (me) silicon, The absolute efficiency of QSC silicon solar cells is1%higher, to which the material quality aspect and reflection reduction aspect contribute0.3%and0.7%, respectively. Compared to commercial boron-doped Czochralski (CZ)-silicon, QSC silicon has higher productivity but the average efficiency is0.5%lower absolutely but smaller LID in efficiency.
     (3) The behaviors of main impurity and defects in QSC-silicon were studied. It is revealed that small quantities of scattered dislocations have little influence on the MCL and solar cell performance, but the adverse effect aggravates with the increase of dislocation density. The dislocation aggregates is disastrous. It can significantly degrade the mechanical and electrical performance of material, the performance of solar cells, and the recovery capacity of solar cells by fabrication process. The low MCL zone at the bottom of QSC silicon ingot is mainly ascribed to the high concentration of iron in this region. Besides, there are two iron concentration peaks from the bottom, one at the inner face of crucible bottom, and the other occurring at a height of several centimeters above the initial solid-liquid interface. It is revealed by both experiments and simulation that the diffusion of iron into the crystal from both the quartz crucible and the iron-rich layer formed at the initial stage of the whole crystallization process is responsible for the generation of two-peak characteristics. The interactions between defects in QSC silicon were studied. As example, dislocations have direct influence on the boron-oxygen complex defect. It is found that high density dislocation has influence on the kinetics but not dynamics of boron-oxygen complex generation. In the samples with high density dislocations, the activation energy of boron-oxygen complex generation is0.57±0.02eV and the pre-exponential factor is1.3×105s-1, which is two orders of magnitude higher than that of dislocation-free silicon. It is believed that the dislocation-related electronic states charged with holes can cause an energy potential barrier for the capture of single-positive holes that is required for the transformation of B-O complexes from latent centers to immediate transient centers.
     (4) The low bowing solar cell processes for thin wafers were studied. By means of silver nano-particles as catalyst, surface reflection of silicon can be modulated. Both experiments and theoretical analysis have proved that a well-organized microporous structure on the pyramids can be obtained by optimizing the size of Ag nanoparticles and the texturing time, and the silicon wafer with such structures can effectively reduce the reflectivity of sunlight. However, based on the conventional cell fabrication process, the performance of silicon solar cells with such microporous structures gets degraded. It is closely associated with the strong surface recombination and the high phosphorus diffusion barrier induced by the microporous textures. A novel aluminum back surface field (BSF) process has been invented and studied. The reduction of bowing and crack of solar cells is achieved by modulating boron-containing aluminum paste and reducing the paste thickness. This approach can form boron-containing Al-BSF. Due to the higher solid solubility of boron in silicon, the dopant concentration in BSF layer can be increased by one order of magnitude. Therefore, at low firing temperature (≤800℃), the backside recombination velocity of silicon and the contact resistance between silicon and aluminum have been reduced while these is little influence on the solar cell performance.
引文
[1]M.A. Green, A. W. Blakers, J. Shi, E. M. Keller, S. R. Wenham.19.1% Efficient Silicon Solar Cell [J]. Applied Physics Letters,1984,44(12):1163-1164.
    [2]N. Stoddard, B. Wu, I. Witting, M. C. Wagener, Y. Park, G. A. Rozgonyi, R. Clark. Casting Single Crystal Silicon:Novel Defect Profiles from Bp Solar's Mono2 Tm Wafers [J]. Solid State Phenomena,2008,131(0):1-8.
    [3]T. Mishima, M. Taguchi, H. Sakata, E. Maruyama. Development Status of High-Efficiency Hit Solar Cells [J]. Solar Energy Materials and Solar Cells,2011,95(1):18-21.
    [4]B.-R. Wu, D.-S. Wuu, M.-S. Wan, W.-H. Huang, H.-Y. Mao, R.-H. Horng. Fabrication of Nc-Si/C-Si Solar Cells Using Hot-Wire Chemical Vapor Deposition and Laser Annealing [J]. Solar Energy Materials and Solar Cells,2009,93(6-7):993-995.
    [5]Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka. Twenty-Two Percent Efficiency Hit Solar Cell [J]. Solar Energy Materials and Solar Cells,2009,93(6):670-673.
    [6]M. A. Green. Recent Progress in Crystalline and Polycrystalline Silicon Solar Cells [J]. Solar Energy Materials,1991,23(2-4):111-116.
    [7]J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, M. A. Green.24% Efficient Perl Silicon Solar Cell:Recent Improvements in High Efficiency Silicon Cell Research [J]. Solar Energy Materials and Solar Cells,1996,41(1):87-99.
    [8]J. Zhao, A. Wang, M. A. Green.24.5% Efficiency Pert Silicon Solar Cells on Seh Mcz Substrates and Cell Performance on Other Seh Cz and Fz Substrates [J]. Solar Energy Materials and Solar Cells,2001,66(1-4):27-36.
    [9]J. Zhao, A. Wang, M. A. Green.24.5% Efficiency Silicon Pert Cells on Mcz Substrates and 24.7% Efficiency Perl Cells on Fz Substrates [J]. Progress in Photovoltaics:Research and Applications,1999,7(6):471-474.
    [10]C. Schmiga, H. Nagel, J. Schmidt.19% Efficient N-Type Czochralski Silicon Solar Cells with Screen-Printed Aluminium-Alloyed Rear Emitter [J]. Progress in Photovoltaics: Research and Applications,2006,14(6):533-539.
    [11]S. Kluska, F. Granek, M. Rudiger, M. Hermle, S. W. Glunz. Modeling and Optimization Study of Industrial N-Type High-Efficiency Back-Contact Back-Junction Silicon Solar Cells [J]. Solar Energy Materials and Solar Cells.2010,94(3):568-577.
    [12]F. Granek, M. Hermle. D. M. Huljic, O. Schultz-Wittmann. S. W. Glunz. Enhanced Lateral Current Transport Via the Front N+ Diffused Layer of N-Type High-Efficiency Back-Junction Back-Contact Silicon Solar Cells [J]. Progress in Photovoltaics:Research and Applications,2009,17(1):47-56.
    [13]C. Gong, S. Singh, J. Robbelein, N. Posthuma, E. Van Kerschaver, J. Poortmans, R. Mertens. High Efficient N-Type Back-Junction Back-Contact Silicon Solar Cells with Screen-Printed Al-Alloyed Emitter and Effective Emitter Passivation Study [J]. Progress in Photovoltaics:Research and Applications,2011,19(7):781-786.
