二氧化钛一维复合结构的合成及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能电池是一种能将太阳能转变为电能的有效技术途径,发展太阳能电池技术对解决世界能源危机和促进环境保护具有非常重要的作用。目前太阳能电池的主要种类有:硅太阳能电池、薄膜太阳能电池和染料敏化太阳能电池。其中,染料敏化太阳能电池(DSSCs)由于成本低廉、组装简易等特点受到了广泛的关注。就染料敏化太阳能电池的发展现状而言,二氧化钛纳米晶半导体光阳极的性能严重制约着电池的光电转换效率。作为光阳极的重要组成部分,二氧化钛材料的形貌和结构决定了光阳极的电子传输动力学性能。因此,合成新型纳米二氧化钛光阳极材料,研究其电子传输动力学特征,并通过材料微观形貌的控制,以期优化光阳极的电子传输动力学性能,从而提高电池的光电转换性能。
     本论文选取了三种不同形貌(纳米晶、纳米棒和纳米管)的质子钛酸盐纳米材料作为研究材料的起始物,对随后合成的二氧化钛结构、形貌及其光电化学性能进行了研究。研究结果显示,质子钛酸盐纳米粒子随着烧结温度的升高,其物相经历了从TiO2(B)到锐钛矿相的变化,且晶粒尺寸不断增大,其中500℃烧结制备出的纳米晶粒具有最好的光电性能。对于大尺寸纳米棒而言(直径约100nm左右、长度为微米级),随着烧结温度的升高,质子钛酸盐物相也从TiO2(B)相逐渐变为锐钛矿相,但转变温度明显升高,且纳米棒在高温烧结后断裂现象明显,其中700℃烧结得到的大尺寸纳米棒具有良好的光电性能。在纳米管的研究中,发现质子钛酸盐纳米管随着烧结温度的升高,除物相由TiO2-B相变为锐钛矿相外,其形貌也发生了显著的变化,即从纳米管转变成实心的小尺寸纳米棒,并随着温度的升高进一步转变为较大的纳米晶粒。光电性能测试显示,600℃烧结得到的纳米材料的光电性能最优。
     采用强度调制光电流谱和强度调制光电压谱研究了上述不同形貌二氧化钛的电子传输动力学特征。研究结果表明:对于二氧化钛纳米晶而言,由于其本身结构的局限性和大量的结构缺陷,使得在光阳极膜内晶粒间的电子传输时间长、电子寿命短,导致光生电子复合机率大。大尺寸二氧化钛纳米棒具有一维柱状结构特点,有利于电子的快速传递,显示出电子传输速率快、电子寿命长和光生电子复合率低的优势。由于不同烧结温度导致了纳米管的相结构和形貌发生了显著变化,其相应产物的电子传输过程呈现出不同的动力学特征。其中,在300℃和400℃烧结时得到的纳米管具有TiO2(B)结构和较多的结构缺陷,因此导致其具有电子传输时间长、电子寿命短和光生电子复合严重的特征。而在500℃和600℃烧结时,质子钛酸盐纳米管转变为尺寸较小的二氧化钛纳米棒,其电子传输速率快,电子寿命可达106 ms。以上研究结果表明:具有棒状形貌的二氧化钛纳米材料具有良好的电子传输性能,为后续的复合材料构筑及其光电性能研究提供了良好的研究基础。
     在以上研究基础上,本论文优化设计并制备出具有一维结构的二氧化钛复合材料,即将纳米晶均匀负载在大尺寸纳米棒表面,构筑了具有一种双功能结构的复合材料。研究结果表明:该一维复合材料可将纳米晶的高比表面特征和大尺寸纳米棒优良的电子传输性能有机的结合起来。其中,表面负载的二氧化钛纳米晶不仅显著地提高了复合材料的比表面积,也降低了界面电荷转移电阻。同时,由于二氧化钛纳米棒的存在,电子在复合材料中传输时具有快速传输的动力学特征。这使得该复合材料的光电转换效率较单一纳米棒的转换效率提高了五倍之多。
     为进一步提高复合材料的比表面,本论文还以二氧化钛纳米管为前驱体制备了小尺寸、高比表面的纳米棒,并进一步构筑了纳米晶/纳米棒复合材料。研究结果表明,该复合材料秉承了一维纳米复合材料的结构优势,不仅具有良好的电子传输特性,而且具有更高的比表面积和更佳的染料吸附性能,其相应的染料敏化太阳能电池的光电转换效率得以明显提高,达到7.87%。
     本论文采用具有特定微观结构的纳米复合材料制备染料敏化太阳能电池的光阳极,所用材料能够将纳米晶的高比表面特征和纳米棒优良的电子传输性能有机的结合起来,具有更优的电子传输动力学特征,使相应的光电转换效率得到了明显的提高。本文的研究结果为构筑新型光阳极材料和改善染料敏化太阳能电池的光电性能提供了新思路。
A solar cell is a device that converts the energy of sunlight directly into electricity based on the photovoltaic effect. The development of a low-cost and high-efficiency solar cell is highly significant for utilization of solar energy, which will help solve the serious energy crisis and environmental problem faced by the whole world. Among solar cells, silicon-based solar cell and thin-film solar cell have been commercially available. In recent years, dye sensitized solar cells (DSSCs) are receiving increasing attention as a potential cost-effective alternative due to its low cost and simplicity. Usually, the energy conversion efficiency of the DSSCs is limited by the photoanode performance. As a key material in photoanode, fast electron transfer kinetics of TiO2 is necessary to avoid photoelectron recombination, which usually depends strongly on the micromorphology and crystallographic structure of TiO2. Therefore, it is very valuable to synthesize controllably titania nanomaterials with specific structures and optimize the electron transfer kinetics based on nanotechnology.
