静电纺丝法制备磁性纳米纤维及其形貌和磁性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米科学技术的发展,一维纳米材料由于其独特的物理和化学性质而在基础研究和技术应用等方面得到人们的广泛关注。磁性纳米纤维和纳米线状材料具有高的长径比、大的比表面积、显著的形状各向异性等一系列优点而备受研究者的青睐。目前制备纳米纤维的方法有许多种,比如:AAO模板法、水热法、相分离法等,虽然这些方法已经能够制备出形貌和磁性良好的磁性纳米纤维,但是它们存在操纵复杂、原料成本高、难以工业化大规模生产的缺点。静电纺丝技术是近年来制备纳米纤维材料的一种新颖方法,它的实验设备和制作工艺简单,能适用于多种聚合物和复合物溶液,制备的纤维直径可在微米和纳米之间调节。
     静电纺丝技术已经在组织工程学、生物医学、纺织、能源、环境保护等领域有了实际应用,但是在制备磁性纳米纤维方面研究的较少。本论文利用静电纺丝法分别制备了尖晶石铁氧体、六角铁氧体、金属Fe、Ni内米纤维等,并利用XRD进行物相结构分析、SEM和TEM观察微观形貌和成分、VSM测量静态磁性、SQUID研究高场下的磁性能、矢量网络分析仪进行高频磁性研究。在此基础上系统研究了工艺参数对铁氧体和金属纳米纤维的晶体结构和磁性质的影响,找到了具有较大矫顽力和形状各向异性的制备参数。本论文的主要工作包括以下几个方面:
     1、系统地研究了升温速率对CoFe204内米纤维的形貌和晶体结构的影响,发现低的升温速率是保持良好纤维状形貌的关键条件,高的升温速率则会导致纤维形貌破坏,本论文中的升温速率都保持在1-2℃/min。
     2、烧结温度会影响磁性纳米纤维的晶体结构、形貌和磁性质。对于CoFe2O4纳米纤维来说,低于900℃的样品能保持纤维表面光滑、连续直的纤维状形貌;而900和1000℃下烧结的纤维表面变的粗糙且发生了弯曲;500℃时样品的矫顽力最大:Hc=773Oe。对于永磁SrFe12O19纳米纤维来说,700℃时样品的矫顽力最大:Hc=5508Oe。这是由于低温下晶粒较小,组成纳米纤维的颗粒表现为单畴结构,随着烧结温度的升高,磁性材料晶粒长大,其畴结构从单畴变为多畴而导致矫顽力降低。
     3、系统地研究了Zn2+离子掺杂对CuFe2O4纳米纤维的微观结构、形貌和磁性质的影响,其晶格结构从反尖晶石型向正尖晶石型转变。Zn2+离子掺杂明显改善了CuFe2O4(?)内米纤维的形貌,使其纤维表面光滑和致密化。系统研究了Cu2+离子掺杂对NiFe2O4纳米纤维的微观结构、形貌和磁性质的影响。两种离子掺杂对磁性质的影响都是由于A、B位金属离子种类和数量的改变而导致A-B间超交换作用的改变。对CU0.6Zn0.4Fe2O4纳米纤维,磁场方向平行和垂直于样品表面测量的磁滞回线表明其磁性易轴沿着纤维的长轴方向;而通过对退磁能和形状各向异性场的计算以及系列Cu1-xZnxtFe2O4纳米纤维的穆斯堡尔谱的研究发现,有效各向异性并没有完全沿着纳米纤维的长轴方向,这一结果是由于组成纳米纤维的小颗粒间有偶极相互作用导致的。
     4、利用静电纺丝法成功制备出Fe3O4(?)内米纤维,并系统地研究了还原条件对Fe3O4(?)内米纤维晶体结构和形貌的影响。制备出的Fe3O4纳米纤维具有高的矫顽力,HC=188.4Oe;这来自纳米纤维高的长径比导致的形状各向异性。用叉指电极测量了Fe3O4纳米纤维在室温和低温下的磁电阻,导电机理来自组成纳米纤维的临近颗粒间的隧穿。
     5、利用静电纺丝法成功制备出具有高磁晶各向异性的FePt(?)内米纤维,在磁晶各向异性和形状各向异性的共同作用下得到高的矫顽力:Hc=10.27kOe。在Ni纳米纤维的磁导率-频率曲线上观察到两个共振峰,分别是4.0GHz和12.5GHz。第一个共振峰是自然共振峰,通过Kittel公式推算出这个共振峰来自形状各向异性的贡献;第二个共振峰主要归因于交换共振。在匹配厚度为8.4mm、匹配频率为1.3GHz时得到最小的RL值:RL=-35.4dB。
Recently, with the rapid development of nanoscale science and technology, one-dimensional nanomaterials have been paid much attention because of their distinctive physical and chemical properties in basic scientific research and potential technology applications. Magnetic nanofibers-like or nanowires-like materials have attracted a great deal of interest due to their advantages of high aspect ratio, large surface area and remarkable shape anisotropy. There are several methods to prepare nanofibers, such as AAO template, hydrothermal method, phase separation, etc. Although these methods have been able to prepare magnetic nanofibers with good morphology and magnetic properties, there are some disadvantages, such as manipulation complex, high cost of raw materials, difficult of industrial mass production. Electrospinning is a simple and versatile technique for generating a rich variety of nanofibers made of polymers and composites, the diameter of nanofibers can be controlled form micro-to nano scales.