    [14]C. Reichel, F. Granek, M. Hermle, S. W. Glunz. Back-Contacted Back-Junction N-Type Silicon Solar Cells Featuring an Insulating Thin Film for Decoupling Charge Carrier Collection and Metallization Geometry [J]. Progress in Photovoltaics:Research and Applications,2012, in press.
    [15]M. Hermle, F. Granek, O. Schultz, S. W. Glunz. Analyzing the Effects of Front-Surface Fields on Back-Junction Silicon Solar Cells Using the Charge-Collection Probability and the Reciprocity Theorem [J]. Journal of Applied Physics,2008,103(5):054507.
    [16]R. Bock, S. Mau, J. Schmidt, R. Brendel. Back-Junction Back-Contact N-Type Silicon Solar Cells with Screen-Printed Aluminum-Alloyed Emitter [J]. Applied Physics Letters, 2010,96(26):263507.
    [17]J. Ha, J. Ahn, J. Kim. Selective Emitter Solar Cell:EP,2372773 [P/OL].2011.
    [18]J. Szlufcik, H. E. Elgamel, M. Ghannam, J. Nijs, R. Mcrtens. Simple Integral Screenprinting Process for Selective Emitter Polycrystalline Silicon Solar Cells [J]. Applied Physics Letters,1991,59(13):1583-1584.
    [19]M. Hofmann, S. Janz, C. Schmidt, S. Kambor, D. Suwito. N. Kohn. J. Rentsch, R. Preu, S. W. Glunz. Recent Developments in Rear-Surface Passivation at Fraunhofcr Ise [J]. Solar Energy Materials and Solar Cells,2009,93(6-7):1074-1078.
    [20]D.-Y. Lee, H.-H. Lee, J. Yong Ahn, H. Jung Park, J. H. Kim, H. J. Kwon, J.-W. Jeong. A New Back Surface Passivation Stack for Thin Crystalline Silicon Solar Cells with Screen-Printed Back Contacts [J]. Solar Energy Materials and Solar Cells,2011,95(1): 26-29.
    [21]A. Rohatgi, S. Narasimha. A. U. Ebong, P. Doshi. Understanding and Implementation of Rapid Thermal Technologies for High-Efficiency Silicon Solar Cells [J]. Electron Devices, IEEE Transactions on,1999,46(10):1970-1977.
    [22]J. Hoomstra, S. Roberts, H. de Moor, T. Bruton:Netherlands Energy Research Foundation ECN,1998.
    [23]A. M. S Glunz, M Aleman, P Richter, A Filipovic, G Willekc. New Concepts for the Front Side Metallization of Silicon Solar Ceils; proceedings of the Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany,2006 [C].
    [24]D. Pysch, A. Mette, A. Filipovic, S. W. Glunz. Comprehensive Analysis of Advanced Solar Cell Contacts Consisting of Printed Fine-Line Seed Layers Thickened by Silver Plating [J]. Progress in Photovoltaics:Research and Applications,2009,17(2):101-114.
    [25]M. Ghannam, S. Sivoththaman, J. Poortmans, J. Szlufcik, J. Nijs, R. Mertens, R. Van Overstraeten. Trends in Industrial Silicon Solar Cell Processes [J]. Solar Energy,1997. 59(1-3):101-110.
    [26]P. C. F. Duerickx, G. Beaucarne, R. Young, M. Rose, J. Raby. Improved Screen Printing Process for Very Thin Multicrystalline Silicon Solar Cells; proceedings of the 19th EPVSEC, Paris,2004 [C].
    [27]X. F. Brun, S. N. Melkote. Analysis of Stresses and Breakage of Crystalline Silicon Wafers During Handling and Transport [J]. Solar Energy Materials and Solar Cells,2009,93(8): 1238-1247.
    [28]P. A. Wang. Industrial Challenges for Thin Wafer Manufacturing; proceedings of the Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA,2006 [C].
    [29]A. Luque, S. Hegedus. Handbook of Photovoltaic Science and Engineering [M].3rd ed.: John Wiley & Sons,2005.
    [30]N. Nakamura, M. Abe, K. Hanazawa, H. Baba, N. Yuge, Y. Kato, F. Aratani. Development of Nedo Melt-Purification Process for Solar Grade Silicon and Wafers; proceedings of the Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna,1998 [C].
    [31]T. L. Chu, H. C. Mollenkopf, S. S. Chu. Polycrystalline Silicon on Coated Steel Substrates [J]. Journal of the Electrochemical Society,1975,122(12):1681-1685.
    [32]P. Woditsch, W. Koch. Solar Grade Silicon Feedstock Supply for Pv Industry [J]. Solar Energy Materials and Solar Cells,2002,72(1-4):11-26.
    [33]梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,2(12):34-39.
    [34]汤传斌.粒状多晶硅生产概况[J].稀有稀土金属,2001,3(3):29-31,42.
    [35]N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, F. Aratani. Purification of Metallurgical-Grade Silicon up to Solar Grade [J]. Progress in Photovoltaics:Research and Applications,2001,9(3):203-209.
    [36]E. Enebakk, Tranell, GM., Tronstad, R. A Calcium-Silicate Based Slag for Treatment of Molten Silicon:US,20090274608 [P/OL].2009.
    [37]B. Ryningen, O. Lohne, M. Kondo. Characterization of Solar Grade (Sog) Multicrystalline Silicon Wafers Made from Metallurgically Refined Material; proceedings of the 22nd European Photovoltaic Solar Energy Conference (EU PVSEC), Milan. Italy,2007 [C].
    [38]J. Plummer, M. Deal, P. Griffin. Silicon Vlsi Technology [M].2nd ed.:Prentice Hall, 2008.
    [39]D.0vreb0, Clark, W.G Method and Equipment for Manufacturing Multi-Crystalline Solar Grade Silicon from Metallurgical Silicon:WO,2008026931 [P/OL].2008.
    [40]F. Iwasaki, Y. Matsumura, O. Onomura, K. Tanaka. Process for Preparing Reductants of Unsaturated Organic Compounds by the Use of Trichlorosilane and Reducing Agents:US, 6420613 [P/OL].2002.
