氧化铈基中温固体氧化物燃料电池的阳极和电解质材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种能够清洁、高效地将储存在各种燃料如氢气、碳氢化合物、煤气、生物质气等中的化学能转化为电能的能量转换装置。毫无疑问,SOFC作为能量供应装置的大规模应用必然能够有效缓解日益严峻的环境污染以及化石燃料的消耗。
     在本论文的第一章中,我们将对SOFC的基本知识以及各主要的组分材料进行陈述。在此基础上指出,要实现SOFC技术的商业化,必须将其操作温度由传统的800~1000℃降低到700℃甚至更低,这就需要大力发展在中低温时具有更高性能的电极和电解质材料。正是基于这一点,在本论文之后的章节中,我们将分别致力于对纳米颗粒浸渍能够改善Ni基阳极性能根源的揭示(第二章),对采用甘氨酸-硝酸盐法(GNP)合成氧化钐掺杂的氧化铈(SDC)电解质粉体工艺的优化(第三章),于更低烧结温度下制备SDC电解质基单电池(第四章),以及简化的三层不锈钢支撑单电池的研制(第五章)等工作,以期能够对中低温SOFC技术的发展和商业化进程起到一定的促进作用。
     已有许多研究证明向SOFC的阳极中浸渍氧化物纳米颗粒能够改善其电化学性能。不过,截至目前,人们仍不清楚这种改善究竟是源于浸渍的纳米颗粒对阳极反应活性区域(三相界面)的扩展还是对其催化活性的提高。因此,在本论文的第二章中,我们分别制备了SDC、纯二氧化铈、氧化钐和氧化铝这几种不同氧化物浸渍的Ni基阳极来对比研究这两种效应。在研究中我们发现,除A1203外,其余三种氧化物纳米颗粒的浸渍均能有效改善阳极对氢气氧化反应的催化活性。同时,具有CeO2和Sm203浸渍阳极的单电池能够表现出与通过SDC浸渍阳极的单电池差不多的输出性能,当这些氧化物颗粒的浸渍量达到最佳值~1.7mmolcm-3时,电池会表现出最高的输出性能,峰功率密度均在750mWcm-2左右。这就说明浸渍后阳极性能的提高主要是源于其电化学催化活性的显著提高,而非三相界面的扩展。同时,这些研究也再次证明湿化学浸渍法确实是一种高效的向SOFC阳极骨架中引入具有高催化活性的纳米氧化物颗粒以提高电池输出性能和稳定性的修饰工艺。
     另外,由于掺杂的氧化铈材料在低温时具有比经典的氧化钇稳定的氧化锆(YSZ)电解质更高的氧离子电导率,许多研究者也致力于发展采用这种薄膜电解质的单电池,其中一种较为简便的方法便是采用共压-共烧工艺直接在多孔阳极衬底上制备致密电解质层,能够大大降低生产成本。不过对于这种制备工艺而言,最为关键的便是要合成出具有尽可能低的松装密度的电解质粉体,通常是由甘氨酸-硝酸盐法(GNP)来实现的。在本论文的第三章中,我们发现采用适当比例的Ce(NO3)3和Ce(NH4)2(NO3)6作为混合铈源能够合成出便于制备高密度高性能的电解质薄膜的具有低松装密度和高氧离子电导率的SDC粉体。其中,当这两种铈源的摩尔比为1:1时,所合成出的SDC粉体易于被烧结致密,同时能够表现出最高的的电导率(在600和800℃时分别为~0.020和~0.084Scm-1)和最低的电导活化能(-0.70eV)。而当Ce(N03)3和Ce(NH4)2(NO3)6的摩尔比为3:1时,所合成出的SDC粉体具有最低的松装密度(36.0±0.5mgcm-3),最适宜于在多孔阳极衬底上制备致密的SDC电解质薄膜,这也正是在低成本前提下制备高性能SOFC最为重要的一步。
     对于SDC电解质材料而言,限制其应用的一项重要缺陷便是其烧结活性较差,很难在1500℃以下烧结得足够致密。因此,许多研究者也致力于改进SDC粉体的烧结活性,以期有效的降低其烧结温度,在优化电极微结构的同时,抑制甚至消除电池组分间的不利相互扩散和反应。在本论文的第四章中,我们采用第三章中使用75mol%Ce(NO3)3和25mol%Ce(NH4)2(NO3)6作为混合铈源所合成出的具有最低松装密度的高活性SDC粉体,借助共压-共烧工艺成功于1150℃的低温制备出了高性能的SOFC单电池。并且,由于烧结温度的降低,电池的阳极具有更合适的孔隙率和粒径,从而具有更佳的微结构以及与电解质层更优的连接性,使得电池的欧姆阻抗和极化阻抗均显著降低,大大提高电池输出性能。此外,我们还发现,当电池于650℃的高温进行工作时,其于高电流密度区域的浓差极化也会得到很好的缓解。
     近些年,由于具有更好的机械强度,对急速热循环和氧化还原周期更好的抵抗力,以及更低的成本,一些金属支撑构型单电池的研制也受到越来越多的关注。通常状况下,这些金属支撑构型单电池都包括金属支撑体、阳极、电解质和阴极这四层结构。在本论文的最后一章,我们设计了一种简化的无需阳极功能层的三层结构的不锈钢支撑构型。具体的,我们先通过共烧工艺制备出YSZ电解质层与430系列不锈钢支撑体,随后将Ni和SDC颗粒浸入不锈钢支撑体中以提高其电化学氧化反应催化活性。在700℃时,我们所制备的单电池达到了~246mWcm-2的峰功率密度,并对五个周期的充分氧化还原过程表现出了良好的抗性,从而证明采用这种简化的三层结构制备高性能的金属支撑SOFC单电池是完全可行的。
Solid Oxide Fuel Cells (SOFCs) are regarded as one of the cleanest and most efficient devices for direct conversion to electricity of a wide variety of fuels, from hydrogen to hydrocarbons, coal gas, and bio-derived renewable fuels. It is believed that broad application of SOFCs for power generation alone can significantly reduce pollutant emission and consumption of fossil fuels.