     The electrospinning method has been applied in many fields, such as tissue engineering, biomedical, spinning, energy, environmental protection. However, only a little attention is paid to the application of magnetic nanofibers prepared by electrospinning. In this paper, spinel ferrite, hexagonal ferrite, metal Fe and Ni nanofibers were fabricated by electrospinning. The phase strucure, morphology, composition, magnetic properties of static and high field, high frequency characteristics were investigated by XRD, SEM, TEM, VSM and vector network analyzer, and the effect of process parameters on crystal structure and magnetic properties was studied.
     1. The effect of heating rate on morphology and crystal structure of CoFe2O4naofibers was systematically studied. The results show that low heating rate is a key condition for maintaining good fibrous morphology, however, a destroyed ones is attributed to higher heating rate. All heating rate retain at1-2℃/min in this article.
     2. Sintering temperature can affect the crystal structure, morphology and magnetic properties of magnetic nanofibers. For CoFe2O4naofibers, the morphology changes from a smooth surface and continuous straight fibers when sintering temperature is lower than900℃to a rough surface and winding ones when the sintering temperature increases to900and1000℃; the nanofibers calcined at500℃has the largest coercivity value, Hc=772.8Oe. For permanent magnets SrFe12O19nanofibers, the ones calcined at700℃has the largest coercivity value, Hc=5508Oe. This is attributed to single domain for magnetic nanofibers calcined at lower temperature. With the sintering temperature increasing, the magnetic crystal will grow and the domain structure will transform from a single domain to a multi domain state.
     3. The effects of Zn2+and Cu2+ions substitution on crystal structure, morphology and magnetic properties of CuFe2O4and NiFe2O4nanofiber were systematically studied, and the lattice structure changes from inverse spinel structure to normal spinel structure, or changes from inverse spinel structure to the other inverse ones. Zn2+ions substitution significantly improves the morphology of CuFe2O4nanofibers. The surface of Cu1-xZnxFe2O4with x greater than0clearly becomes smoother and denser. The effects of Zn2+and Cu2+ions substitution on magnetic properties are due to the change of species and quantity of metal ions on A and B sites, which results in the change of super-exchange interaction between A and B sites. For Cu0.6Zn0.4Fe2O4nanofibers, hystersis loops of the nanofibers measured with magnetic field parallel and perpendicular to sample plane exhibit that the magnetic easy axis along the long axis of the nanofibers. However, it is found that the shape anisotropy of nanofibers is not domination the effective anisotropy according to results of calculation for the demagnetization energy and effective anisotropy field. In other words, the easy magnetization direction is not perfectly along the long axis of the nanofibers, which is evidenced by Mossbauer spectra of Cu1-xZnxFe2O4samples. This is due to the dipolar interaction between nanoparticles of which the nanofibers are composed.
     4. Fe3O4nanofbers were fabricated by electrospinning, and the effect of reduction conditions on the crystal structure and morphology of Fe3O4nanofbers is systematically studied. The obtained Fe3O4nanofbers have a high coercivity,Hc=188.4Oe, which is attributed to the shape anisotropy come from the high aspect ratio of nanofibers samples. The magnetoresistances (MR) at room and low temperatures of Fe3O4nanofbers were measured by interdigitated electrodes, and the conductive mechanism is explained in terms of the tunneling of adjacent grain boundary.
     5. High magnetocrystalline anisotropy FePt nanofibers were fabricated by electrospinning, and the high coercivity is attributed to the combined interaction of magnetocrystalline anisotropy and shape anisotropy, Hc=10.27kOe. The double-resonance behavior of microwave magnetic permeabiligy is observed,4.0GHz and12.5GHz. The natural resonance peak happens at4.0GHz for the contribution of shape anisotropy according to Kittel formula projections, and the second resonance peak originates from exchange resonance effect. A minimum RL reaches-35.4dB at the matching thickness of8.4mm and the matching frequency of1.3GHz.
引文
[l]张立德.纳米材料[M].北京:化学工业出版社,2000.
    [2]朱静.纳米材料与器件[M].北京:清华大学出版社,2003.
    [3]Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconduct-ing oxides, Science,291 (2001) 1947.1949.
    [4]J. Hu, T. W. Odom, C. Lieber, Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes, Accounts of Chemical Research,32 (1999) 435-445.
    [5]J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science,293 (2001) 1455-1457.
    [6]S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Gerrligs, C. Decker, Individual single-wall carbon nanotubes as quantum wires, Nature,386 (1997) 474-477.
    [7]S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature,393 (1998) 49-52.
    [8]D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, M. Moskovits, Field emitters based on porous alu-minum oxide templates, Journal of Applied Physics,86 (1999) 3983-3987.
    [9]S. W. Chung, J. Y. Yu, J. R. Heath, Silicon nanowire devices, Applied Physics Letters,76 (2000) 2068-2070.
    [10]X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electroni-cand optoelectronic devices, Nature,409 (2001) 66-69.
    [11]Y. Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire nanosen-sors for highly sensitive and selective detection of biological and chemical species, Science,293 (2001) 1289-1292.
    [12]S. R. Nicewarnmer-pe'na, R. G. Greeman, B. D. Reiss, L. He, D. J. Pe'na, I. D. Walton, R. Cormer, C. D. Keating, and M. J. Natan, Submicrometer metallic barcodes, Science,294, 137-141 (2001).
    [13]Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, P. Yang, Inorganic semiconductor nanowires:rational growth, assembly, and novel properties, Chemistry-A European Journal,8 (2002) 1260-1268.
    [14]D. Appell, Nanotechnology:Wired for success, Nature, (2002) 553-555.
    [15]K. Nielsch, High density hexagonal nickel nanowire array, Journal of Magnetism and Magnetic Materials 249 (2002) 234-240.