    [41]S. Wakamatsu. S. Sugimura, Y. Nakamura, K. Tsujio. Tubular Reaction Vessel and Process for Producing Silicon Therewith:US,7553467 [P/OL].2009.
    [42]K. Saegusa, T. Yamabayashi. Method for Producing High Purity Silicon:US, 20090130015 [P/OL].2009.
    [43]S. C. Shatas, D. A. Rockstraw. System and Methods for Production of Semiconductor and Photovoltaic Grade Silicon:WO,2008042445 [P/OL].2008.
    [44]H. Foil. Electronic Materials [M/OL].2009[Nov 21,2009]. http://www.tf.uni-kiel.de/matwis/amat/elmat_en/index.html.
    [45]K. Bothe, R. Sinton, J. Schmidt. Fundamental Boron-Oxygen-Related Carrier Lifetime Limit in Mono-and Multicrystallinc Silicon [J]. Progress in Photovoltaics:Research and Applications,2005,13(4):287-296.
    [46]T. Saitoh, H. Hashigami, S. Rein, S. Glunz. Overview of Light Degradation Research on Crystalline Silicon Solar Cells [J]. Progress in Photovoltaics:Research and Applications, 2000,8(5):537-547.
    [47]S. W. Glunz, S. Rein, J. Knobloch, W. Wettling, T. Abe. Comparison of Boron-and Gallium-Doped P-Type Czochralski Silicon for Photovoltaic Application [J]. Progress in Photovoltaics:Research and Applications,1999,7(6):463-469.
    [48]H. J. Moller, C. Funke, M. Rinio, S. Scholz. Multicrystalline Silicon for Solar Cells [J]. Thin Solid Films,2005,487(1-2):179-187.
    [49]T. F. Ciszek. Melt Growth of Crystalline Silicon Tubes by a Capillary Action Shaping Technique [J]. physica status solidi (a),1975,32(2):521-527.
    [50]M. A. Green. Crystalline Silicon Photovoltaic Cells [J]. Advanced Materials,2001, 13(12-13):1019-1022.
    [51]H. Zhang, L. Zheng, X. Ma, B. Zhao, C. Wang, F. Xu. Nucleation and Bulk Growth Control for High Efficiency Silicon Ingot Casting [J]. Journal of crystal growth,2011, 318(1):283-287.
    [52]K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido, K. Nakajima. Growth of Structure-Controlled Polycrystalline Silicon Ingots for Solar Cells by Casting [J]. Acta Materialia,2006,54(12):3191-3197.
    [53]T. F. Ciszek, G. H. Schwuttke, K. H. Yang. Directionally Solidified Solar-Grade Silicon Using Carbon Crucibles [J]. Journal of crystal growth,1979,46(4):527-533.
    [54]D. Yang, L. Li, X. Ma, R. Fan, D. Que, H. J. Moeller. Oxygen-Related Centers in Multicrystalline Silicon [J]. Solar Energy Materials and Solar Cells,2000,62(1-2):37-42.
    [55]J. Schmidt, K. Bothc. Structure and Transformation of the Metastable Boron-and Oxygen-Related Defect Center in Crystalline Silicon [J]. Physical review B,2004,69(2): 024107.
    [56]L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, D. Yang. Effect of Oxygen Precipitation on the Performance of Czochralski Silicon Solar Cells [J]. Solar Energy Materials and Solar Cells,2011,95(11):3148-3151.
    [57]T. Nozaki, Y. Yatsurugi, N. Akiyama. Concentration and Behavior of Carbon in Semiconductor Silicon [J]. Journal of the Electrochemical Society,1970,117(12): 1566-1568.
    [58]L. Chen, X. G. Yu, P. Chen, X. Gu, J. G. Lu. D. R. Yang.1207cm-1 Infrared Absorption Band in Carbon-Rich Silicon Crystal [J]. Solid State Phenomena,2011,178(0):172-177.
    [59]J. Bauer, O. Breitenstein, J.-P. Rakotoniaina. Electronic Activity of Sic Precipitates in Multicrystalline Solar Silicon [J]. physica status solidi (a),2007,204(7):2190-2195.
    [60]D. Yang, H. J. Moeller. Effect of Heat Treatment on Carbon in Multicrystalline Silicon [J]. Solar Energy Materials and Solar Cells,2002,72(1-4):541-549.
    [61]M. Daniel, M. Helmut, C. Andres. Recombination in N-and P-Type Silicon Emitters Contaminated with Iron; proceedings of the Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on,2006 [C].
    [62]M. Nakamura, S. Murakami, H. Hozoji, N. J. Kawai, S. Saito, H. Arie. Concentration Study of Deep-Level Cu Center in Cu-Diffused Si Crystals by Deep-Level Transient Spectroscopy and Photoluminescence Measurements [J]. Japanese Journal of Applied Physics,2006,45(1-3):80-82.
    [63]H. Indusekhar, V. Kumar. Electrical Properties of Nickel-Related Deep Levels in Silicon [J]. Journal of Applied Physics,1987,61(4):1449-1455.
    [64]S. Dubois, O. Palais, M. Pasquinelli, S. Martinuzzi, C. Jaussaud, N. Rondel. Influence of Iron Contamination on the Performances of Single-Crystalline Silicon Solar Cells: Computed and Experimental Results [J]. Journal of Applied Physics,2006,100(2): 024510.
    [65]M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y. P. B. Mouafi, D. Borchert, A. Montesdeoca-Santana. Improvement of Multicrystalline Silicon Solar Cells by a Low Temperature Anneal after Emitter Diffusion [J]. Progress in Photovoltaics:Research and Applications,2011,19(2):165-169.
    [66]T. U. Naerland, L. Arnberg, A. Holt. Origin of the Low Carrier Lifetime Edge Zone in Multicrystalline Pv Silicon [J]. Progress in Photovoltaics:Research and Applications, 2009,17(5):289-296.
    [67]M. Rossberg, M. Naumann. K. Irmscher, U. Juda, A. Liidge, M. Ghosh, A. Muller. Investigation of Defects in the Edge Region of Multicrystalline Solar Silicon Ingots [J]. Solid State Phenomena,2005,108(1):531-538.
    [68]S. M. Myers, M. Seibt, W. Schroter. Mechanisms of Transition-Metal Gettering in Silicon [J]. Journal of Applied Physics,2000,88(7):3795-3819.