     In this work, protonated titanate nanocrystallites, nanorods, and nanotubes were used as precursors to fabricate titania photoelectrode materials. We focused mainly on the conversion of the phase structure and micromorphology after calcination at different temperature. In particular, the effect of such conversion on photoelectrochemical properties of the products obtained subsequently was investigated in detail. In the case of protonated titanate nanoparticles, it is found that the transformation of the crystallographic structure occurs from titanate to TiO2-B and anatase with increasing calcination temperature, respectively. Meantime, the nanocrystalline size grows gradually. Among all products, nanocrystallites obtained after calcination at 500℃show the best photoelectrochemical properties. Similarly, the strcture transformation can be also observed from protonated titanate nanorods to TiO2-B nanorods and anatase nanorods with increasing calcination temperature. However, such a phase transformation temperature is obviously higher. Moreover, the rod-like morphology could be destroyed under high calcination temperature. It is noted that nanorods calcined at 700℃show the optimized photoelectrochemical properties. Finally, it is found that titanate nanotubes can convert to TiO2-B nanotubes (300-400℃), anatase nanorods (500-600℃), and anatase nanoparticles (700℃) with increasing calcination temperature. The obtained anatase nanorods after calcination at 600℃present the exellent photoelectrochemical properties.
     Intensity-modulated photocurrent and photovoltage spectroscopies (IMPS and IMVS, respectively) were used to investigate the electron transport and recombination processes of the various titania nanomaterials. The results indicate that titania nanocrystallites provide a slow electron transport and a short electron lifetime, which leads to a high electron recombination rate due to the configuration confinement and the existence of abundant surface defects. In the case of titania nanorods with a relatively large size, the one-dimensional structure and single crystallites allow a fast electron transport, a long electron lifetime, and a low electron recombination rate. In respect of nanotubes, the electron transfer kinetics is varied obviously with the change in morphology and crystallographic structure. The limited electron transport and serious electron recombination can be found for TiO2-B nanotubes obtained after calcination at 300℃and 400℃due to the existence of abundant surface defects. The anatase nanorods with a relatively small size obtained at 500℃and 600℃allow a fast electron transfer, and electron lifetime of nanorods obtained at 600℃is long up to 106 ms. It is indicated from above results that the rod-like morphology can provide the optimized electron transfer kinetics, which is beneficial to provide important information for further fabricating one-dimensional titania nanomaterials with enhanced photoelectrochemical properties.
     To optimize electron transfer kinetics of titania materials, one-dimensional titania nanocomposites, in which titania nanocrystallites are dispersedly supported on the surface of nanorods, were fabricated based on the above results. It is demonstrated that one-dimensional titania nanocomposites can combine the high surface area of nanocrystallites and the electron transport advantage of nanorods, which may present a long electron lifetime and a low electron recombination rate. As anticipated, the energy conversion efficiency of one-dimensional titania nanocomposites is increased by 5 times as compared to that of nanorods.
     To further increase the surface area of titania nanocomposites, nanorods with a smaller size, obtained by calcining titanate nanotubes at 500℃, were used to support titania nanocrytallites to fabricate one-dimensional nanocomposites. It is shown that the charge transfer resistance is reduced and the adsorption of dye is increased for such one-dimensional nanocomposites with the large surface area. Besides, the fast electron transport is also obtained due to the contribution of nanorods. Therefore, the photovoltaic conversion efficiency of the nanocomposites is greatly improved to 7.87 %, the highest value obtained under our experimental conditions in this work.
     In summary, titania nanocomposites with desired structure and morphology are used to prepare photoanode for DSSCs. The one-dimensional nanocomposites prepared here have optimized electron transfer kinetics due to the combination of the advantages of nanocrystallites and nanorods, resulting in an obviously improved energy conversion efficiency of DSSCs. The results obtained in this work can provide a potential approach to fabricate new photoanode materials and improve energy conversion efficiency of DSSCs.