    [16]N. Keller, C. Pham-Huu, T. Shiga, C. Estournes, J. M. Greneche, M. J. Ledoux, Mild synthesis of CoFe2O4 nanowires using carbon nanotube template:a high-coercivity material at room temperature, Journal of Magnetism and Magnetic Materials,272-276 (2004) 1642-1644.
    [17]L. H. Liu, H. T. Li, S. H. Fan, J. J. Gu, Y. P. Li, H. Y. Sun, Fabrication and magnetic properties of Ni-Zn nanowire arrays. Journal of Magnetism and Magnetic Materials,321 (2009)3511-3514.
    [18]M. Darques, J. Spiegel, J. De, T. Medina, I. Huynen, L. Piraux, Ferromagnetic nanowire-loaded membranes for microwave electronics, Journal of Magnetism and Magnetic Materials,321 (2009)2055-2065.
    [19]钟云波,李志华,任忠鸣等,磁场对纳米MnZn铁氧体前驱体形貌的影响[J].稀有金属材料与工程.2006,35(8):1263一1270.
    [20]F. L. Jia, L. Z. Zhang, X. Y. Shang, Y. Yang, Non-Aqueous Sol-Gel Approach towards the Controllable Synthesis of Nickel Nanospheres, Nanowires, and Nanoflowers, Advanced Materials,20 (2008) 1050-1054.
    [21]D. Y. Yang, B. Lu, Y. Zhao, X, Y. Jiang, Fabrication of aligned fibrous arrays by magnetic electrospinning, Advanced Materials,19 (2007) 3702-3706.
    [22]K. Whang, C. H. Thomas, K. E. Healy, A novel method to fabricate bioabsorble scaffolds, Polymer,36 (1995) 837-842.
    [23]V. J. Chen, P. X. Ma, Nano-fibrous poly(1-lactic acid) scaffolds with interconnected spherical macropores, Biomaterials,25 (2004) 2065-2073.
    [24]X. M. Sun, Y. D. Li, Cylindrical Silver Nanowires:Preparation, Structure, and Optical Properties, Advanced Materials,17 (2005) 2626-2630.
    [25]X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A water-ethanol mixed-solution hydrothermal route to silicates nanowires, Journal of Solid State Chemistry,178 (2005) 2332-2338.
    [26]K. J. Pawlowski, H. L. Belvin, D. L. Raney, Electrospinning of a micro-air vehicle wing skin, Polymer,44 (2003)1309-1314.
    [27]J. Zeleny, The electrical discharge from liquid points and hydrostatic method of measuring the electric intensity at their surfaces, Journal of Physical Review,3 (1919) 69-91.
    [28]A. Formhals, Process and apparatus for preparing artificial threads, US Patent Specification, 1934,1-975-504.
    [29]A. Formhals, Artificial fiber construction, US Patent Specification,1938,2-109-333.
    [30]A. Formhals, Method and apparatus for the production of fibers, US Patent Specification, 1938,2-116-942.
    [31]A. Formhals, Method and apparatus for the production of fibers, US Patent Specification,1938,2-123-992.
    [32]A. Formhals, Method and apparatus for the production of fibers, US Patent Specification, 1938,2-158-416.
    [33]B. Vonnegut, R. L. Neubauer, Production of monodisperse liquid particles by electrical atomization, Journal of Colloid Science,7 (1952) 616-618.
    [34]H. L. Simons, US Patent,1966, No.3280229,
    [35]G. I. Taylor, Electrically driven jets, Proceedings of the Royal Society of London Series A, 313(1969)453-475.
    [36]季宏伟,周德凤,周险峰,刘海涛,孟健.静电纺丝法制备LaFeO3微纳米纤维[J].高等学校化学学报.2009,11:2112-2115.
    [37]张锡玮,夏,徐纪钢,杨字,钟淑芳,金剑.静电纺丝法纺制纳米级聚丙烯腈纤维毡[J].塑料,2000,2(29):16-19.
    [38]张玉军,黄玉东,陆春,金镇镐,王磊EVOH超细无纺布电纺丝工艺及无纺布显微结构 的表征[J].材料科学与工艺,2004,12:287-290.
    [39]王金兴,于连香,王浩铭,阮圣平,李佳静,吴凤清.Ce掺杂In2O3纳米纤维的制备及其三乙胺气敏性能[J].物理化学学报.2012,26:3101-3105.
    [40]胡雯,黄争鸣,陈卢松.静电纺纳米纤维束的制备与表征[J].塑料.2008,37:4-7.
    [41]孙柯,陆海纬,李达,曾群,李越生,傅正文.静电纺丝法制备氧化锰纳米丝电极及其电化学性能[J].无机材料学报.2009,24:357-360.
    [42]徐家福,康卫民,郭秉臣.静电纺聚氨酯纳米纤维非织造布的制备[J].产业用纺织品.2009,5:15-20
    [43]谢胜,曾泳春.电场分布对静电纺丝纤维直径的影响[J].东华大学学报(自然科学版).2011,37:677-682
    [44]潘芳良,查帅冲,潘志娟.平行排列多喷头静电纺丝机纺丝状态及纤维结构[J].SILK(丝绸).2012,49:21-26
    [45]Q. B. Yang, D. M. Li, Y. L. Hong, Z. Y. Li, C. Wang, S. L. Qiu, Y. Wei, Rreparation andcharacterization of a PAN nanofiber containing Ag nanoparticles via electrospinning, Synthetic Metals,137 (2003) 973-974.
    [46]L. P. Chen, S. G. Hong, X. P. Zhou, Z. P. Zhou, H. Q. Hou, Novel Pd-carrying composite carbon nanofibers based on polyacrylonitrile as a catalyst for Sonogashira coupling reaction, Catalysis Communications,9 (2008) 2221-2225.