    [69]S. A. McHugo, R. J. McDonald, A. R. Smith, D. L. Hurley, E. R. Weber. Iron Solubility in Highly Boron-Doped Silicon [J]. Applied Physics Letters,1998,73(10):1424-1426.
    [70]M. Aoki, T. Itakura, N. Sasaki. Gettering of Iron Impurities in P/P+Epitaxial Silicon Wafers with Heavily Boron-Doped Substrates [J]. Applied Physics Letters,1995,66(20): 2709-2711.
    [71]A. A. Istratov, H. Hieslmair, E. R. Weber. Iron Contamination in Silicon Technology [J]. Applied Physics A:Materials Science& Processing,2000,70(5):489-534.
    [72]K. Nakamura, H. Iga, J. Tomioka. Analysis of the Segregation Phenomena of Copper in P/P+ Epitaxial Silicon Wafers [M].2006.
    [73]D. Abdelbarey. V. Kveder, W. Schroter. M. Seibt. Aluminum Gettering of Iron in Silicon as a Problem of the Ternary Phase Diagram [J]. Applied Physics Letters,2009,94(6): 061912.
    [74]J. Hornstra. Dislocations in the Diamond Lattice [J]. Journal of Physics and Chemistry of Solids,1958,5(1-2):129-141.
    [75]M. Kittler, X. Yu, O. F. Vyvenko, M. Birkholz, W. Seifert, M. Reiche, T. Wilhelm, T. Arguirov, A. Wolff, W. Fritzsche, M. Seibt. Self-Organized Pattern Formation of Biomolecules at Silicon Surfaces:Intended Application of a Dislocation Network [J]. Materials Science and Engineering:C,2006,26(5-7):902-910.
    [76]H. El Ghitani, S. Martinuzzi. Influence of Dislocations on Electrical Properties of Large Grained Polycrystalline Silicon Cells, li. Experimental Results [J]. Journal of Applied Physics,1989,66(4):1723-1726.
    [77][77] V. Kveder, M. Kittler, W. Schroter. Recombination Activity of Contaminated Dislocations in Silicon:A Model Describing Electron-Beam-Induced Current Contrast Behavior [J]. Physical review B,2001,63(11):115208.
    [78]K. Hartman, M. Bertoni, J. Serdy, T. Buonassisi. Dislocation Density Reduction in Multicrystalline Silicon Solar Cell Material by High Temperature Annealing [J]. Applied Physics Letters,2008,93(12):122108.
    [79]D. Kuhlmann. On the Theory of Plastic Deformation [J]. Proceedings of the Physical Society Section A,1951,64(2):140.
    [80]E. Nes. Recovery Revisited [J]. Acta Metallurgica et Materialia,1995,43(6):2189-2207.
    [81]W. T. Read, W. Shockley. Dislocation Models of Crystal Grain Boundaries [J]. Physical Review,1950,78(3):275-289.
    [82]M. James. Howe Iim [M]. New York:John Wiley & Sons, Inc.,,1997.
    [83]C. H. Seager. The Determination of Grain-Boundary Recombination Rates by Scanned Spot Excitation Methods [J]. Journal of Applied Physics,1982,53(8):5968-5971.
    [84]X. Li, X. Yu, L. Song, D. Yang, G. Rozgonyi. Effect of Nickel Contamination on Grain Boundary States at a Direct Silicon Bonded (110)/(100) Interface [J]. Scripta materialia, 2010,63(11):1100-1103.
    [85]S. Bengtsson, G. I. Andersson, M. O. Andersson, O. Engstrom. The Bonded Unipolar Silicon-Silicon Junction [J]. Journal of Applied Physics,1992,72(1):124-140.
    [86]S. Bcngstsson. Semiconductor Wafer Bonding:A Review of lnterfacial Properties and Applications [J]. Journal of Electronic Materials,1992,21(8):841-862.
    [87]O. Engstrom, S. Bengtsson, G. I. Andersson, M. O. Andersson. A. Jauhiainen. Electrical Characterization of Bonding Interfaces [J]. Journal of the Electrochemical Society,1992, 139(12):3638-3644.
    [88]N. Usami, R. Yokoyama,I. Takahashi, K. Kutsukakc. K. Fujiwara. K. Nakajima. Relationship between Grain Boundary Structures in Si Multicrystals and Generation of Dislocations During Crystal Growth [J]. Journal of Applied Physics,2010,107(1): 013511.
    [89]1. Takahashi. N. Usami, K. Kutsukakc, G. Stokkan. K. Morishita, K. Nakajima. Generation Mechanism of Dislocations During Directional Solidification of Multicrystalline Silicon Using Artificially Designed Seed [J]. Journal of crystal growth.2010,312(7):897-901.
    f90]周春兰,王文静.晶体硅太阳能电池少子寿命测试方法[J].中国测试技术,2007.33f6):25-31.
    [91]R. A. Sinton, A. Cuevas. Contactless Determination of Current-Voltage Characteristics and Minority-Carrier Lifetimes in Semiconductors from Quasi-Steady-State Photoconductance Data [J]. Applied Physics Letters,1996,69(17):2510.
    [92]杨德仁.半导体材料测试与分析[M].科学出版社,2010.
    [93]M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord. Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings [J]. The Journal of the Optical Society of America A,1995,12(5):1068-1076.
    [94]P. A. Basore. Numerical Modeling of Textured Silicon Solar Cells Using Pc-ld [J]. Electron Devices, IEEE Transactions on,1990,37(2):337-343.
    [95]J. Smith. Silicon Purification Process:US,5820842 [P/OL].1998.
    [96]E. Enebakk, G. Tranell, R. Tronstad. Process for Purifying Silicon Source Material by High Gravity Rotating Packed Beds:US,0274608 [P/OL].2009.
    [97]J. Plummer, M. Deal, P. Griffin. Silicon Vlsi Technology [M].2nd ed.:Prentice Hall, 2000.
    [98]D.Ovrebo, W. G. Clark. Method and Equipment for Manufacturing Multi-Crystalline Solar Grade Silicon from Metallurgical Silicon:WO,026931 [P/OL].2008.
    [99]W. Lee, J. Kim, B.-y. Jang, Y. Ahn, H. Lee, W. Yoon. Metal Impurities Behaviors of Silicon in the Fractional Melting Process [J]. Solar Energy Materials and Solar Cells,2011, 95(1):59-62.