     In Chapter1, a brief introduction is presented on the basic concepts and the main component materials of SOFCs. Then it is concluded that for the commercialization of SOFC technologies, it is vital to lower the operation temperature from traditional800-1000℃to700℃or lower, which requires further development of both high performance electrode and electrolyte materials at reduced temperatures. Thus, in the following parts of this thesis, we will mainly focus on the revelation of the reason why nanoparticles impregnation can improve the performance of Ni based anode (Chapter2), the optimization of samaria-doped ceria (SDC) electrolyte synthesis by glycine-nitrate process (GNP)(Chapter3), the fabrication of SDC electrolyte based single cells at reduced co-firing temperature (Chapter4), as well as the design of simplified three-layer stainless steel supported single cells (Chapter5), respectively, with the goal of promoting the development and commercialization of intermediate and low temperature SOFCs.
     Impregnated nanoparticles are very effective in improving the electrochemical performance of SOFC anodes possibly due to the extension of reaction sites and/or the enhancement of catalytic activity. To date, however, it remains unclear which effect plays a dominant role. Thus, in Chapter2, SDC, pure ceria, samaria, and alumina oxides impregnated Ni-based anodes are fabricated to compare the site extending and the catalytic effects. Except for alumina, the impregnation of the other three nano-sized oxides could substantially enhance the performance of the anodes for the hydrogen oxidation reactions. Moreover, single cells with CeO2and Sm2O3impregnated anodes could exhibit as great performance as those with SDC impregnated anodes. When the impregnation loading reached the optimal value,1.7mmolcm-3, these cells exhibit very high performance, with peak power densities around750mWcm-2. The high performance of CeO2and Sm2O3impregnated anodes demonstrates that the improved performance are mainly attributed to the significantly improved electrochemical activities of the anodes, but not to the extension of triple-phase-boundary, and wet impregnation is indeed an alternative and effective technique to introduce these nano-sized catalytic active oxides into the anode configuration of SOFCs to enhance cell performance, stability and reliability.
     On the other hand, considerable efforts have been devoted to the development of single cells with thin-film electrolytes of doped ceria, which show much higher ionic conductivities than the state-of-the-art yttria-stabilized zirconia (YSZ) electrolytes at reduced temperatures. A simple and elegant approach to fabrication of dense electrolyte films on porous anode substrates is a co-pressing and co-firing process, significantly reducing the fabrication cost. However, the critical step is the synthesis of electrolyte powders with extremely low apparent density, usually achieved via a GNP. In Chapter3, proper combination of Ce(NO3)3and Ce(NH4)2(NO3)6as mixed cerium source is shown to be more effective in achieving SDC powders with low apparent density for easy fabrication of thin-film electrolyte membrane with very high sintered density and excellent ionic conductivity. In particular, when the molar ratio of the two cerium precursors is around1:1, the derived SDC powders can be readily sintered to high density, exhibiting the highest conductivities (~0.084and~0.020Scm-1at800and600℃, respectively) with the activation energy of~0.70eV. When the molar ratio of Ce(NO3)3to Ce(NH4)2(NO3)6was adjusted to3:1, the derived SDC powders have the lowest apparent density (36.0±0.5mgcm-3), best suited for preparation of dense, thin-film SDC electrolyte membranes on porous anode substrates, a critical step toward low-cost fabrication of high-performance SOFCs.
     For SDC based electrolyte, one of the main drawbacks which may limit its utilization is its poor sinterability, making it difficult to achieve sufficiently high density below1500℃. Thus, many efforts have been devoted to improving the sinterability of SDC powders in order to effectively reduce the firing temperature, to optimize the electrode microstructure, and to minimize or eliminate unfavorable diffusion and reaction between cell components. In Chapter4, we have successfully fabricated high-performance, single cells by co-pressing followed by co-sintering at a temperature as low as1150℃using highly-active SDC powders derived from a modified GNP which uses75mol%Ce(NO3)3and25mol%Ce(NH4)2(NO3)6as a mixed cerium source as elaborated in Chapter3. In particular, the low firing temperature has resulted in anode microstructures with more appropriate porosity, grain size, and connectivity with the electrolyte, significantly reducing both the ohmic resistance and the electrode polarization resistance and enhancing cell performance. In addition, it is found that the electrode polarization at high current densities is significantly suppressed when operated at650℃.
     Recently, there have been lots of interests in developing metal-supported SOFCs, driven by their excellent strength, high tolerance to extremely rapid thermal cycling and redox cycling, as well as low material cost. These metal-supported SOFCs are usually four-layer structure consisting of the metal support, the anode, the electrolyte and the cathode. In the last chapter, a simplified three-layer design without the anode interlayer is proposed. The novel design is demonstrated by co-firing YSZ electrolytes and43OL stainless steel substrates, where Ni and doped ceria are impregnated to increase the catalytic activity towards electrochemical oxidation. Peak power density as high as246mWcm-2is obtained at700℃, and good tolerance to five complete redox cycles is also initially demonstrated, suggesting that this design is feasible for high performance metal-supported SOFCs.
引文
[I]Minh NQ.1993. Ceramic fuel-cells. Journal of the American Ceramic Society,76:563-588.
    [2]Grove WR.1839. On voltaic series and the combination of gases by platinum. Philosophical Magazine and Journal of Science,14:127-135.
    [3]Wagner C.1993. Beitrag zur theorie des anlaufvorgangs. Z. Phys. Chem., B41:42.
    [4]Zha SW, Xia CR, Meng GY.2001. Calculation of the e.m.f. of solid oxide fuel cells. Journal of Applied Electrochemistry,31:93-98.
    [5]Wachsman ED, Lee KT.2011. Lowering the temperature of solid oxide fuel cells. Science, 334:935-939.
    [6]Singhal SC, Kendall K.2003. High temperature solid oxide fuel cells:fundamentals, design and applications. Elesvier.
    [7]Tucker MC.2010. Progress in metal-supported solid oxide fuel cells:a review. J Power Sources,195 (15):4570-4582.
    [8]Tucker MC, Lau GY, Jacobson CP, et al.2008. Stability and robustness of metal-supported SOFCs. J Power Sources,175 (1):447-451.
    [9]McIntosh S, Gorte RJ.2004. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews,104 (10):4845-4865.
    [10]Toebes ML, Bitter JH, Dillen AJ, et al.2002. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catalysis Today,76 (1):33-42.
    [11]Kim T, Liu G, Boaro M, et al.2006. A study of carbon formation and prevention in hydrocarbon-fueled SOFC. Journal of Power Sources,155 (2):231-238.
    [12]Zha S, Cheng Z, Liu M.2007. Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells. Journal of the Electrochemical Society,154 (2):B201-B206.