    [47]Z. Y. Li, C. Wang, Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers, Journal of the American Chemical Society,130(2008) 5036-5037.
    [48]E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Applied Physics Letters,81 (2002) 1869.
    [49]X. F. Song, Z. J. Wang, C. Wang, A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers, Nanotechnology,20 (2009) 075501.
    [50]C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, C. W. Zhou, In2O3 nanowires as chemical sensors, Applied Physics Letters,82 (2003) 1613.
    [51]C. Shin, G. G. Chase, D. H. Reneker, Recycled expanded polystyrene nanofibers applied in filter media, Colloids and surface A,262 (2005) 211-215.
    [52]K. Yoon, K. Kim, X. Wang, D. Fang, B. S. Hsiao, B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating, Polymer, 47(2006)2434-2441.
    [53]A. M. Morales, C. M. Lieber, A large solution method for the synthesis of crystalline semiconductor nanowires, Science,279 (1998) 208.
    [54]T.C. Shang, F. Yang, W. Zheng, C. Wang, Fabrication of electrically bistable nanofibers, Small,2 (2006) 1007.
    [55]K. S. Rho, L. Jeong, G. Lee, B. M. Seo, Y. J. Park, S. D. Hong, S. Roh, J. J. Cho, W. H. Park, B. M. Min, Electrospinning of collagen nanofibers:effects on the behavior of normal human keratinocytes and early-stage wound healing, Biomaterials,27 (2006) 1452-1461.
    [56]C. M. Vaz, S. Tuijl, C. V. C. Bouten, Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique, Actabiomaterialia,1 (2005) 575-582.
    [57]T. A. Telemeco, C. Ayres, G. L. Bowlin, Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning, Acta Biomaterialia,1 (2005)377-385.
    [58]Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers, Journal of Controlled Release,89 (2003) 341-353.
    [59]E. R. Kenawy, G. L. Bowlin,K. Mansfield, Release of tetracycline hydrochloride fromelectrospun poly(ethylene-co-vinylacetate), poly(lacticacid), and a Blend, Jouranl of Controlled Release,81 (2002) 57-64.
    [60]孙建荣,高频用尖晶石结构Mn-Zn铁氧体薄膜制备与性能研究,兰州大学博士学位论文,2007.
    [61]刘青春,静电纺丝法制备过渡金属(钌、铼)有机配合物纳米发光纤维,东北师范大学硕士学位论文,2008.
    [62]R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, Novel aqueous sol-gel preparation and characterization of barium M ferrite, BaFe12O19 fibres, Journal of materials science,32 (1997) 349-352.
    [63]R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, Aligned hexagonal ferrite fibres of Co2W, BaCo2Fe16O27 produced from an aqueous sol-gel process, Journal of materials science,32 (1997) 873-877.
    [64]R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, Magneitc Co2Y ferrite, Ba2Co2Fe12O22 fibres produced by a blow spun process, Journal of materials science,32 (1997) 365-368.
    [65]R. C. Pullar, S. G. Appleton, A. K. Bhattacharya, The manufacture, characterisation and microwave properites of aligned M ferrite fibres, Journal of Magnetism and Magnetic Materials,186 (1998) 326-332.
    [66]R. C. Pullar, S. G. Appleton, M. H. Stacey, M. D. Taylor, A. K. Bhattacharya, The manufacture and characterisation of aligned fibres of the ferroxplana ferrites Co2Z,0.67% CaO-doped Co2Z, Co2Y and Co2W, Journal of Magnetism and Magnetic Materials,186 (1998) 313-325.
    [67]D. Li, T. Herricks, Y. N. Xia, Magnetic nanofibers of nickel ferrite prepared by electrospinning, Applied Physics Letters,83 (2003) 4586-4588.
    [68]Y. W. Ju, J. H. Park, H. R. Jung, S, J. Cho, W. J. Lee, Electrospun MnFe2O4 nanofibers: Preparation and morphology, Composites Science and Technology,68 (2008) 1704-1709.
    [69]Y. W. Ju, J. H. Park, H. R. Jung, S, J. Cho, W. J. Lee, Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning, Materials Science and Engineering B, 147(2008)7-12.
    [70]M. Sangmanee, S. Maensiri, Nanostructures and magnetic properties of cobalt ferrite(CoFe2O4) fabricated by electrospinning, Applied Physics A:Materials Sciencs & Processing,97 (2009) 167-177.
    [71]W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers, Solid State Sciences,11 (2009) 479-484.
    [72]J. Xiang, X. Q. Shen, F. Z. Song, M. Q. Liu, Fabrication and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibers by electrospinning, Chinese Physics B,18 (2009) 4960-4966.
    [73]J. H. Nam, Y. H. Joo, J. H. Lee, J. H. Chang, J. H. Cho, M. P. Chun, B. I. Kim, Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation, Journal of Magnetism and Magnetic Materials,321 (2009) 1389-1392.
    [74]X. Q. Shen, J. Xiang, F. Z. Song, M. Q. Liu, Characterization and magnetic properties of electrospun Co1-xZnxFe2O4 nanofibers, Applied Physics A:Materials Sciencs & Processing, 99(2010)189-195.
    [75]J. Xiang, X. Q. Shen, F. Z. Song, M. Q. Liu, One-dimensional NiCuZn ferrite nanostructures: Fabrication, structure, and magnetic properties, Journal of Solid State Chemistry,183 (2010) 1239-1244.