    [100]K. L. Carleton, J. M. Olson, A. Kibbler. Electrochemical Nucleation and Growth of Silicon in Molten Fluorides [J]. Journal of the Electrochemical Society,1983,130(4):782-786.
    [101]T. Ulset, S. Julsrud, L. Cassayre, P. Chamelot, L. Massot, P. Taxil, T. L. Naas. Method for Recovering Elemental Silicon from Cutting Remains:WO,156372 [P/OL].2008.
    [102]M. Johnston, M. Barati. Distribution of Impurity Elements in Slag-Silicon Equilibria for Oxidative Purification of Metallurgical Silicon for Solar Cell Applications [J]. Solar Energy Materials and Solar Cells,2010,94(12):2085-2090.
    [103]B. N. Mukashev. K. A. Abdullin, M. F. Tamendarov, T. S. Turmagambetov, B. A. Beketov, M. R. Page, D. M. Kline. A Metallurgical Route to Produce Upgraded Silicon and Monosilane [J]. Solar Energy Materials and Solar Cells,2009,93(10):1785-1791.
    [104]J. Dietl. Silicon for Photovoltaics [M]. Amsterdam:North Holland 1987.
    [105]R. Dawless, R. Troup, D. Meier, A. Rohatgi. Production of Extreme-Purity Aluminum and Silicon by Fractional Crystallization Processing [J]. Journal of crystal growth,1988,89(1): 68-74.
    [106]R. K. Dawless. Method of Silicon Purification:US,4312846 [P/OL].1982.
    [107]T. Yoshikawa. K. Morita. Removal of Phosphorus by the Solidification Refining with Si-Al Melts [J]. Science and Technology of Advanced Materials,2003,4(6):531.
    [108]T. Yoshikawa, K. Morita. Refining of Si by the Solidification of Si-Al Melt with Electromagnetic Force [J]. ISIJ International,2005,45(7):967-971.
    [109]T. Yoshikawa, K. Morita. Removal of B from Si by Solidification Purification with Si-Al Melts [J]. Metallurgical and Materials Transactions B,2005,36(6):731-736.
    [110]T. Yoshikawa, K. Arimura, K. Morita. Boron Removal by Titanium Addition in Solidification Purification of Silicon with Si-Al Melt [J]. Metallurgical and Materials Transactions B.2005,36(6):837-842.
    [111]T. Yoshikawa, K. Morita. Refining of Silicon During Its Solidification from a Si-Al Melt [J]. Journal of crystal growth,2009,311(3):776-779.
    [112]S. Nichol. Method for Purifying Silicon:US,7727503 [P/OL].2010.
    [113]S. Nichol. Method for Processing Silicon Powder to Silicon Crystal:WO,2009043167A1 [P/OL].2009.
    [114]P. Rosenits, T. Roth, S. W. Glunz, S. Beljakowa. Determining the Defect Parameters of the Deep Aluminum-Related Defect Center in Silicon [J]. Applied Physics Letters,2007, 91(12):122109.
    [115]R. M. German. Powder Metallurgy Science [M].1st ed.:Metal Powder Industry,1984.
    [116]A. Criado, J. Martinez, R. Calabres. Growth of Eutectic Silicon from Primary Silicon Crystals in Aluminium-Silicon Alloys [J]. Scripta materialia,1997,36(1):47-54.
    [117]J. Murray, A. McAlister. The Al-Si (Aluminum-Silicon). System [J]. Bulletin of Alloy Phase Diagrams,1984,5(1):74.
    [118]P. Lolgen. Surface and Volume Recombination in Silicon Solar Cells [D]. Utrecht; University of Utrecht, The Netherlands,1995.
    [119]C. P. Sealy, M. R. Castell, P. R. Wilshaw. Mechanism for Secondary Electron Dopant Contrast in the Sem [J]. Journal of electron microscopy,2000,49(2):311-321.
    [120]G Wulff. Zur Frage Der Geschwindigkeit Des Wachstums Und Der Auflosung Der Krystallflachen [J]. Zeitschrift fur Krystallographie und Mineralogie,1901,34(4): 449-530.
    [121]D. R. Hamilton, R. G Seidensticker. Propagation Mechanism of Germanium Dendrites [J]. Journal of Applied Physics,1960,31(7):1165-1168.
    [122]K. F. Kobayashi, L. M. Hogan. The Crystal Growth of Silicon in Al-Si Alloys [J]. Journal of Materials Science,1985.20(6):1961-1975.
    [123]M. Shamsuzzoha, L. M. Hogan. Twinning in Fibrous Eutectic Silicon in Modified Al-Si Alloys [J]. Journal of crystal growth,1985,72(3):735-737.
    [124]S. Pizzini. Towards Solar Grade Silicon:Challenges and Benefits for Low Cost Photovoltaics [J]. Solar Energy Materials and Solar Cells,2010,94(9):1528-1533.
    [125]J. R. Davis. Jr., A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R. McCormick, H. C. Mollenkopf. Impurities in Silicon Solar Cells [J]. Electron Devices, IEEE Transactions on,1980,27(4):677-687.
    [126]M. Rodot, J. E. Bouree, A. Mesli, G Revel. R. Kishore, S. Pizzini. Al-Related Recombination Center in Polycrystallinc Si [J]. Journal of Applied Physics,1987,62(6): 2556-2558.
    [127]O. L. Birgit Ryningen, Michio Kondo. Characterisation of Solar Grade (Sog) Multicrystalline Silicon Wafers Made from Metallurgically Refined Material; proceedings of the 22nd European Photovoltaic Solar Energy Conference (PVSEC), Milan, Italy,2007 [C].
    [128]J. A. Burton, R. C. Prim, W. P. Slichter. The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical [J]. The Journal of Chemical Physics,1953,21(11): 1987-1991.
    [129]H. Kodera. Diffusion Coefficients of Impurities in Silicon Melt [J]. Japanese Journal of Applied Physics,1963,2(4):212-219.
    [130]W. Tiller. The Science of Crystallization:Macroscopic Phenomena and Defect Generation [M]. Cambridge:Cambridge University Press,1991.
    [131]R. Bock, P. P. Altermatt, J. Schmidt, R. Brendel. Formation of Aluminum-Oxygen Complexes in Highly Aluminum-Doped Silicon [J]. Semiconductor Science and Technology,2010,25(10):105007.