引文
[1]王忠胜.染料敏化Ti02纳米晶太阳能电池的光电化学性质研究:(博士学位论文),北京:北京大学,2001.
    [2]雷永泉主编.二十一世纪新材料丛书—新能源材料.天津:天津大学出版社,2002.
    [3]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2004.
    [4]Becquerel A E. Recherches sur les effets de la radiation chimique de la lumiere solaire, an moyen des courants electriques C. R. Acad. Sci. Paris,1839,9:561-567.
    [5]Adams W O, Day R E. Proc. Roy. Soc. London A,1877,25:113-117.
    [6]Chapin D M, Fullerand C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys.,1954,25:676-677.
    [7]Goetzberger A, Hebling C, Schock H W. Photovoltaicmaterials, history, status and outlook. Mater. Sci. Eng., R,2003,40:1-46.
    [8]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitied colloidal TiO2 Films. Nature,1991,353:737-740.
    [9]韩宏伟.染料敏化二氧化钛纳米晶薄膜太阳电池研究.武汉:武汉大学,2005.
    [10]王忠胜.染料敏化Ti02纳米晶太阳能电池的光电化学性质研究.北京:北京大学,2001.
    [11]Bach U, Lupo D, Comte P. Solid state dye-sensitized misoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature,1998,395:583-585.
    [12]Hagfeldy A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev (Washington, D. C),1995,95:49-68.
    [13]Desilvestro J, Gratzel M, Kaven L, et al. Highly eficient sensitization of titanium dioxide. J. Am. Chem. Soc,1985,107:2988-2990.
    [14]Zhigang Z, Jinhua Y, Kazuhiro S, et al. Direct splitting of water under visible light irrasiation with an oxide semiconductor photocatalyst. Nature,2001,414:625-627.
    [15]Smestad G P, Gratzel M. Demonstrating electron transfer and nanotechnology:a natural dye-sensitized nanocrystalline energy converter. J. Chem. Educ.,1998,75:752-756.
    [16]Svetlana L, Joseph T H. A new method for manufacturing nanostructured electrodes on glass substrates. Chem. Phys. Lett.,2000,10:91-101.
    [17]Solbrand A, Lindstrom H, Rensmo H, et al. Dye-based donor/acceptor solar cells. J. Phys. Chem. B,1997,101:2514-2522.
    [18]Zhao G, Kazuka H, Lin H, et al. Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Thin Solid Films,1999,340:125-131.
    [19]张莉,任焱杰.菁类染料敏化的固态纳米TiO2光电化学电池.高等化学学报,2001,7:1105-1107.
    [20]Gratzel M. Dye-sensitized solar cells. J. Photochem. Photobio. C,2003,4:145-153.
    [21]Gratzel M. Conversion of sunlight to electric power by nanocrytalline dye-sensitized solar cells. Photochem. Photobio. A:Chem,2004,16:3-14.
    [22]郝三存,吴季怀,林建明,等.铂修饰光阴极及其在纳米晶太阳能电池中的应用.感光科学与光化学,2004,22(3):175-182.
    [23]Anneke H A, Andreas G. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta,2001,46:3457-3466.
    [24]Seigo 1, Takurou N M, Pascal C, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films,2008,516: 4613-4619.
    [25]范乐庆,吴季怀,黄昀防,等.阴极修饰对染料敏化TiO2太阳能电池性能的影响.电子元件与材料,2003,22:1-3.
    [26]Edwards M O M, Boschloo G, Gruszecki T, et al.'Electric-Paint displays'with carbon counter electrodes. Electrochim Acta,2001,46:2187-2193.
    [27]Koo B K, Lee D Y, Kim H J, et al. Carbon nanotube as the counter electrode for dye-sensitized solar cell. Proceedings of the KIEEME Annual Conference, Yong Pyong Korea,2004:691.
    [28]Jiang Q W, Li G R, Gao X P. Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chem. Commun.,2009,6720-6722.
    [29]Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for sye-sensitized solar cells. Angew. Chem., Int. Ed.2010, Early View.
    [30]Grunwald R, Tributsch H. Mechanisms of instability in Ru-based dye sensitization solar cells. J. Phys. Chem. B,1997,101:2564-2575.
    [31]Nogueira A F, Longo C, De Paoli M A. Polymers in dye sensitized solar cells:overview and perspectives. Coord. Chem. Rev.,2004,248:1455-1468.
    [32]Liu Y, Hagfeldt A, Xiao X R, et al. Investigation of influence of redox species on the interacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol. Energy Mater. Sol. Cells,1998,55:267-281.
    [33]Haque S A, Tachibana Y, Willis R L, et al. Parameters influencing charge recombination kinetics in dye sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B,2000, 104:538-547.
    [34]Lindstrom H, Rensmo H, Sodergran S, et al. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. J. Phys. Chem,1996,100:3084-3088.