    [76]J. Xiang, X. Q. Shen, F. Z. Song, M. Q. Liu, G. Z. Zhou, Y. Q. Chu, Fabrication and characterization of Fe-Ni alloy/nickel ferrite composite nanofibers by electrospinning and partial reduction, Materials Research Bulletin,46 (2011) 258-261.
    [77]R. C. Pullar, A. K. Bhattacharya, The magnetic properties of aligned M hexa-ferrite fibres, Journal of Magnetism and Magnetic Materials,300 (2006) 490-499.
    [78]X. Q. Shen, M. Q. Liu, F. Z. Song, X. F. Meng, Structural evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning, Journal od Sol-Gel Science and Technology,53 (2010)448-453.
    [79]M. Q. Liu, X. Q. Shen, F. Z. Song, J. Xiang, X. F. Meng, One-dimensional SrFe12O19/SrSiO3 composite nanofibers:Preparation, structure and magnetic properties, Materials Chemistry and Physics,124 (2010) 970-975.
    [80]M. Q. Liu, F. Z. Song, X. Q. Shen, Y. W. Zhu, Effects of strontium silicate on structure and magnetic properties of electrospun strontium ferrite nanofibers, Journal od Sol-Gel Science and Technology,56 (2010) 39-46.
    [81]F. Z. Mon, J. G. Guan, Z. G. Sun, X. A. Fan, G. X. Tong, In situ generated dense shell-engaged Ostwald ripening:A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays, Journal of Solid State Chemistry,183 (2010) 736-743.
    [82]C. J. Li,.J. N. Wang, Electrospun SrRe0.6Fe11.4O19 magnetic nanofi bers:Fabrication and characterization, Materials Letters,64 (2010) 586-588.
    [83]C. J. Li, G. R. Xu, Template preparation of strontium hexaferrite (SrFe12O19)micro/nanostructures:Characterization, synthesis mechanism and magnetic properties, Materials Research Bulletin,46 (2011) 119-123.
    [84]X. W. Zhang, Fabrication of crystalline bismuth-substituted yttrium iron garnet nanofibers via sol-gel and calcination-assisted electrospinning, Journal of Crystal Growth,310 (2008) 3235-3239.
    [85]A. Jalalian, M. S. Kavrik, S. I. Khartsev, A. M. Grishin, Ferromagnetic resonance in nanofibers, Applied Physics Letters,99 (2011) 102501.
    [86]M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Golzhauser, A. Greiner, Preparation of Sub-micrometer Copper Fibers via Electrospinning, Advanced Materials,18 (2006) 2384-2386.
    [87]M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner, J. Wendorff, Magnetically Anisotropic Cobalt and Iron Nanofibers via Electrospinning, Advanced Materials,19 (2007) 4244-4247.
    [88]H. Wu, R. Zhang, X. X. Liu, D. D. Lin, W. Pan, Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties, Chemistry of Materials,19 (2007) 3506-3511.
    [89]N. A. M. Barakat, B. Kim, H. Y. Kim, Production of Smooth and Pure Nickel Metal Nanofibers by the Electrospinning Technique:Nanofibers Possess Splendid Magnetic Properties, The Journal of Physical Chemistry C,113 (2009) 531-536.
    [90]N. A. M. Barakat, B. Kim, C.Yi, Y. H. Jo, M. H. Jung, K. H. Chu, H. Y. Kim, Influence of Cobalt Nanoparticles Incorporation on the Magnetic Properties of the Nickel Nanofibers: Cobalt-Doped Nickel Nanofibers Prepared by Electrospinning, The Journal of Physical Chemistry C,113 (2009) 19452-19457.
    [91]J. Battogtokh, S. Kang, Y. Chao, M. J. Wagner, M. Brandys, A. C. Buechele, I. L. Pegg, J. Philip, Synthesis and characterization of FeGa nanowires, Journal of Applied Physics,105 (2009) 07A933.
    [92]S. Cavaliere, V. Salles, A. Brioude, Y. Lalatonne, L. Motte, P. Monod, D. Cornu, P. Miele, Elaboration and characterization of magnetic nanocomposite fibers by electrospinning, Journal of Nanoparticles Research,12 (2010) 2735-2740.
    [93]N. A. M. Barakat, K. A. Khalil, I. H. Mahmoud, M. A. Kanjwal, F. A. Sheikh, H. Y. Kim, CoNi Bimetallic Nanofibers by Electrospinning:Nickel-Based Soft Magnetic Material with Improved Magnetic Properties, The Journal of Physical Chemistry C,114 (2010) 15589-15593.
    [94]G. Q. Zhang, T. Zhang, X. L. Lu,.Controlled synthesis of 3D and ID nickel nanostruetures using an external magnetic field assisted solution-Phase approach, The Journal of Physical Chemistry C,111 (2007) 12663-12668.
    [95]Y. Xin, Z. H. Huang, L. Peng, D, J. Wang, Photoelectric performance of poly(p-phenylene vinylene)/Fe3O4 nanofiber array, Journal of Applied Physics,105 (2009) 086106.
    [96]X. Y. Ye, Z. M. Liu, Z. G. Wang, X. J. Huang, Z. K. Xu, Preparation and characterization of magnetic nanofibrous composite membranes with catalytic activity, Materials Letters,63 (2009) 1810-1813.
    [97]J. Y. Guo, X. Y. Ye, W. Liu, Q. Wu, H. Y. Shen, K. Y. Shu, Preparation and characterization of poly(acrylonitrile-co-acrylic acid) nano fibrous composites with Fe3O4 magnetic nanoparticles, Materials Letters,63 (2009) 1326-1328.