    [132]J. Reiss, R. King, K. Mitchell. Characterization of Diffusion Length Degradation in Czochralski Silicon Solar Cells [J]. Applied Physics Letters,1996,68(23):3302-3304.
    [133]J. D. Zook. Effects of Grain Boundaries in Polycrystalline Solar Cells [J]. Applied Physics Letters,1980,37(2):223-226.
    [134]J. L. Maurice, C. Colliex. Fast Diffusers Cu and Ni as the Origin of Electrical Activity in a Silicon Grain Boundary [J]. Applied Physics Letters,1989,55(3):241-243.
    [135]O. Schultz, S. Glunz, S. Riepe, G. Willeke. High Efficiency Solar Cells on Phosphorus Gettered Multicrystalline Silicon Substrates [J]. Progress in Photovoltaics:Research and Applications,2006,14(8):711-719.
    [136]W. Schroter, V. Kveder, M. Seibt, H. Ewe, H. Hedemann, F. Riedel, A. Sattler. Atomic Structure and Electronic States of Nickel and Copper Silicides in Silicon [J]. Materials Science and Engineering B,2000,72(2-3):80-86.
    [137]K. Yoo, S. Johnson, W. Regnault. Lattice Defects within Grain Volumes That Affect the Electrical Quality of Cast Polycrystalline Silicon Solar Cell Materials [J]. Journal of Applied Physics,1985,57(6):2258-2266.
    [138]K. Nakayashiki, V. Meemongkolkiat, A. Rohatgi. Effect of Material Inhomogeneity on the Open-Circuit Voltage of String Ribbon Si Solar Cells [J]. Electron Devices, IEEE Transactions on,2005,52(10):2243-2249.
    [139]J. Schmidt, A. G. Aberle, R. Hezel. Investigation of Carrier Lifetime Instabilities in Cz-Grown Silicon; proceedings of the Proceeding of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, CA,1997 [C]. IEEE.
    [140]S. W. Glunz, B. Koster. T. Leimenstoll, S. Rein, E. Schaffer, J. Knobloch, T. Abe.100 Cm2 Solar Cells on Czochralski Silicon with an Efficiency of 20.2%[J]. Progress in Photovoltaics:Research and Applications,2000,8(2):237-240.
    [141]S. W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling. Degradation of Carrier Lifetime in Cz Silicon Solar Cells [J]. Solar Energy Materials and Solar Cells,2001,65(1-4): 219-229.
    [142]K. Bothe, R. Sinton, J. Schmidt. Fundamental Boron-Oxygen-Related Carrier Lifetime Limit in Mono-and Multicrystalline Silicon [J]. Progress in Photovoltaics:Research and Applications,2005,13(4):287-296.
    [143]H. El Ghitani, S. Martinuzzi. Influence of Dislocations on Electrical Properties of Large Grained Polycrystalline Silicon Cells.1. Model [J]. Journal of Applied Physics,1989,66(4): 1717-1722.
    [144]N. Stoddard, R. Sidhu. J. Creager, S. Dey, B. Kinsey, L. Maisano, C. Phillips, R. Clark. J. Zahler, X. Q. Xie. Evaluating Bp Solar's Mono2TM Material:Lifetime and Cell Electrical Data; proceedings of the Proceedings of the 34th IEEE PhotovoltaicPhotovoltaic Specialists Conference, Philadelphia, PA,2009 [C], IEEE.
    [145]A. Jouini, L. Dubost, N. Plassat, D. Ponthenier, S. Bailly. B. Marie, N. Enjalbert, D. Camel. Mono-Like Ingots:Seed Growth for Better Crystal Quality and High Solar Cell Efficiency [M].5th International Workshop on the Crystalline Silicon Solar Cells. Boston, MA.2011.
    [146]B. Gao, S. Nakano, K. Kakimoto. Influence of Back-Diffusion of Iron Impurity on Lifetime Distribution near the Seed-Crystal Interface in Seed Cast-Grown Monocrystalline Silicon by Numerical Modeling [J]. Crystal Growth & Design,2011,12(1):522-525.
    [147]T. Taishi, Y. Ohno, I. Yonenaga, K. Hoshikawa. Influence of Seed/Crystal Interface Shape on Dislocation Generation in Czochralski Si Crystal Growth [J]. Physica B:Condensed Matter,2007,401(0):560-563.
    [148]W. C. Dash. Growth of Silicon Crystals Free from Dislocations [J]. Journal of Applied Physics,1959,30(4):459-474.
    [149]A. Stephens, M. Green. Effectiveness of 0.08 Molar Iodine in Ethanol Solution as a Means of Chemical Surface Passivation for Photoconductancc Decay Measurements [J]. Solar Energy Materials and Solar Cells,1997,45(3):255-265.
    [150]C. Donolato. Modeling the Effect of Dislocations on the Minority Carrier Diffusion Length of a Semiconductor [J]. Journal of Applied Physics,1998,84(5):2656.
    [151]C. v. Opdorp, A. T. Vink, C. Werkhoven. Gallium Arsenide and Related Compounds; proceedings of the Proceedings of the 6th 111-V Symposium, St. Louis, MO, 1976 [C]. Inst. Phys. Conf. Ser.33b.
    [152]R. Sinton, A. Cuevas. A Quasi-Steady-State Open-Circuit Voltage Method for Solar Cell Characterization; proceedings of the 16th European Photovoltaic Solar Energy Conference. Glasgow,2000 [C].
    [153]O. Palais, S. Martinuzzi, J. J. Simon. Minority Carrier Lifetime and Metallic-Impurity Mapping in Silicon Wafers [J]. Materials Science in Semiconductor Processing,2001, 4(1-3):27-29.
    [154]A. Fick. Ueber Diffusion [J]. Annalen der Physik,1855,170(1):59-86.
    [155]邓海,杨德仁,唐骏,席珍强,阙端麟.铸造多晶硅中杂质对少子寿命的影响[J]太阳能学报,2007,28(2):151-154.
    [156]N. Stoddard. Methods and Apparatuses for Manufacturing Monocrystalline Cast Silicon and Monocrystalline Cast Silicon Bodies for Photovoltaics:US,8048221 [P/OL].2011.