    [35]Pelet S. Moser J E. Gratzel M. Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystallme TiO2. J. Phys. Chem. B,2000,104:1791-1795.
    [36]Hara K, Horiguchi T, Kinoshita T, et al. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrysmlline TiO2 solar cells. Sol. Energy Mater. Sol. Cells,2001.70:151-161.
    [37]Huang S Y, Schlichthorl G, Nozik A J, et al. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B,1997,101:2576-2582.
    [38]Nakade S, Kambe S, Kitamura T, et al. Effects of lithium ion density on electron transport in Inanoporous TiO2 electrodes. J. Phys. Chem. B,2001,105:9150-9152.
    [39]Wang P, Zakenmddm S M, Gratzel M, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticlesforquasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc., 2003,125:1166-1167.
    [40]Schmidt-Mende L, Zakeeruddin S M, Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with all amphiphilic Ruthenium-dye. Appl. Phys. Lctt.,2005,86:013504-1-013504-3.
    [41]Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett.,2005,34:8-13.
    [42]Gratzel M. Dye-sensitized solid-state heretojunction solar cells. MRS. Bull.,2005,30: 23-27.
    [43]Wang P, Zakeeruddin S M, Gratzel M. Solidifying liquid electrolytes with fluorine polymer and silicananoparticles for quasi-solid dye-sensitized solar cells. J. Fluorine Chem.,2004, 125:1241-1245.
    [44]Wu J H, Lan Z, W D B, et al. Gel polymer electrolyte based on poly (acrylonitrile-costyrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochem. Acta,2006,51:4243-4249.
    [45]Huang M L, Yang H X, Wu J H, et al. Preparation of a novel polymer gel electrolyte based on N-methyl-quinoline iodide and its application in quasi-solid-state dye-sensitized solar cell. J. Sol-Gel Sci. Technol.,2007,1:65-70.
    [46]Komiya R, Han L, Yamanaka R. Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte. J. Photochem. Photobiol., A,2004,164:123-127..
    [47]Kubo W, Murakoshi K, Kitamura T. Quasi-solid-state dye-sensitized TiOi solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. J. Phys. Chem. B,2001,105:12809-12815.
    [48]Kubo W, Kambe S. Nakade S. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. J. Phys. Chem. B,2003.107: 4374-4381.
    [49]Mohmeyer N, Wang P, Schmidt H W, et al. Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-o-benzylidene-d-sorbitol derivatives as low molecular weight organic gelators. J. Mater. Chem.,2004,14:1905-1909.
    [50]Somani P R, Dionigi C, Murgia M. Solid-state dye PV cells using inverse opal TiO2 films. Sol. Energy Mater. Sol. Cells,2005,87:513-519.
    [51]Gratzel M. Dye-sensitized solar cells. J. Photochem. Photobio., C,2003,4:145-153.
    [52]Gratzel M. Conversion of sunlight to electric power by nanocrytalline dye-sensitized solar cells. Photochem. Photobio. A:Chem,2004,16:3-14.
    [53]李斌,邱勇.感光科学与光化学,2000,18:336-347.
    [54]梁茂,陶占良,陈军.染料敏化太阳电池中的敏化剂.化学通报,2005,12:889-896.
    [55]孔凡太,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池中的染料敏化剂.化学通报,2005,5:338-345.
    [56]Lagref J J, Nazeeruddin Md K, Gratzel M. Molecular engineering on semiconductor surfaces:design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells. Synth. Met.,2003,138:333-339.
    [57]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc.,1993, 115:6382-6390.
    [58]Gratzel M. Photoelectrochemical cells. Nature,2001,414:338-344.
    [59]Nazeeruddin Md K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanoerystallme TiO2 films by a black dye based on a trithiocyanato-ruthenirrm complex. Chem. Commun.,1997,1705-1706.
    [60]Nazeeruddin Md K, Pechy P, Gratzel M. Engineering of efficient panchromatic sensitizers for nanocrystalliae TiO2-based solar cells. J. Am. Chem. Soc.,2001,123:1613-1624.
    [61]Xu H, Shen T, Zhou Q, et al. Aspects of metal phthalocyanine photosensitization systerrns for light energy conversion. J. Photochem. Photobiol, A,1992,65:267-276.
    [62]He J, Hagfeldt A, Lindquist S. Phthalocyanine-sensitized nanostructured TiO2 electrodes prepared by a novel anchoring method. Langmuir,2001,17:2743-2747.
    [63]Xia H P, Nogami M. Copper phthalocyanine bonding with gel and their optical properities. Opt. Mater.,2000,15:93-98.
    [64]Wrobel D, Lukasiewicz J, Goc J, et al. Photocurrent generation in all electro chemical cell with substituted metalloporphyrins. J. Mol. Struct.,2000,555:407-417.