    [98]C. C. Zhang, X. Li, Y. Yang, C. Wang, Polymethylmethacrylate/Fe3O4 composite nanofiber membranes with ultra-low dielectric permittivity, Applied Physics A:Materials Science & Processing,97 (2009) 281-285.
    [99]X. Y. Zhang, Q. Y. Dai, X. B. Huang, X. Z. Tang, Synthesis and characterization of novel magnetic Fe3o4/polyphosphazene nanofibers, Solid State Sciences,11 (2009) 1861-1865.
    [100]D. Zhang, A. B. Karki, D. Rutman, D. P. Young, A. Wang, D. Cocke, T. H. Ho, Z. H. Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis, Polymer,50 (2009) 4189-4198.
    [101]N. Sharma, G. H. Jaffari, S. I. Shah, D. J. Pochan, Orientation-dependent magnetic behavior in aligned nanoparticle arrays constructed by coaxial electrospinning, Nanotechnology,21 (2010)085707.
    [102]S. H. Wang, C. Wang, B. Zhang, Z. Y. Sun, Z. Y. Li, X. K. Jiang, X. D. Bai, Preparation of Fe3O4/PVA nano fibers via combining in-situ composite with electrospinning, Materials Letters,64(2010)9-11.
    [1]李荫远,李国栋.铁氧体物理学[M].北京:科学出版社.1978.
    [2]张悦,纳米钴铁氧体及其复合材料的磁性调控,武汉大学硕士学位论文,2011.
    [3]J. Jacob, M. A. Khadar, Investigation of mixed spinel structure of nanostructured nickel ferrite, Journal of Applied Physics,107 (2010) 114310.
    [4]Z. Szotek, W. M. Temmerman, D. Kodderitzsch, A. Svane, L. Petit, H. Winter, Electronic structures of normal and inverse spinel ferrites from first principles, Physical Review B,74 (2006) 174431.
    [5]王海珠,掺杂对M型锶铁氧体磁性的影响规律和机制的研究,吉林大学博士学位论文,2012.
    [6]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社.2003.
    [7]任勇,磁性纳米线的制备及其各向异性调控研究,兰州大学博士学位论文,2010.
    [8]柴国志,异质结构软磁材料的高频磁特性研究,兰州大学博士学位论文,2012.
    [9]焦正宽,曹光旱.磁电子学[M].杭州:浙江大学出版社.2005.
    [10]M. N. Baibich, J. M. Broto, A. Fert, Gaint magnetoresistance of (001)Fe/(001)Cr magnetic supperlattices, Physical Review Letters,61 (1988) 2472-2475.
    [11]G. Binasch, P. Grunberg, F. Saurenbach, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical Review B,39 (1989) 4828-4830.
    [12]A. E. Berkowitz, J. R. Mitchell, M. J. Carey, Giant magnetoresistance in heterogeneous Cu-Co alloys, Physical Review Letters,68 (1992) 3745-3748.
    [13]J. Q. Xiao, J. J. Samuel, C. L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems, Physical Review Letters,68 (1992) 3749-3752.
    [14]H. R. Von, J. Wecker, B. Holzapfel, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films, Physical Review Letters,71 (1993) 2331-2333.
    [15]J. S. Moodera, L. R. Kinder, T. M. Wong, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Physical Review Letters,74 (1995) 3273-3276.
    [16]T. Miyazaki, N. Tezaka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction, Journal of Magnetism and Magnetic Materials,139 (1995) L231-L234.
    [17]H. Fujimori, S. Mitani, S. Ohnuma, Tunnel-type GMR in metal-nonmetal granular alloy thin films, Materials Science and Engineering:B,31 (1995) 219-224.
    [18]M. Julliere, Tunneling between ferromagnetic films, Physical Letters,54A (1975) 225-226.
    [19]J. C. Slonczewski, Conductance and exchange coupling of tow ferromagnets separated by a tunneling barrier, Physical Review B,39 (1989) 6995-7002.
    [20]E. J. W. Verwey, Electronic conduction of magnetite (Fe2O3) and its transition point at low-temperature, Nature,44 (1939) 27-328.
    [1]Y. W. Ju, J. H. Park, H. R. Jung, S, J. Cho, W. J. Lee, Fabrication and characterization of cobalt ferrite (CoFe204) nanofibers by electrospinning, Materials Science and Engineering B, 147(2008)7-12.
    [2]X. Q. Shen, J. Xiang, F. Z. Song, M. Q. Liu, Characterization and magnetic properties of electrospun Co1--xZnxFe2O4 nanofibers, Applied Physics A:Materials Sciencs & Processing,99 (2010) 189-195.
    [3]M. Sangmanee, S. Maensiri, Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning, Applied Physics A:Materials Sciencs & Processing,97 (2009) 167-177.
    [4]W. Ponhan, S. Maensiri, Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers, Solid State Sciences,11 (2009) 479-484.
    [5]G. Bergmann, J. G. Lu, Y. Q. Tao, R. S. Thompson, Frustrated magnetization in Co nanowires: Competition between crystal anisotropy and demagnetization energy, Physical Review B,77 (2008)054415.
    [6]R. C. Pullar, A. K. Bhattacharya, The magnetic properties of aligned M hexa-ferrite fibres, Journal of Magnetism and Magnetic Materials,300 (2006) 490-499.
    [7]P. Gutlich, Mossbauer Spectroscopy and Transition Metal Chemistry (Berlin:Springer) p 113
    [8]G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets, IEEE Transactions on Magnetics,26 (1990) 1397-1402.
    [9]C. C. Dantas, A. M. Gama, Micromagnetic simulations of spinel ferrite particles, Journal of Magnetism and Magnetic Materials,322 (2010) 2824-2833.