    [157]J. Schmidt, C. Berge, A. G Aberle. Injection Level Dependence of the Defect-Related Carrier Lifetime in Light-Degraded Boron-Doped Czochralski Silicon [J]. Applied Physics Letters,1998,73(1):2167.
    [158]V. V. Voronkov, R. Falster. Latent Complexes of Interstitial Boron and Oxygen Dimers as a Reason for Degradation of Silicon-Based Solar Cells [J]. Journal of Applied Physics,2010, 107(5):053509.
    [159]K. Bothe, J. Schmidt. Electronically Activated Boron-Oxygen-Related Recombination Centers in Crystalline Silicon [J]. Journal of Applied Physics,2006,99(013701.
    [160]D. W. Palmer, K. Bothe, J. Schmidt. Kinetics of the Electronically Stimulated Formation of a Boron-Oxygen Complex in Crystalline Silicon [J]. Physical review B,2007,76(3): 035210.
    [161]X. Yu, P. Wang, P. Chen, X. Li, D. Yang. Suppression of Boron-Oxygen Defects in P-Type Czochralski Silicon by Germanium Doping [J]. Applied Physics Letters,2010,97(5): 051903.
    [162]X. Yu, P. Wang, D. Yang. Effect of Germanium on the Kinetics of Boron-Oxygen Defect Generation and Dissociation in Czochralski Silicon [J]. Applied Physics Letters,2010, 97(16):162107.
    [163]S. Dubois, N. Enjalbert, J. Garandet. Slow Down of the Light-Induced-Degradation in Compensated Solar-Grade Multicrystalline Silicon [J]. Applied Physics Letters,2008, 93(10):103510.
    [164]M. Kittler, X. Yu, O. Vyvenko, M. Birkholz, W. Seifert, M. Reiche, T. Wilhelm, T. Arguirov, A. Wolff, W. Fritzsche. Self-Organized Pattern Formation of Biomolecules at Silicon Surfaces:Intended Application of a Dislocation Network [J]. Materials Science and Engineering C,2006,26(5-7):902-910.
    [165]P. Wang, X. Yu, Z. Li, D. Yang. Improved Fracture Strength of Multicrystalline Silicon by Germanium Doping [J]. Journal of crystal growth,2011,318(1):230-233.
    [166]P. Y Silvert, R. Herrera-Urbina, N. Duvauchelle, V. Vijayakrishnan, K. T. Elhsissen. Preparation of Colloidal Silver Dispersions by the Polyol Process. Part 1—Synthesis and Characterization [J]. J Mater Chem,1996,6(4):573-577.
    [167]P. Campbell, M. A. Green. Light Trapping Properties of Pyramidally Textured Surfaces [J]. Journal of Applied Physics,1987,62(1):243-249.
    [168]J.-H. Kwon, S.-H. Lee, B.-K. Ju. Screen-Printed Multicrystalline Silicon Solar Cells with Porous Silicon Antireflective Layer Formed by Electrochemical Etching [J]. Journal of Applied Physics,2007,101(10):104515.
    [169]S. Strehlke, S. Bastide, J. Guillet, C. Levy-Clement. Design of Porous Silicon Antireflection Coatings for Silicon Solar Cells [J]. Materials Science and Engineering:B, 2000.69-70(1):81-86.
    [170]J.-H. Kwon, S.-H. Lee, B.-K. Ju. Effective Light Absorptive Layer Using Mezo-Porous Silicon by Electrochemical Etching [J]. Japanese Journal of Applied Physics,2006,45(0): 2875-2880.
    [171]B. Gonzalez-Diaz, R. Guerrero-Lemus, P. Haro-Gonzalez, D. Borchert, C. Hernandez-Rodriguez. Down-Conversion Properties of Luminescent Silicon Nanostructures Formed and Passivated in Hno3-Based Solutions [J]. Thin Solid Films, 2006.511-512(0):473-477.
    [172]R. Guerrero-Lemus, C. Hernandez-Rodriguez, F. Ben-Hander, J. M. Martinez-Duart. Anodic and Optical Characterisation of Stain-Etched Porous Silicon Antireflection Coatings [J]. Solar Energy Materials and Solar Cells,2002,72(1-4):495-501.
    [173]N. Marrero, R. Guerrero-Lemus, B. Gonzalez-Diaz, D. Borchert. Effect of Porous Silicon Stain Etched on Large Area Alkaline Textured Crystalline Silicon Solar Cells [J]. Thin Solid Films,2009,517(8):2648-2650.
    [174]X. Li, P. W. Bohn. Metal-Assisted Chemical Etching in Hf/H[Sub 2]O[Sub 2] Produces Porous Silicon [J]. Applied Physics Letters,2000,77(16):2572-2574.
    [175]S. Koynov, M. S. Brandt, M. Stutzmann. Black Nonreflecting Silicon Surfaces for Solar Cells [J]. Applied Physics Letters,2006,88(20):203107.
    [176]K. Peng, Z. Huang, J. Zhu. Fabrication of Large-Area Silicon Nanowire P-N Junction Diode Arrays [J]. Advanced Materials.2004,16(1):73-76.
    [177]D. Qi, N. Lu, H. Xu, B. Yang, C. Huang. M. Xu. L. Gao, Z. Wang, L. Chi. Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces [J]. Langmuir, 2009,25(14):7769-7772.
    [178]B. Dhoedt. Theoretical and Experimental Study of Free Space Optical Interconnections Based on Diffractive Lens Arrays [D]; Ghent University, Belgium,1995.
    [179]K. Peng, X. Wang, S. Lee. Silicon Nanowire Array Photoelectrochemical Solar Cells [J]. Applied Physics Letters.2008,92(16):163103.
    [180]K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee. J. Zhu. Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications [J]. Small,2005,1(11):1062-1067.
    [181]K. Peng, X. Wang, X. Wu, S. Lee. Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion [J]. Nano Letters,2009,9(11):3704-3709.
    [182]J. S. Yoo.1. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, J. Yi. Black Silicon Layer Formation for Application in Solar Cells [J]. Solar Energy Materials and Solar Cells,2006,90(18-19):3085-3093.
    [183]R. B. Godfrey, M. A. Green. A 15% Efficient Silicon Mis Solar Cell [J]. Applied Physics Letters,1978,33(7):637-639.