    [65]Hara K. Sato T, Katoh R, et al. Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv. Funct. Mater.,2005,15:246-252.
    [66]Grunwald R, Tributsch H. Mechanisms of instability in Ru-based dye sensitization solar cells. J. Phys. Chem. B,1997,101:2564-2575.
    [67]Nogueira A F, Longo C, De Paoli M A. Polymers in dye sensitized solar cells:overview and perspectives. Coord. Chem. Rev.,2004,248:1455-1468.
    [68]Liu Y, Hagfeldt A, Xiao X R, et al. Investigation of influence of redox species on the interacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol. Energy Mater. Sol. Cells,1998,55:267-281.
    [69]Haque S A, Tachibana Y, Willis R L, et al. Parameters influencing charge recombination kinetics in dye sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B.2000, 104:538-547.
    [70]Lindstrom H, Rensmo H, Sodergran S, et al. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films. J. Phys. Chem,1996,100:3084-3088.
    [711张东社.纳晶多孔Ti02薄膜电极的化学处理.科学通报,2000,5(8):929-932.
    [72]Gratzel M. Systematic investigation of the role of compact TiO2 layer in solid statedye-sensitized solar cells. Coord. Chem. Rev.,2004,48:1479-1489.
    [73]Shah A, Tortes P, Tschamer R, et al. Photovoltaic technology:the cage for thin-film solar cells. Science,1999,285:692-698.
    [74]唐笑,钱觉时,暂住本.染料敏化太阳能电池中的光电极制备技术.材料导报,2006,20:97-103.
    [75]Yin S, Fujishiro Y, Wu J, et al. Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. J. Mater. Proc. Tech.,2003,137:45-48.
    [76]Kawamura H, Muranushi Y, Miura T, et al. Lithium Insertion Charac teristics Into TiO2 (B). Denki Kagaku,1991,59:766-769.
    [77]Yanqin W, Yanzhong H, Humin C. The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode. J. Mater. Sci.,1999,34:2773-2779.
    [78]Ana F, Nogueira M, Paoli D. A dye sensitized TiO2 photovoltaic cell constructed with an electrometric electrolyte. Sol. Energy Mater. Sol. Cells,2000,61:135-141.
    [79]Lakshmi B B, Dorhout P K, Martim C R. Sol-Gel Template Synthesis of Semiconductor Nanostructures. Chem. Mater.,1997,9:857-862.
    [80]Wei M D, Konishi Y, Zhou H S, et al. Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide. J. Mater. Chem.,2006,16:1287-1293.
    [81]Hu L H, Dai S Y, Weng J, et al. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. J. Phys. Chem. B,2007,111:358-362.
    [82]Wang H, He J, Boschloo G, et al. Electrochemical investigation of traps in a nanostructured TiO2 film. J. Phys. Chem. B,2001,105:2529-2533.
    [83]Nakade S, Matsuda M, Kambe S, et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B,2002,106:10004-10010.
    [84]Benkstein K D, Kopidakis N, van de Lagemaat J, et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B,2003,107:7759-7767.
    [85]Uchida S, Chiba R, Tomiha M, et al. Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry,2002,70:418-420.
    [86]Adachi M, Murata Y, Yoshikawa S, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc.,2003,150:G488-G493.
    [87]Mor G K, Shankar K, Grimes A, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett.,2006,6:215-218.
    [88]Paulose M, Shankar K, Grimes A, et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D:Appl. Phys.,2006, 39:2498-2503.
    [89]Shankar K, Mor G K, Grimes A, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology, 2007,18:065707.
    [90]Asagoe K, Ngamsinlapasathian S, Suzuki Y, et al. Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells. Cent. Eur. J. Chem.,2007,5:605-619.
    [91]Jiu J T, Wang F M, Isoda S, et al. Highly efficient dye-sensitized solar cells based on single crystalline TiO2 nanorod film. Chem. Lett.,2005,34:1567-1507.
    [92]Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2 nanowire arrays growndirectly on transparent conducting oxide coated glass:synthesis details and applications. Nano Lett.,2008,8:3781-3786.
    [93]Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells J. Am. Chem. Soc.,2009,131: 3985-3990.
    [94]Wang Z S, Huang C H, Huang Y Y, et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem. Mater.,2001,13:678-682.
    [95]Ito S, Makri Y, Kitamura J, et al. Fabrication and characterization of mesoporous SnO2/ZnO composite electrodes for efficient dye solar cells. J. Mater. Chem.,2004,14: 385-390.
    [96]Chappel S, Chen S G, Zaban A. TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir,2002,18:3336-3342.
    [97]Bandaranayake K M P, India Senevirathna, Prasad Weligamuwa, et al. Dye-sensitized solar cells made from nanocryatalline TiO2 films coated outer layers of different oxide materlials. Coord. Chem. Rev.,2004,248:1277-1281.