    [13]Wincewicz KC, Cooper JS.2005. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources,140:280-296.
    [14]Baur E, Preis H.1937. Z. Elktrochem.,43:727.
    [15]Badwal SPS.1992. Zirconia-based solid electrolytes-microstructure, stability and ionic-conductivity. Solid State Ionics,52:23-32.
    [16]Molenda J, Swierczek K, Zajac W.2007. Functional materials for the IT-SOFC. Journal of Power Sources,173:657-670.
    [17]Kawada T, Mizusaki J.2003. Handbook of Fuel Cells—Fundamantals, Technology and Applications, ed. Vielstich W, Gasteiger HA and Lamm A, John Wiley & Sons, New Jersey, USA, 4:987-1001.
    [18]Strickler DW, Carlson WG.1964. Ionic Conductivity of Cubic Solid Solutions in the System CaO—Y2O3—ZrO2. J. Am. Ceram. Soc.47 (3):122-127.
    [19]Dixon JM, LaGrange LD, Mergen U, et al.1963. Electrolytes for solid oxide fuel cells. J. Electrochem. Soc.110 (4):276-280.
    [20]Nomura K, Mizutani Y, Kawai M, et al.2000. Aging and Raman scattering study of scandia and yttria doped zirconia.Solid State Ionics 132:235-239.
    [21]Badwal SPS, Ciacchi FT, Milosevic D.2000. Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics,136:91-99.
    [22]Kharton VV, Figueiredo FM, Navarro L, et al.,2001. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science,36:1105-1117.
    [23]Mogensen M, Sammes NM, Tompsett GA.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [24]Steele BCH.1994. Oxygen-transport and exchange in oxide ceramics. Journal of Power Sources,49:1-14.
    [25]Peng RR, Xia CR, Fu QX, et al.2002. Sintering and electrical properties of (CeO2)0.1(Sm2O3)0.1 powders prepared by glycine-nitrate process. Materials Letters,56: 1043-1047.
    [26]Ding D, Liu B, Zhu Z, et al.,2008. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179 (21-26):896-899.
    [27]Ding C, Lin H, Sato K, et al.2009. Preparation of doped ceria electrolyte films for SOFCs by spray coating method. Journal of Dispersion Science and Technology,30(2):241-245.
    [28]Ding D, Liu B, Gong M, et al.2010. Electrical properties of samaria-doped ceria electrolytes from highly active powders. Electrochimica Acta,55(15):4529-4535.
    [29]Zha S, Xia C, Meng G.2003. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. Journal of Power Sources,115:44-48.
    [30]Zhang TS, Ma J, Cheng H, et al. Ionic conductivity of high-purity Gd-doped ceria solid solutions. Materials Research Bulletin,41:563-568.
    [31]Godickemeier M, Gauckler LJ.1998. Engineering of solid oxide fuel cells with ceria-based electrolytes. Journal of the Electrochemical Society,145:414-421.
    [32]Horita T, Sakai N, Yokokawa H, et al.1997. Ceria-zirconia composite electrolyte for solid oxide fuel cells. J Electroceram,1:155-164.
    [33]Tsoga A, Gupta A, Naoumidis A, et al.2000. Gadolinia-doped ceria and yttria stabilized zirconia interfaces:Regarding their application for SOFC technology. Acta Mater,48:4709-4714.
    [34]Tompsett GA, Sammes NM, Yamamoto O.1997. Ceria-yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes. Journal of the American Ceramic Society,80:3181-3186.
    [35]Fergus JW.2006. Electrolytes for solid oxide fuel cells. Journal of Power Sources,162: 30-40.
    [36]Goodenough JB.2003. Oxide-ion electrolytes. Annual Review of Materials Research,33: 91-128.
    [37]Ishihara T, Matsuda H, Takita Y.1994. Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor. Journal of the American Chemical Society,116:3801-3803.
    [38]Feng M, Goodenough JB.1994. A superior oxide-ion electrolyte. European Journal of Solid State and Inorganic Chemistry,31:663-672.
    [39]Huang KQ, Tichy R, Goodenough JB, et al.1998. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3:III, Performance tests of single ceramic fuel cells. Journal of the American Ceramic Society,81:2581-2585.
    [40]Matraszek A, Singheiser L, Kobertz D, et al.2004. Phase diagram study in the La2O3-Ga2O3-MgO-SrO system in air. Solid State Ionics,166:343-350.
    [41]Yamaji K, Horita T, Ishikawa M, et al.1999. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere. Solid State Ionics,121:217-224.
    [42]Zhang XG, Ohara S, Maric R, et al.2000. Interface reactions in the NiO-SDC-LSGM system. Solid State Ionics,133:153-160.
    [43]Huang YH, Dass RI, Xing ZL, et al.2006. Double perovskites as anode materials for solid-oxide fuel cells. Science,312:254-257.
    [44]Liu Q, Dong X, Xiao G, et al.2010. A Novel Electrode Material for Symmetrical SOFCs. Adv. Mater.,22:5478-5482.
    [45]Takahashi T, Iwahara H, Arao TJ.1975. High oxide ion con-duction in sintered oxides of the system Bi2O3-Y2O3. Appl. Electrochem.,5:187-194.
    [46]Hapase MG, Tare VB, Biswas AB.1967. Indian J. Pure Appl. Phys.,5:1.
    [47]Azad AM, Larose, S, Akbar SA.1994. Bismuth oxide-based solid electrolytes for fuel cells J. Mater. Sci.,29 (16):4135-4151.
    [48]Shuk P, Wiemhofer HD, Guth U, et al.1996. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics,89 (3-4):179-196.
    [49]Jiang Z, Zhang L, Cai L, et al.2009. Bismuth oxide-coated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells with yttria-stabilized zirconia electrolytes. Electrochimica Acta,54:3059-3065.
    [50]Jiang Z, Lei Z, Ding B, et al.2010. Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. International Journal of Hydrogen Energy,35(20):8322-8330.
    [51]Jiang Z, Zhang L, Feng K, et al.2008. Nanoscale bismuth oxide impregnated (La,Sr)MnO3 cathodes forintermediate-temperature solid oxide fuel cells. Journal of Power Sources,185: 40-48.
    [52]Lacorre P, Goutenoire F, Bohnke O, et al.2000. Designing fast oxide-ion conductors based on La2Mo2O9. Nature,404:856-858.