    [184]G C. Cheek. R. Mertens, R. Overstraeten, L. Frisson. Thick-Film Metallization for Solar Cell Applications [J]. IEEE Transactions on Electron Devices,1984,31(5):602-609.
    [185]C. F. Gay. Thin Silicon Cell Performance Characteristics; proceedings of the Proceeding of 13th IEEE Photovoltaic Specialists Conference, Washington, DC.1978 [C].
    [186]A. Rohatgi, P. Rai-Choudhury. Design, Fabrication, and Analysis of 17-18-Percent Efficient Surfacc-Passivatcd Silicon Solar Cells [J]. IEEE Transactions on Electron Devices,1984,31(596-601):596.
    [187]S. Narasimha, A. Rohatgi, A. W. Weeber. An Optimized Rapid Aluminum Back Surface Field Technique for Silicon Solar Cells [J]. IEEE Trans Electron Devices,1999,46(7): 1363-1370.
    [188]A. Rohatgi, S. Narasimha, S. Kamra, P. Doshi, C. P. Khattak, K. Emery, H. Field. Record High 18.6% Efficient Solar Cell on Hem Multicrystalline Material; proceedings of the Proceeding of 25th IEEE Photovoltaic Specialists Conference, Washington, DC,1996 [C].
    [189]C. Y. Chang, Y. K. Fang, S. M. Sze. Specific Contact Resistance of Metal-Semiconductor Barriers [J]. Solid State Electronics,1971,14(7):541-550.
    [190]M. P. Godlewski, C. R. Baraona, H. W. Brandhorst. Low-High Junction Theory Applied to Solar Cells; proceedings of the Proceeding of 11th IEEE Photovoltaic Specialists Conference, Scottsdale. AZ,1973 [C].
    [191]J. D. Alamo, J. Eguren, A. Luque. Operating Limits of Al-Alloyed High-Low Junctions for Bsf Solar Cells [J]. Solid State Electronics,1981,24(5):415-420.
    [192]V. Meemongkolkiat, K. Nakayashiki, D. S. Kim, R. Kopecek, A. Rohatgi. Factors Limiting the Formation of Uniform and Thick Aluminum-Back-Surface Field and Its Potential [J]. Journal of the Electrochemical Society,2006,153(1):G53-58.
    [193]R. Bock, J. Schmidt, R. Brendel, H. Schuhmann, M. Seibt. Electron Microscopy Analysis of Crystalline Silicon Islands Formed on Screen-Printed Aluminum-Doped P-Type Silicon Surfaces [J]. Journal of Applied Physics,2008,104(4):043701.
    [194]J. Schmidt, N. Thiemann, R. Bock, R. Brendel. Recombination Lifetimes in Highly Aluminum-Doped Silicon [J]. Journal of Applied Physics,2009,106(9):093707.
    [195]Y Okada, Y. Tokumaru. Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon between 300 and 1500 K [J]. Journal of Applied Physics, 1984.56(2):314-320.
    [196]F. C. Nix, D. MacNair. The Thermal Expansion of Pure Metals:Copper, Gold, Aluminum, Nickel, and Iron [J]. Physical Review,1941,60(8):597-605.
    [197]H. Keppner, P. Torres. R. Fluckiger, J. Meier, A. Shah, C. Fortmann, P. Fath, G Willeke, K. Happle, H. Kiess. Passivation Properties of Amorphous and Microcrystalline Silicon Layers Deposited by Vhf-Gd for Crystalline Silicon Solar Cells [J]. Solar Energy Materials and Solar Cells,1994.34(1-4):201-209.
    [198]M. Lu, S. Bowden, U. Das, R. Birkmire. Interdigitated Back Contact Silicon Heterojunction Solar Cell and the Effect of Front Surface Passivation [J]. Applied Physics Letters.2007,91(6):063507.
    [199]E. Schneiderlochner, R. Preu, R. Ludemann, S. Glunz. Laser Fired Rear Contacts for Crystalline Silicon Solar Cells [J]. Progress in Photovoltaics:Research and Applications, 2002.10(1):29-34.
    [200]P. Lolgen, W. C. Sinke, C. Leguijt, A. W. Weeber, P. F. A. Alkemade, L. A. Verhoef. Boron Doping of Silicon Using Coalloying with Aluminium [J]. Applied Physics Letters,1994, 65(22):2792-2794.
    [201]J. M. Gee, M. D. Bode, B. L. Silva. Boron-Doped Back-Surface Fields Using an Aluminum-Alloy Process [Si Solar Cells]; proceedings of the Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE,1997 [C].
    [202]S. M. Sze, K. K. Ng. Physics of Semiconductor Devices [M]. third ed. New Jersey:John Wiley and Sons,2007.
    [203]J. Grobner, D. Mirkovic. R. Schmid-Fetzer. Thermodynamic Aspects of Grain Refinement of Al-Si Alloys Using Ti and B [J]. Materials Science and Engineering A,2005,395(1-2): 10-21.
    [204]T. Otaredian. Separate Contactless Measurement of the Bulk Lifetime and the Surface Recombination Velocity by the Harmonic Optical Generation of the Excess Carriers [J]. Solid-State Electronics,1993,36(2):153-162.
    [205]J. Gunn. On Carrier Accumulation, and the Properties of Certain Semiconductor Junctions [J]. International Journal of Electronics,1958,4(1):17-50.
    [206]A. Rohatgi, P. Rai-Choudhury. An Approach toward 20-Percent-Efficient Silicon Solar Cells [J]. Electron Devices, IEEE Transactions on,1986,33(1):1-7.
    [207]A. S. Grove. Physics and Technology of Semiconductor Devices [M]. New York:Wiley, 1967.
    [208]J. D. Beck, R. Conradt. Auger-Rekombination in Si [J]. Solid State Communications,1973, 13(1):93-95.
    [209]M. A. Green. Solar Cells:Operating Principles, Technology and System Applications [M]. 2nd ed. Kensington:The university of New South Wales,1998.
    [210]V. Martinez, R. Lizundia, J. Jimeno. Multiv:A Computer Program to Fit Iv Characteristics; proceedings of the Proceedings of the 11th European Communities Photovoltaic Solar Energy Conference, Montreux, Switzerland,1992 [C].
    [211]P. A. Basore. Extended Spectral Analysis of Internal Quantum Efficiency; proceedings of the Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, K.Y, 1993 [C].