    [98]Ngamsinlapasathian S, Sakulkhaemaruethai S, Yoshikawa S, et al. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. J. Photochem. Photobio. A:Chem.,2004,164:145-151.
    [99]Xia J B, Masaki N, Jiang K J. et al. Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells. Chem. Commun.,2007,138-140.
    [100]Jia H M. Xu H, Hu Y, et al. TiO2@CdS core-shell nanorods films:Fabrication and dramatically enhanced photoelectrochemical properties. Electrochem. Comm.,2007.9: 354-360.
    [101]Lenzman F, Krueger J. Burnside S, et al. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanoscrystalline photoanodes: indication for electron injietion from higher excited dye states. J. Phys. Chem. B,2001,105: 6347-6352.
    [102]Thomas W H. Alex B F M, Jeffrey W E, et al. Aerogel Templated ZnO Dye-Sensitized Solar Cells Adv. Mater.,2008,20:1560-1564.
    [103]Guo M. Diao P, Cai S M, et al. Photoelectrochemical properties of highly oriented ZnO nanotube array films on ITO substrates. Chin. Chem. Lett.,2004,15:1113-1116.
    [104]Baxter J B. Walker AM, Ommering K, et al. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology,2006,17: S304-S312.
    [105]Xu F, Dai M, Lu Y N, et al. Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells J. Phys. Chem. C,2010,114: 2776-2782.
    [106]Qu J, Gao X P, Li G R, et al. Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanate nanotubes. J. Phys. Chem. C,2009,113: 3359-3363.
    [107]Dloczik L, Ileperuma O, Lauermann I, et al. Dynamic response of dye-sensitized nanocrystalline solar cells:characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B,1997,101:10281-10289.
    [108]Franco G, Gehring J, Peter L M. Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. J. Phys. Chem. B,1999,103: 692-698.
    [1]干成国,丁洪太,后绪容.材料分析测试方法.上海交通大学出版社,1994,10.
    [2]蔡元霸,梁玉仓.结构化学.2001,20:425.
    [3]黄惠忠.纳米材料分析.化学工业出版社,2003,3.
    [4]王佩玲,李香庭,陆昌伟等.现代无机材料组成与结构表征.北京:高等教育出版社,2006.
    [5]苏勉曾.固体化学导论.北京大学出版社,1987.
    [6]van de Lagemaat J, Park N G, Frank A J. Influence of electrical potential distribution. charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells:a study by electrical impedance and optical modulation techniques. J. Phys. Chem. B,2000,104:2044-2052.
    [7]Dloczik L, Ileperuma O, Lauermann I, et al. Dynamic response of dye-sensitized nanocrystalline solar cells:characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B,1997,101:10281-10289.
    [8]Franco G, Gehring J, Peter L M. Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. J. Phys. Chem. B,1999,103: 692-698.
    [9]Qu J, Gao X P, Li G R, et al. Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanate nanotubes. J. Phys. Chem. C,2009,113: 3359-3363.
    [10]Schlichthorl G, Huang S Y, Sprague J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells:a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B,1997,101:8141-8155.
    [11]Peter L M, Wijayantha K G U. Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells. Electrochem. Commun.,1999,1: 576-580.
    [12]Peter L M, Wijayantha K G U. Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells. Electrochim. Acta,2000,45:4543-4551.
    [13]Schlichthorl G, Park N G, Frank A J. Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B,1999,103:782-791.
    [14]Fisher A C, Peter L M, Ponomarev E A, et al. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B, 2000,104:949-958.
    [15]杨军,解晶莹,王久林.化学电源测试原理与技术.北京:化学工业出版社,2006,49-54.
    [1]段学臣,高桂三,吴湘伟,等.纳米二氧化钛粉末的研制.稀有金属与硬质合金,2002,4(30):17-20.
    [2]尹荔松,沈辉,张进修.纳米级TiO2的制备及其在涂料中的应用.涂料工业,2002,4:31-33.
    [3]Zhu H Y, Lan Y, Gao X P, et al. Phase Transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J. Am. Chem. Soc.,2005,127: 6730-6736.
    [4]Kavan L, Kratochvilova K, Gratzel M. Study of nanocrystalline TiO2(anatase) electrode in the accumulation regime. J. Electroanal. Chem.,1995,394:93-103.
    [5]Sodergren S, Siegbahn H, Rensmo H, et al. Lithium intercalation in nanoporous anatase TiO2 studied with XPS. J. Phys. Chem. B,1997,101:3087-3091.
    [6]Wagemaker M, Kearley G J, van Well A A, et al. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. J. Am. Chem. Soc.,2003,125:840-848.
    [7]Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, et al. Cyclic voltammetry studies of nanoporous semiconductors:capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J. Phys. Chem. B,2003,107:758-768.
    [8]Gratzel M. Photoelectrochemical cell. Nature,2001,414:338-344.