    [53]Wang XP, Cheng ZJ, Fang QF.2005. Influence of potassium doping on the oxygen-ion diffusion and ionic conduction in the La2Mo2O9 oxide-ion conductors. Solid State Ionics,176: 761-765.
    [54]Georges S, Goutenoire F, Altorfer F, et al.2003. Thermal, structural and transport properties of the fast oxide-ion conductors La2-xRxMo2O9 (R=Nd, Gd, Y). Solid State Ionics,161: 231-241.
    [55]Wang JD, Xie YH, Zhang ZF, et al.2005. Protonic conduction in Ca2+-doped La2M2O7 (M= Ce, Zr) with its application to ammonia synthesis electrochemically. Mater. Res. Bull.,40: 1294-1302.
    [56]Goodenough JB, Ruizdiaz JE, Zhen YS.1990. Oxide-ion conduction in Ba2In2O5 and Ba3In2CeO8, Ba3In2HfO8, or Ba3In2ZrO8. Solid State Ionics,44:21-31.
    [57]Kakinuma K, Arisaka T, Yamamura H, et al.2004. Solid oxide fuel cell using (Ba0.3Sr0.2La0.5)In02.75 electrolyte. Solid State Ionics,175:139-143.
    [58]Kuang X, Green MA, Niu H, et al.2008. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nature Materials,7 (6):498-504.
    [59]Liu B, Guo W, Chen F, et al.2012. Ga site doping and concentration variation effects on the conductivities of melilite-type lanthanum strontium gallate electrolytes. International Journal of Hydrogen Energy,37(1):961-966.
    [60]Liu B, Ding D, Liu Z, et al.2011. Synthesis and electrical conductivity of various melilite-type electrolytes Ln(1+x)Sr(1-x)Ga(3)O(7+x/2). Solid State Ionics,191:68-72.
    [61]Lacerda M, Irvine JTS, Glasser FP, et al.1988. High oxide ion conductivity in Ca12Al14O33. Nature,332:525-526.
    [62]Hosono H, Hayashi K, Kajihara K, et al.2009. Oxygen ion conduction in 12CaO center dot 7A1(2)O(3):O(2-) conduction mechanism and possibility of O(-) fast conduction. Solid State Ionics,180:550-555.
    [63]Kendrick E, Islam MS, Slater PR.2007. Developing apatites for solid oxide fuel cells:insight into structural, transport and doping properties. Journal of Materials Chemistry,17:3104-3111.
    [64]Sansom JEH, Tolchard JR, Islam MS, et al.2006. Solid state Si-29 NMR studies of apatite-type oxide ion conductors J. Mater. Chem.,16:1410-1413.
    [65]Atkinson A, Barnett S, Gorte RJ, et al.2004. Advanced anodes for high-temperature fuel cells. Nature Materials,3:17-27.
    [66]Spacil HS.1970. US Patent.
    [67]Jiang SP, Chan SH.2004. A review of anode materials development in solid oxide fuel cells. Journal of Materials Science,39:4405-4439.
    [68]Liu Z, Liu B, Ding D, et al.2013. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources,237:243-259.
    [69]Jiang SP.2006. A review of wet impregnation-an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science and Engineering:A,418 (1-2):199-210.
    [70]Jiang SP.2012. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration:Advances and challenges. International Journal of Hydrogen Energy.37 (1):p. 449-470.
    [71]Gorte RJ, Vohs JM.2009. Nanostructured anodes for solid oxide fuel cells. Current Opinion in Colloid & Interface Science,14 (4):236-244.
    [72]Zhu W, Xia C, Fan J, et al.2006. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. Journal of Power Sources,160 (2):897-902.
    [73]Ding D, Liu Z, Li L, et al.2008. An octane-fueled low temperature solid oxide fuel cell with Ru-free anodes. Electrochemistry Communications,10 (9):1295-1298.
    [74]Liu B, Liu Z, Wang S, et al.2012. Catalytic decomposition of methane on impregnated nickel based anodes with molecular-beam mass spectrometry and tunable synchrotron vacuum ultraviolet photoionization. International Journal of Hydrogen Energy.37 (10):8354-8359.
    [75]Gorte RJ, Park S, Vohs JM, et al.2000. Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Advanced Materials,12 (19):1465-1469.
    [76]Park S, Gorte RJ, Vohs JM.2001. Tape cast solid oxide fuel cells for the direct oxidation of hydrocarbons. Journal of the Electrochemical Society,148 (5):A443-A447.
    [77]Park S, Vohs JM, Gorte RJ.2000. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature,404 (6775):265-267.
    [78]Kim H, Rosa C, Boaro M, et al.2002. Fabrication of highly porous yttria-stabilized zirconia by acid leaching nickel from a nickel-yttria-stabilized zirconia cermet. Journal of the American Ceramic Society,85 (6):1473-1476.
    [79]Kim H, Park S, Vohs JM, et al.2001. Direct oxidation of liquid fuels in a solid oxide fuel cell. Journal of the Electrochemical Society,148 (7):A693-A695.
    [80]Gorte RJ, Kim H, Vohs JM.2002. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. Journal of Power Sources,106 (1-2):10-15.
    [81]Lu C, Worrell WL, Wang C, et al.2002. Development of solid oxide fuel cells for the direct oxidation of hydrocarbon fuels. Solid State Ionics,152:393-397.
    [82]Bi ZH, Zhu JH.2009. A Cu-CeO2-LDC Composite Anode for LSGM Electrolyte-Supported Solid Oxide Fuel Cells. Electrochemical and Solid State Letters,12 (7):B107-B111.2005.
    [83]He HP, Gorte RJ, Vohs JM.2005. Highly sulfur tolerant Cu-ceria anodes for SOFCs. Electrochemical and Solid State Letters,8 (6):A279-A280.
    [84]Kim H, Vohs JM, and Gorte RJ.2001. Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell. Chemical Communications,0 (22):2334-2335.
    [85]Mogensen M, Lindegaard T, Hansen UR, et al.1994. Physical-properties of mixed conductor solid oxide fuel-cell anodes of doped CeO2. Journal of the Electrochemical Society,141: 2122-2128.
    [86]Tsai T, Barnett SA.1998. Effect of mixed-conducting interfacial layers on solid oxide fuel cell anode performance. Journal of the Electrochemical Society,145:1696-1701.
    [87]Marina OA, Bagger C, Primdahl S, et al.1999. A solid oxide fuel cell with a gadolinia-doped ceria anode:preparation and performance. Solid State Ionics,123:199-208.