    [10]P. S. Fodor, G. M. Tsoi, L. E. Wenger, Investigation of magnetic interactions in large arrays of magnetic nanowires, Journal of Applied Physics,103 (2008) 07B713.
    [11]D. S. Yao, S. H. Ge, X. Y. Zhou, H. P. Zuo, Investigation on the intergranular interaction of the soft magnetic granular films by 8M(H) curves,, Journal of Applied Physics,104 (2008) 013902.
    [12]葛慧琳,高性能掺杂Ni-Zn铁氧体材料制备与表征,中国地质大学(北京)硕士学位论文,2010.
    [13]王海波,尖晶石NixZn1-xFe2O4铁氧体纳米颗粒、块体和薄膜的制备与磁性研究,兰州大学博士学位论文,2008.
    [14]S. Muthurani, M. Balaji, S. Gautam, K. H. Chae, J. H. Song, D. P. Padiyan, K. Asokan, Magnetic and humidity-sensing properties of nanostructured CuxCo1-xFe2O4 synthesized via autocombustion, Journal of Nanoscience and Nanotechnology,11 (2011) 5850-5855.
    [15]C. G. Ramankutty, S. Sugunan, B. Thomas, Study of cyclohexanol decomposition reaction over the ferrospinels, A1-xCuxFe2O4 (A= Ni or Co and x= 0,0.3,0.5,0.7 and 1.0), prepared by soft chemical methods, Journal of Molecular Catalysis A:Chemical,187 (2002) 105-117.
    [16]M. U. Rana, M. U. Islam, T. Abbas, The effect of Cu substitution on the microstructure and magnetic properties of MnFe2O4 ferrite, Journal of Materials Science,38 (2003) 2037-2041.
    [17]H. V. Kiran, A. L. Shashimohadn, D. K. Chajcrabarty, A. B. Biswas, Structural and magnetic properties of copper-nickel ferrites, Physica Status Solidi (a),66 (1981) 743-747.
    [18]F. Kenfack, H. Langbein, Spinel ferrites of the quaternary system Cu-Ni-Fe-O:Synthesis and characterization, Journal of Materials Science,41 (2006) 3683-3693.
    [19]S. M. Hoque, M. A. Choudhury, M. F. Islam, Characterization of Ni-Cu mixed spinel ferrite, Journal of Magnetism and Magnetic Materials,251 (2002) 292-303.
    [20]S. G. Doh, E.B. Kim, B. H. Lee, J. H. Oh, Characteristics and synthesis of Cu-Ni ferrite nanopowders by coprecipitation method with ultrasound irradiation, Journal of Magnetism and Magnetic Materials,272-276 (2004) 2238-2240.
    [21]J. Msomi, T. Moyo, Effect of domain transformation on the magnetic properties of CuxNi1-xFe2O4 ferrites, Journal of Magnetism and Magnetic Materials,321 (2009) 1246-1250.
    [22]X. Y. Tan, Y. Zhao, G. Y. Li, C. W. Hu, Effect of calcination temperature on the structure and hydroxylation activity of Ni0.5Cu0.5Fe2O4 nanoparticles, Applied Surface Science,257 (2011) 6256-6263.
    [1]K. Raj, R. J. Moskowitz, Commercial applications of ferrofluids, Journal of Magnetism and Magnetic Materials,85 (1990) 233-245.
    [2]A. Jordan, R. Scholz, P. Wust, H. Fahling, R. J. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible, Journal of Magnetism and Magnetic Materials,201 (1999) 413-419.
    [3]D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, M. J. Muhammed, Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain, Journal of Magnetism and Magnetic Materials,225 (2001) 256-261.
    [4]L. Fu, V. P. Dravid, D. L. Johnson, Self-assembled (SA) molecular coating on magnetic nanoparticles, Applied Surface Science,181 (2001) 173-178.
    [5]J. J. Versluijs, M. A. Bari, J. M. D. Coey, Magnetoresistance of Half-Metallic Oxide Nanocontacts, Physical Review Letters,87 (2001) 026601.
    [6]C. Terrier, M. Abid, C. Arm, S. Serrano-Guisan, L. Gravier, J. Ansermet, Fe3O4 nanowires synthesized by electroprecipitation in templates, Journal of Applied Physics,98 (2005) 086102.
    [7]M. Abid, J. P. Abid, S. Jannin, S. Serrano-Guisan, I. Palaci, J. Ansermet, M agnetotransport properties depending on the nanostructure of Fe3O4 nanowires, Journal of Physics:Condensed Mater,18 (2006) 6085-6093.
    [8]Z. Z. Zhang, S. Cardoso, P. P. Freitas, X. Batlle, P. Wei, N. Barradas, J. C. Soares,40% tunneling magnetoresistance after anneal at 380℃ for tunnel junctions with iron-oxide interface layers, Journal of Applied Physics,89 (2001) 6665.
    [9]W. Eerenstein, T. T. M. Palstra, S. S. Saxena, T. Hibma, Spin-polarized transport across sharp antiferromagnetic boundaries, Physical Review Letters,88 (2002) 247204.
    [10]X. W. Li, A. Gupta, G. Xiao, G. Q. Gong, Transport and magnetic properties of epitaxial and polycrystalline magnetite thin films, Journal of Applied Physics,83 (1998) 7049-7051.
    [11]D. L. Peng, T. Asai, N. Nozawa, T. Hihara, K. Sumiyama, Transport and magnetic properties of epitaxial and polycrystalline magnetite thin films, Appljed Physics Letters,81 (2002) 45984600.