    [9]Park J H, Bard A J. Photoelectrochemical tandem cell with bipolar dye-sensitized electrodes for vectorial electron transfer for water splitting. Electrochem. Solid-State Lett.,2006,9: E5-E8.
    [10]Keisuke A. Supachai N, Yoshikazu S, et al. Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells. Cent. Eur. J. Chem.,2007,5(2):605-619.
    [11]Han L Y, Koide N, Chiba Y, et al. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett.,2004,84:2433-2435.
    [12]Adachi M, Sakamoto M, Jiu J T, et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B, 2006,110:13872-13880.
    [13]Dloczik L, Ileperuma O, Lauermann I, et al. Dynamic response of dye-sensitized nanocrystalline solar cells:characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B,1997,101:10281-10289.
    [14]Schlichthorl G, Huang S Y, Sprague J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells:a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B,1997,101:8141-8155.
    [15]Kruger J, Plass R, Gratzel M, et al. Charge transport and back reaction in solid-state dye-sensitized solar cells:a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B,2003,107:7536-7539.
    [16]Bay L, West K. An equivalent circuit approach to the modeling of the dynamics of dye sensitized solar cells. Sol. Energy Mater. Sol. Cells,2005,87:613-628.
    [17]Peter L M, Wijayantha K G U. Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells. Electrochem. Commun.,1999,1: 576-580.
    [18]Fisher A C, Peter L M. Ponomarev E A, et al. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B, 2000,104:949-958.
    [19]Oekermann T, Zhang D S, Yoshida T, et al. Electron Transport and Back Reaction in Nanocrystalline TiO2 Films prepared by hydrothermal crystallization. J. Phys. Chem. B, 2004,108:2227-2235.
    [20]Franco G, Peter L M, Ponomarev E A. Detection of inhomogeneous dye distribution in dye sensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochem. Commun.,1999,1:61-64.
    [21]van der Zanden B, Goossens A. The nature of electron migration in dye-sensitized nanostructured TiO2. J. Phys. Chem. B,2000,104:7171-7178.
    [22]van de Lagemaat J, Park N G, Frank A J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells:a study by electrical impedance and optical modulation techniques. J. Phys. Chem. B,2000,104:2044-2052.
    [23]Nakade S, Matsuda M, Kambe S, et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B,2002,106:10004-10010.
    [24]Kim K J, Benkstein K D, van de Lagemaat J, et al. Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions. Chem. Mater.,2002,14:1042-1047.
    [I]Kim K J, Benkstein K D, van de Lagemaat, J, et al. Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions. Chem. Mater.,2002,14:1042-1047.
    [2]Boschloo G, Hagfeldt A. Activation energies of electron transport in dye-sensitized TiO2 solar cells. J. Phys. Chem. B,2005,109:12093-12098.
    [3]Benkstein K D, Kopidakis N, van de Lagemaat J, et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B,2003,107:7759-7767.
    [4]Kang S H, Choi S H, Kang M S, et al. Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv. Mater,2008,20:54-58.
    [5]Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett.,2005, 86:053114-1-053114-3.
    [6]Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nat. Mater., 2005,4:455-459.
    [7]Mor G K, Shankar K, Paulose M, et al. Use of Highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano. Lett.,2006,6:215-218.
    [8]Jiu J T, Isoda S, Wang F M, et al. Dye-sensitized solar cellsbased on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B,2006,110:2087-2092.
    [9]Tan B, Wu Y Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B,2006,110:15932-15938.
    [10]Han L Y, Koide N, Chiba Y, et al. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett.,2004,84:2433-2435.
    [11]Adachi M, Sakamoto M, Jiu J T, et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B, 2006,110:13872-13880.
    [12]Zhang D S, Yoshida T, Oekermann T, et al. Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Adv. Funct. Mater.,2006, 16:1228-1234.
    [13]Bay L, West K. An equivalent circuit approach to the modelling of the dynamics of dye sensitized solar cells. Sol. Energy Mater. Sol. Cells,2005,87:613-628.
    [14]Li X, Lin H, Li J B, et al. A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells. J. Phys. Chem. C,2008,112:13744-13753.
    [15]Fisher A C, Peter L M, Ponomarev E A, et al. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B, 2000,104:949-958.
    [16]Franco G, Gehring J, Peter L M. Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. J. Phys. Chem. B,1999,103: 692-698.
    [17]Franco G, Peter L M, Ponomarev E A. Detection of inhomogeneous dye distribution in dye sensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochem. Commun.,1999,1:61-64.
    [18]Peter L. M, Wijayantha K G U. Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells. Electrochim. Acta,2000,45:4543-4551.
    [19]Lan Y, Gao X P, Zhu H Y, et al. Nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater.,2005,15:1310-1318.
    [20]Yang S C, Yang D J, Kim J, et al. Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells. Adv. Mater.,2008,20:1059-1064.