    [88]Tao S, Irvine JTS.2004. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.503-δ, a redox-stable, efficient perovskite anode for SOFCs. Journal of the Electrochemical Society,151: A252-A259.
    [89]Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales JC, et al.2006. Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.503-δ at lanthanum gallate electrolytes. Chemistry of Materials,18(4):1001-1006.
    [90]Tao S, Irvine JTS.2004. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.503-δ in relation to its potential as a solid oxide fuel cell anode material. Chemistry of Materials,16 (21): 4116-4121.
    [91]Fu Q, Mi S, Wessel E, et al.2008. Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3. Journal of the European Ceramic Society,28 (4):811-820.
    [92]Hui S, Petric A.2002. Electrical properties of yttrium-doped strontium titanate under reducing conditions. Journal of the Electrochemical Society,149:J1-J10.
    [93]Fu Q, Tietz F, Sebold D, et al.2007. An efficient ceramic-based anode for solid oxide fuel cells. Journal of Power Sources,171 (2):663-669.
    [94]Ge XM, Chan SH.2009. Lanthanum strontium vanadate as potential anodes for solid oxide fuel cells. Journal of the Electrochemical Society,156:B386-B391.
    [95]Park JS, Hasson ID, Gross MD, et al.2011. A high-performance solid oxide fuel cell anode based on lanthanum strontium vanadate. Journal of Power Sources,196 (18):7488-7494.
    [96]Zhang L, Liu Y, Zhang Y, et al.2011. Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles. Electrochemistry Communications,13 (7):711-713.
    [97]He B, Zhao L, Song S, et al.2012. Sr2Fe1.5Mo0.5O6-delta-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society,159: B619-B626.
    [98]Jiang SP.2008. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells:a review. Journal of Materials Science,43:6799-6833.
    [99]Mizusaki J, Mori N, Takai H, et al.2000. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+delta.Solid State Ionics,129:163-177.
    [100]Mizusaki J, Yonemura Y, Kamata H, et al.2000. Electronic conductivity, seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ionics, 132:167-180.
    [101]Tsipis EV, Kharton VV.2008. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review. Journal of Solid State Electrochemistry,12:1039-1060.
    [102]Zhao F, Peng RR, Xia CR.2008. A La0.6Sr0.4CoO3-delta-based electrode wit high durability for intermediate temperature solid oxide fuel cells. Materials Research Bulletin,43:370-376.
    [103]Simner SP, Bonnett JF, Canfield NL, et al.2002. Optimized lanthanum ferrite-based cathodes for anode-supported SOFCs. Electrochemical and Solid State Letters,5:A173-A175.
    [104]Simner SP, Bonnett JR, Canfield NL, et al.2003. Development of lanthanum ferrite SOFC cathodes. Journal of Power Sources,113:1-10.
    [105]Fukunaga H, Koyama M, Takahashi N, et al.2000. Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics,132:279-285.
    [106]Xia CR, Rauch W, Chen FL, et al.2002. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,149:11-19.
    [107]Steele BCH.1996. Survey of materials selection for ceramic fuel cells.2. Cathodes and anodes. Solid State Ionics,86-88:1223-1234.
    [108]Murray EP, Sever MJ, Barnett SA.2002. Electrochemical performance of (La,Sr)(Co,Fe)03 (Ce,Gd)O3 composite cathodes. Solid State Ionics,148:27-34.
    [109]Shao ZP, Haile SM.2004. A high-performance cathode for the next generation of solid oxide fuel cells. Nature,431:170-173.
    [110]Svarcova S, Wiik K, Tolchard J, et al.2008. Structural instability of cubic perovskite BaxSr1-xCo1-yFeyO3-delta.Solid State Ionics,178:1787-1791.
    [111]Skinner SJ, Kilner JA.2000. Oxygen diffusion and surface exchange in La2-xSrxNiO4+delta. Solid State Ionics,135:709-712.
    [112]Aguadero A, Escudero MJ, Perez M, et al.2006. Effect of Sr content on the crystal structure and electrical properties of the system La2-xSrxNiO4+delta (0≤ x≤ 1). Dalton Transactions,28 (36): 4377-4383.
    [113]Tarancon A, Pena-Martinez J, Marrero-Lopez D, et al.2008. Stability, chemical compatibility and electrochemical performance of GdBaCo2O5+x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells. Solid State Ionics,179:2372-2378.
    [114]Kim JH, Manthiram A.2008. LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society,155:B385-B390.
    [115]Fergus JW.2005. Metallic interconnects for solid oxide fuel cells. Mater. Sci. Eng.,397: 271-283.
    [116]Yasuda I, Hikita T.1993. Electrical-conductivity and defect structure of calcium-doped lanthanum chromites. Journal of the Electrochemical Society,140:1699-1704.
    [117]Quadakkers WJ, Piron-Abellan J, Shemet V, et al.2003. Metallic interconnectors for solid oxide fuel cells-a review. Materials at High Temperatures,20:115-127.
    [1]Zhang L, Xia C.2011. Low temperature solid oxide fuel cells. Progress in Chemistry,23: 430-440.
    [2]Liu Z, Liu B, Ding D, et al.2013. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources,237:243-259.
    [3]Gorte RJ, Vohs JM.2009. Nanostructured anodes for solid oxide fuel cells. Current Opinion in Colloid & Interface Science,14 (4):236-244.
    [4]Jiang SP.2006. A review of wet impregnation-an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science and Engineering:A,418 (1-2):199-210.
    [5]Jiang SP.2012. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration:Advances and challenges. International Journal of Hydrogen Energy.37 (1):p. 449-470.
    [6]Jiang SP, Duan YY, Love JG.2002. Fabrication of high-performance NiO/Y2O3-ZrO2 cermet anodes of solid oxide fuel cells by ion impregnation. J. Electrochem. Soc.,149:A1175.
    [7]Ding D, Zhu W, Gao J, et al.2008. High performance electrolyte-coated anodes for low-temperature solid oxide fuel cells:Model and experiments. Journal of Power Sources,179: 177-185.
    [8]Gorte RJ, Park S, Vohs JM, et al.2000. Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Advanced Materials,12 (19):1465-1469.
    [9]Park S, Gorte RJ, Vohs JM.2001. Tape cast solid oxide fuel cells for the direct oxidation of hydrocarbons. Journal of the Electrochemical Society,148 (5):A443-A447.
    [10]Kim H, Rosa C, Boaro M, et al.2002. Fabrication of highly porous yttria-stabilized zirconia by acid leaching nickel from a nickel-yttria-stabilized zirconia cermet. Journal of the American Ceramic Society,85 (6):1473-1476.
    [11]Ding D, Li L, Feng K, et al.2009. High performance Ni-Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,187:400-402.
    [12]Xia C, Liu M.2001. A Simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. Journal of the American Ceramic Society,84 (8):1903-1905.
    [13]Xia C, Liu M.2001. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics,144 (3-4):249-255.
    [14]Zhu W, Xia C, Fan J, et al.2006. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. Journal of Power Sources,160 (2):897-902.
    [15]Xie Z, Xia C, Zhang M, et al.2006. Ni1-xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel. Journal of Power Sources,161 (2):1056-1061.
    [16]Wang WD, Liu PY, Fu YL, et al.2002. Redox properties and catalytic behavior of praseodymium-modified (Ce-Zr)O-2 solid solutions in three-way catalysts. Catal. Lett.,82:19-27.
    [17]Zhang XG, Robertson M, Yick S, et al.2006. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O19 electrolyte SOFC operating below 600 degrees C. Journal of Power Sources,160:1211-1216.
    [18]Liu M, Hu H.1996. Effect of interfacial resistance on determination of transport properties of mixed-conducting electrolytes. Journal of the Electrochemical Society,143:L109-L112.
    [19]McIntosh S, Vohs JM, Gorte RJ.2003. Impedance spectroscopy for the characterization of Cu-Ceria-YSZ anodes for SOFCs. J. Electrochem. Soc.,150:A1305-A1312.
    [20]van Berkel FPF, van Heuveln FH, Huijsmans JPP.1994. Characterization of solid oxide fuel-cell electrodes by impedance spectra and IV-characteristics. Solid State Ionics,72:240-247.
    [21]Hansen KK, Wandel M, Liu YL, et al.2010. Effect of impregnation of La0.85Sr0.15MnO3/yttria stabilized zirconia solid oxide fuel cell cathodes with La0.85Sr0.15MnO3 or Al2O3 nano-particles. Electrochim. Acta,55:4606-4609.
    [22]Mogensen M, Skaarup S.1996. Kinetic and geometric aspects of solid oxide fuel cell electrodes Solid State Ionics,86-88:1151-1160.
    [23]Trovarelli A.1996. Catalytic properties of ceria and Ce02-containing materials. Catal. Rev. Sci. Eng.,38:439-520.
    [24]McIntosh S, Vohs JM, Gorte RJ.2002. An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes. Electrochim. Acta,47:3815-3821.
    [25]Babaei A, Jiang SP, Li J.2009. Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover. J. Electrochem. Soc.,156: B1022-B1029.
    [26]He B, Zhao L, Wang W, et al.2011. Electro-catalytic activity of Dy2O3 as a solid oxide fuel cell anode material. Electrochem. Commun.,13:194-196.
    [1]Zhang L, Xia C.2011. Low temperature solid oxide fuel cells. Progress in Chemistry,23: 430-440.
    [2]Kharton VV, Figueiredo FM, Navarro L, et al.,2001. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science,36:1105-1117.
    [3]Mogensen M, Sammes NM, Tompsett GA.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [4]Ding D, Liu B, Zhu Z, et al.,2008. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179 (21-26):896-899.
    [5]Ding D, Liu B, Gong M, et al.2010. Electrical properties of samaria-doped ceria electrolytes from highly active powders. Electrochimica Acta,55(15):4529-4535.
    [6]Ding C, Lin H, Sato K, et al.2009. Preparation of doped ceria electrolyte films for SOFCs by spray coating method. Journal of Dispersion Science and Technology,30(2):241-245.
    [7]Liu M, Peng R, Dong D, et al.2008. Direct liquid methanol-fueled solid oxide fuel cell. Journal of Power Sources,185:188-192.
    [8]Xia C, Liu M.2001. A Simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. Journal of the American Ceramic Society,84 (8):1903-1905.
    [9]Xia C, Liu M.2001. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics,144 (3-4):249-255.
    [10]Peng R, Xia C, Fu Q, et al.2002. Sintering and electrical properties of (CeO2)0.8(Sm2O3)0.1 powders prepared by glycine-nitrate process. Materials Letters,56 (6):1043-1047.
    [11]Xia C, Liu M.2002. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O1.95 and GDC-Ni anodes for low-temperature SOFCs. Solid State Ionics,152-153 (0): 423-430.
    [12]Mokkelbost T, Kaus I, Grande T, et al.2004. Combustion synthesis and characterization of nanocrystalline CeO2-Based Powders. Chemistry of Materials,16 (25):5489-5494.
    [13]Singh K, Acharya S, Bhoga S.2006. Nanosized ceria-based ceramics:a comparative study. Ionics,12 (4):295-301.
    [14]Boskovic SB, Djurovic DR, Zec SP, et al.2008. Doped and co-doped CeO2: preparation and properties. Ceramics International,34 (8):2001-2006.
    [15]Tian R, Zhao F, Chen F, et al.2011. Sintering of samarium-doped ceria powders prepared by a glycine-nitrate process. Solid State Ionics,192 (1):580-583.
    [16]Chick LA, Pederson LR, Maupin GD, et al.1990. Glycine-nitrate combustion synthesis of oxide ceramic powders. Materials Letters,10 (1-2):6-12.
    [17]Wang ZL, Feng X.2003. Polyhedral shapes of CeO2 nanoparticles. The Journal of Physical Chemistry B,107(49):13563-13566.
    [18]Hwang CC, Huang TH, Tsai JS, et al.2006. Combustion synthesis of nanocrystalline ceria (CeO2) powders by a dry route. Materials Science and Engineering:B,132 (3):229-238.
    [19]Singh P, Hegde MS, Controlled synthesis of nanocrystalline CeO2 and Ce1-xMxO2-δ (M=Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method:Structure and oxygen storage capacity. Journal of Solid State Chemistry,181 (12):3248-3256.
    [20]Yuan Q, Duan HH, Li LL, et al.2009. Controlled synthesis and assembly of ceria-based nanomaterials. Journal of Colloid and Interface Science,335 (2):151-167.
    [21]Walton RI.2011. Solvothermal synthesis of cerium oxides. Progress in Crystal Growth and Characterization of Materials,57 (4):93-108.