    [21]Ito S, Liska P, Comte P, et al. Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells. Chem. Commun.,2005,4351-4353.
    [22]Baxter J B, Aydil E S. Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells,2006,90:607-622.
    [23]Suzuki Y, Ngamsinlapasathian S, Yoshida R, et al. Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells. Cent. Eur. J. Chem.,2006,4:476-488.
    [24]Han L Y, Koide N, Chiba Y, et al. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett.,2004,84:2433-2435.
    [25]Enache-Pommer E, Boercker J E, Aydila E S. Electron transport and recombination in polycrystalline TiO2 nanowiredye-sensitized solar cells. Appl. Phys. Lett.,2007,91: 123116-1-123116-3.
    [26]Qu J, Gao X P, Li G R, et al. Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanate nanotubes. J. Phys. Chem. C,2009,113: 3359-3363.
    [27]Gonzalez-Valls 1, Lira-Cantu M. Vertically-aligned nanostructures of ZnO for excitonic solar cells:a review. Energy Environ. Sci.,2009,2:19-34.
    [28]Yang Z Z, Xu T, Ito Y S, et al. Sensitized solar cells using short ZnO nanotips on a rough metal anode. J. Phys. Chem. C,2009,113:20521-20526.
    [1]Zaban A,Meier A, Gregg B A. Electric potential distribution and short-range screening in nanoporous TiO2 electrodes. J. Phys. Chem. B,1997,101:7985-7990.
    [2]Nelson J.Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. J. Phys. ReV. B.,1999,59:15374-15380.
    [3]Oekermann T, Zhang D S, Yoshida T, et al. Electron transport:and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization.J.Phys.Chem. B, 2004,108:2227-2235.
    [4]Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano. Lett., 2007,7:69-74
    [5]Liang L Y, Dai S Y, Hu L H,et al. Porosity effects on electron transport in TiO2 films and its application to dye-sensitized solar cells. J. Phys. Chem. B,2006,110:12404-12409.
    [6]Enache-Pommer E, Boercker. J E, Aydila E S. Electron transport and recombination in polycrystalline TiO2 nanowiredye-sensitized solar cells Appl. Phys.Lett., 2007,91: 123116-1-123116-3
    [7]Wang H, He J, Boschloo G, et al. Electrochemical investigation of traps in a nanostructured TiO2 film. J. Phys.Chem. B,2001,105:2529-2533
    [8]Nakade S, Matsuda M, Kambe S,et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells.J. Phys. Chem. B,2002,106:10004-10010.
    [9]Benkstein K D,Kopidakis N,van de Lagemaat J, et al.Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells.J. Phys. Chem. B,2003,107:7759-7767.
    [10]Kang S H, Choi S H,Kang M S,et al. Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv. Mater.,2008,20:54-58:
    [11]Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells.Appl.Phys. Lett.,2005, 86:053114-1-053114-3.
    [12]Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nat. Mater., 2005,4:455-459.
    [13]Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano. Lett.,2006,6:215-218.
    [14]Jiu J T. Isoda S, Wang F M, et al. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B,2006,110:2087-2092.
    [15]Tan B, Wu Y Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B, 2006,110:15932-15938.
    [16]施尔畏,夏长态,王步国等.水热法的应用与发展.无机材料学报,1996,11:193-206.
    [17]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-740.
    [18]Peter L M, Wijayantha K G U. Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells. Electrochem. Commun.,1999,1: 576-580.
    [19]Li X, Lin H, Li J B, et al. A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO2 film for flexible dye-sensitized solar cells. J. Phys.Chem.C,2008,112:13744-13753.
    [20]Dloczik L, Ileperuma O, Lauermann I, et al. Dynamic response of dye-sensitized nanocrystalline solar cells:characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B,1997,101:10281-10289.
    [21]Schlichthorl G, Huang S Y, Sprague J, et al. Charge transport and back reacon in solid-state dye-sensitized solar cells:a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B,2003,107:7536-7539.
    [22]Kruger J, Plass R, Gratzel M, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells:a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B,1997,101:8141-8155.
    [23]Peter L. M, Wijayantha K G U. Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells. Electrochim. Acta,2000,45:4543-4551.
    [24]Oekermann T, Zhang D S, Yoshida T, et al. Electron Transport and Back Reaction in Nanocrystalline TiO2 Films prepared by hydrothermal crystallization. J. Phys. Chem. B, 2004,108:2227-2235.
    [25]Franco G, Peter L M, Ponomarev E A. Detection of inhomogeneous dye distribution in dye sensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochem. Commun.,1999,1:61-64.
    [26]Kim K J, Benkstein K D, van de Lagemaat J, et al. Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions. Chem. Mater.,2002,14:1042-1047.
    [27]Park N G, van de Lagemaat J, Frank A J. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B,2000,104:8989-8994.