    [22]Pine T, Lu X, Mumm DR, et al.2007. Emission of pollutants from glycine-nitrate combustion synthesis processes. Journal of the American Ceramic Society,90 (12):3735-3740.
    [23]Purohit RD, Sharma BP, Pillai KT, et al.2001. Ultrafine ceria powders via glycine-nitrate combustion. Materials Research Bulletin,36 (15):2711-2721.
    [24]Chick LA, Maupin GD, Graff GL, et al.1991. Redox effects in self-sustainiing combustion synthesis of oxide ceramic powders. Material Research Society Symposium Proceedings,249: 159-164.
    [25]Liu Q, Zhao F, Dong X, et al.2009. Synthesis and application of porous Sm0.2Ce0.8O1.9 nanocrystal aggregates. The Journal of Physical Chemistry C,113 (39):17262-17267.
    [26]Yahiro H, Eguchi Y, Eguchi K, et al.1988. Oxygen ion conductivity of the ceria samarium oxide system with fluorite structure. Journal of Applied Electrochemistry,18 (4):527-531.
    [27]Inaba H, Tagawa H.1996. Ceria-based solid electrolytes-review. Solid State Ionics,83 (1-2): 1-16.
    [28]Kharton W, Figueiredo FM, Navarro L, et al.2001. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science,36 (5):1105-1117.
    [29]Mori T, Wang Y, Drennan J, et al.2004. Influence of particle morphology on nanostructural feature and conducting property in Sm-doped CeO2 sintered body. Solid State Ionics,175 (1-4): 641-649.
    [30]Mori T, Kobayashi T, Wang Y, et al.2005. Synthesis and characterization of nano-hetero-structured Dy doped CeO2 solid electrolytes using a combination of spark plasma sintering and conventional sintering. Journal of the American Ceramic Society,88 (7):1981-1984.
    [31]Ye F, Mori T, Ou DR, et al.2007. Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria. Journal of Applied Physics,101 (11): 113528-113535.
    [32]Acharya SA.2012. The effect of processing route on sinterability and electrical properties of nano-sized dysprosium-doped ceria. Journal of Power Sources,198 (0):105-111.
    [33]Zhang XG, Robertson M, Yick S, et al.2006. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600 degrees C. Journal of Power Sources,160:1211-1216.
    [34]Liu M, Hu H.1996. Effect of interfacial resistance on determination of transport properties of mixed-conducting electrolytes. Journal of the Electrochemical Society,143:L109-L112.
    [35]Zhu W, Xia C, Fan J, et al.2006. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells. Journal of Power Sources,160 (2):897-902.
    [36]Xie Z, Xia C, Zhang M, et al.2006. Ni1-xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel. Journal of Power Sources,161 (2):1056-1061.
    [1]Kharton VV, Figueiredo FM, Navarro L, et al.,2001. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science,36:1105-1117.
    [2]Mogensen M, Sammes NM, Tompsett GA.2000. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,129:63-94.
    [3]Ding D, Liu B, Zhu Z, et al.,2008. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics,179 (21-26):896-899.
    [4]Ding D, Liu B, Gong M, et al.2010. Electrical properties of samaria-doped ceria electrolytes from highly active powders. Electrochimica Acta,55(15):4529-4535.
    [5]Xia CR, Rauch W, Chen FL, et al.2002. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,149:11-19.
    [6]Fu C, Sun K, Zhang N, et al.2007. Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta,52 (13):4589-4594.
    [7]Perez-Coll D, Marrero-Lopez D, Ruiz-Morales JC, et al.2007. Reducibility of Ce1-xGdxO2-δ in prospective working conditions. Journal of Power Sources,173 (1):291-297.
    [8]Ding C, Lin H, Sato K, et al.2009. Preparation of doped ceria electrolyte films for SOFCs by spray coating method. Journal of Dispersion Science and Technology,30 (2):241-245.
    [9]Gaudillere C, Vernoux P, Mirodatos C, et al.2010. Screening of ceria-based catalysts for internal methane reforming in low temperature SOFC. Catalysis Today,157 (1-4):263-269.
    [10]Kudo T, Obayashi H.1975. Oxygen ion conduction of fluorite-type Ce1-xLnxO2-x/2 (Ln= lanthanoid element). Journal of the Electrochemical Society,122 (1):142-147.
    [11]Gerhardt-Anderson R, Nowick AS.1981. Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics,5 (0):547-550.
    [12]Yahiro H, Baba Y, Eguchi K, et al.1988. High-temperature fuel-cell with ceria-yttria solid electrolyte. Journal of the Electrochemical Society,135 (8):2077-2080.
    [13]Kleinlogel C, Gauckler LJ.2000. Sintering and properties of nanosized ceria solid solutions. Solid State Ionics,135 (1-4):567-573.
    [14]Kleinlogel C, Gauckler LJ.2001. Sintering of nanocrystalline CeO2 ceramics. Advanced Materials,13 (14):1081-1085.
    [15]Zhang TS, Ma J, Leng YJ, et al.2004. Effect of transition metal oxides on densification and electrical properties of Si-containing Ce(0.8)Gd(0.2)O(2-delta) ceramics. Solid State Ionics,168 (1-2):187-195.
    [16]Yoshida H, Inagaki T.2006. Effects of additives on the sintering properties of samaria-doped ceria. Journal of Alloys and Compounds,408-412 (0):632-636.
    [17]Zhang TS, Ma J, Luo LH, et al.2006. Preparation and properties of dense Ce0.9Gd0.1O2-delta ceramics for use as electrolytes in IT-SOFCs. Journal of Alloys and Compounds,422 (1-2):46-52.
    [18]Zhang X, Deces-Petit C, Yick S, et al.2006. A study on sintering aids for Sm0.2Ce0.gO1.9 electrolyte. Journal of Power Sources,162 (1):480-485.
    [19]Nicholas JD, De Jonghe LC.2007. Prediction and evaluation of sintering aids for cerium gadolinium oxide. Solid State Ionics,178 (19-20):1187-1194.
    [20]Fu CJ, Liu QL, Chan SH, et al.2010. Effects of transition metal oxides on the densification of thin-film GDC electrolyte and on the performance of intermediate-temperature SOFC. International Journal of Hydrogen Energy,35 (20):11200-11207.
    [21]Han M, Liu Z, Zhou S, et al.2011. Influence of lithium oxide addition on the sintering behavior and electrical conductivity of gadolinia doped ceria. Journal of Materials Science & Technology,27 (5):460-464.
    [22]Zheng Y, He S, Ge L, et al.2011. Effect of Sr on Sm-doped ceria electrolyte. International Journal of Hydrogen Energy,36 (8):5128-5135.
    [23]Li S, Xian C, Yang K, et al.2012. Feasibility and mechanism of lithium oxide as sintering aid for Ce0.8Sm0.2O delta electrolyte. Journal of Power Sources,205:57-62.
    [24]van Herle J, Horita T, Kawada T, et al.1996. Low temperature fabrication of (Y,Gd,Sm)-doped ceria electrolyte. Solid State Ionics,86-88:1255-1258.
    [25]Torrens RS, Sammes NM, Tompsett, GA.1998. Characterisation of (CeO2)0.8(GdO1.5)0.2 synthesised using various techniques. Solid State Ionics,111 (1-2):9-15.
    [26]Dikmen S, Shuk P, Greenblatt M, et al.2002. Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions. Solid State Sciences,4 (5):585-590.
    [27]Ruiz-Trejo E, Santoyo-Salazar J, Vilchis-Morales R, et al.2007. Microstructure and electrical transport in nano-grain sized Ce0.9Gd0.102-delta ceramics. Journal of Solid State Chemistry,180 (11):3093-3100.
    [28]Fuentes RO, Baker RT.2008. Synthesis and properties of gadolinium-doped ceria solid solutions for IT-SOFC electrolytes. International Journal of Hydrogen Energy,33 (13): 3480-3484.
    [29]Prasad DH, Son JW, Kim BK, et al.2008. Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol-gel thermolysis process for IT-SOFCs. Journal of the European Ceramic Society,28 (16):3107-3112.
    [30]Moure A, Tartaj J, Moure C.2009. Synthesis, sintering and electrical properties of yttria-calcia-doped ceria. Journal of the European Ceramic Society,29 (12):2559-2565.
    [31]Jung WS, Park HS, Kang YJ, et al.2010. Lowering the sintering temperature of Gd-doped ceria by mechanochemical activation. Ceramics International,36 (1):371-374.
    [32]Xia C, Liu M.2001. A Simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. Journal of the American Ceramic Society,84 (8):1903-1905.
    [33]Xia C, Liu M.2001. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics,144 (3-4):249-255.
    [34]Zhang XG, Robertson M, Yick S, et al.2006. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600 degrees C. Journal of Power Sources,160:1211-1216.
    [35]Liu M, Hu H.1996. Effect of interfacial resistance on determination of transport properties of mixed-conducting electrolytes. Journal of the Electrochemical Society,143:L109-L112.
    [36]Suzuki T, Hasan Z, Funahashi Y, et al.2009. Impact of anode microstructure on solid oxide fuel cells. Science,325 (5942):852-855.
    [37]Gamble S.2011. Fabrication-microstructure-performance relationships of reversible solid oxide fuel cell electrodes-review. Materials Science and Technology,27 (10):1485-1497.
    [1]Tucker MC.2010. Progress in metal-supported solid oxide fuel cells:a review. J Power Sources,195 (15):4570-4582.
    [2]Matus YB, DeJonghe LC, Jacobson CP, et al.2005. Metal-supported solid oxide fuel cell membranes for rapid thermal cycling. Solid State Ionics,176 (5-6):443-449.
    [3]Hui R, Berghaus JO, Deces-Petit C, et al.2009. High performance metal-supported solid oxide fuel cells fabricated by thermal spray. J Power Sources,191 (2):371-376.
    [4]Tucker MC, Lau GY, Jacobson CP, et al.2007. Performance of metal-supported SOFCs with infiltrated electrodes. J Power Sources,171 (2):477-482.
    [5]Xie Y, Neagu R, Hsu CS, et al.2008. Spray pyrolysis deposition of electrolyte and anode for metal-supported solid oxide fuel cell. J Electrochem Soc,155 (4):B407-410.
    [6]Hui SQ, Yang DF, Wang ZW, et al.2007. Metal-supported solid oxide fuel cell operated at 400-600 degrees C. J Power Sources,167 (2):336-339.
    [7]Blennow P, Hjelm J, Klemenso T, et al.2009. Development of planar metal supported SOFC with novel cermet anode. ECS Trans,25 (2):701-710.
    [8]Blennow P, Hjelm J, Klemenso T, et al.2011. Manufacturing and characterization of metal-supported solid oxide fuel cells. J Power Sources,196 (17):7117-7125.
    [9]Klemenso T, Nielsen J, Blennow P, et al.2011. High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers. J Power Sources,196 (1):9459-9466.
    [10]Villarreal I, Jacobson C, Leming A, et al.2003. Metal-supported solid oxide fuel cells. Electrochem Solid State Lett,6 (9):A178-179.
    [11]Zhu WZ, Deevi SC.2003. Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng,348 (1-2):227-243.
    [12]Linderoth S, Larsen PH.2000. Investigations of Fe-Cr ferritic steels as SOFC interconnect material. Mater Res Soc Proc,575:325-330.
    [13]Yang ZG, Xia GG, Walker MS, et al.2006. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient. Int J Hydrogen Energy,32 (16):3770-3777.
    [14]Rufner J, Gannon P, White P, et al.2008. Oxidation behavior of stainless steel 430 and 441 at 800 degree C in single (air/air) and dual atmosphere (air/hydrogen) exposures. Int J Hydrogen Energy,33 (4):1392-1398.
    [15]Horita T, Kshimoto H, Yamaji K, et al.2008. Anomalous oxidation of ferritic interconnects in solid oxide fuel cells. Int J Hydrogen Energy,33 (14):3962-3969.
    [16]Xia C, Liu M.2001. A Simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. Journal of the American Ceramic Society,84 (8):1903-1905.
    [17]Xia C, Liu M.2001. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics,144 (3-4):249-255.
    [18]McIntosh S, Vohs JM, Gorte RJ.2003. Impedance spectroscopy for the characterization of Cu-Ceria-YSZ anodes for SOFCs. J. Electrochem. Soc.,150:A1305-A1312.
    [19]Gorte RJ, Park S, Vohs JM, et al.2000. Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater.,12 (19):1465-1469.
    [20]Tucker MC, Lau GY, Jacobson CP, et al.2008. Stability and robustness of metal-supported SOFCs. J Power Sources,175 (1):447-451.