    [12]J. M. D. Coey, A. E. Berkowitz, L. I. Balcells, F. F. Putris, F. T. Parker, Magnetoresistance of magnetite, Appljed Physics Letters,72 (1998) 734-736.
    [13]D. H. Zhang, Z. Q. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, C. W. Zhou, Magnetite (Fe3O4) core-shell nanowires:synthesis and magnetoresistance, Nano Letters,4 (2004)2151-2155.
    [14]Y. Wei, B. Han, X. Y. Hu, Y. H. Lin, X. Z. Wang, X. L. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties, Procedia Engineering,27 (2012) 632-637.
    [15]D. S. Xue, F. S. Li, Hyperfine interactions,156/157 (2004) 31-38.
    [16]J. Wang, J. J. Sun, Q. Sun, Q. W. Chen, Polymorphism of Bi1-xLnxO1.5 phase:Charaterization of a new compound Bi4Ln2O9 (x= 0.33; Ln= La, Pr, Nd), Materials Research Bulletin,38 (2003)113-124.
    [17]E. J. W. Verwey, P. W. Haayman, Electronic conductivity and transition point of magnetite (Fe3O4), Physical,8 (1941) 979-981.
    [18]A. Moewes, E. Z. Kurmaev, L. D. Frinkelstien, A. V. Galakhov, S. Gota, M. Gautier-Soyer, J. P. Rueff, C. F. Hague, X-ray emission spectroscopy study of the Verwey transition in Fe3O4, Physical Review Letters,89 (2002) 276601.
    [19]J. P. Shepherd, J. W. Koenitzer, R. Aragon, J. Spalek, J. M. Honig, Heat capacity and entropy of nonstoichiometric magnetite Fe3(1-&)O4:The thermodynamic nature of the Verwey transition, Physics Review B,43 (1991) 8461.
    [20]L. Y. Zhang, D. S. Xue, X. F. Xu, A. B. Gui, C. X. Gao, The fabrication and m agnetic properties of nanowire -like iron oxide, Journal of Physics:Condensed Mater,16 (2004) 4541.4548.
    [21]D. S. Xue, L. Y. Zhang, C. X. Gao, X. F. Xu, A. B. Gui, Synthesis, Mossbauer spectra and magnetic properties of quasi-one-dimensional Fe3O4 nanowires, Chinese Physics Letters, 21 (2004) 733-736.
    [22]G. F. Goya, T. S. Berquo, F. C. Fonseca, M. P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, Journal of Applied Physics,94 (2003) 3520-3528.
    [23]李发伸,王涛,王颖.H202氧化法制备Fe304纳米颗粒及与共沉淀法制备该样品的对比[J].物理学报.2005,54(7):3100-3106.
    [24]M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Y. Murakami, D. Shindo, Magnetic and electrical characterizations of half-metallic Fe3O4 nanowires, Advanced Materials,19 (2007) 2290-2294.
    [25]Z. L. Lu, M. X. Xu, W. Q. Zou, S. Wang, X. C. Liu, et al., Large low field magnetoresistance in ultrathin nanocrystalline magnetite Fe3O4 films at room temperature, Applied Physics Letters,91 (2007) 102508.
    [26]H. Liu, E. Y. Jiang, H. L. Bai, R. K. Zheng, X. X. Zhang, Thickness dependence of magnetic and magneto-transport properties of polycrystalline Fe3O4 films prepared by reactive sputtering at room temperature, Journal of Physics:D:Applied Physics,36 (2003) 2950-2953.
    [27]K. Liu, L. Zhao, P. Klavins, F. E. Osterloh, H. Hiramatsu, Extrinsic magnetoresistance in magnetite nanoparticles, Journal of Applied Physics,93 (2003) 7951-7953.
    [28]Y. Masubuchi, M. Minoya, T. Takeda, S. Kikkawa, Electron transport under magneitc field in insulating hematite composites with spinel ferrite, Journal of the American Ceramic Society, 94(2011)765-770.
    [29]S. Wang, F. J. Yue, J. Shi, Y. J. Shi, A. Hu, Y. W. Du, D. Wu, Room-temperature spin-dependent tunneling through molecules, Applied Physics Letters,98 (2011) 172501.
    [30]Z. M. Liao, H. C. Wu, J. J. Wang, G. L. W. Cross, S. Kumar, et al., Magnetoresistance of Fe3O4-graphene-Fe3O4 junctions, Applied Physics Letters,98 (2011) 052511.
    [31]K. Ghosh, S. B. Ogale, S. P. Pai, M. Robson, E. Li, I. Jin, Z. W. Dong, R. L. Greene, R. Ramesh, T. Venkatesan, Positive giant magnetoresistance in a Fe3O4/SrTiO3/La0.7Sr0.3MnO3 heterostructure, Applied Physics Letters,73 (1998) 689-691.
    [1]C. M. Fang, F. Kools, R. Metselaar, G. With, R. A. Groot, Magnetic and e lectronic p roperties of strontium hexaferrite SrFe12O19 from first-principles calculations, Journal of Physics: Condensed Mater,15 (2003) 6229-6237.
    [2]K. D. Durst, H. Kronmuller, The coercive field of sintered and melt-spun NdFeB magnets, Journal of Magnetism and Magnetic Materials,68 (1987) 63-75.
    [3]T. Burkert, L. Nordstrom, O. Eriksson, O. Heinonen, Giant magnetic anisotropy in tetragonal FeCo alloys, Physical Review Letters,93 (2004) 027203
    [4]B. S. Zhang, G. Lu, Y. Feng, J. Xiong, H. X. Lu, Electromagnetic and microwave absorption properites of Alnico powder composites, Journal of Magnetism and Magnetic Materials,299 (2006)205-210.
    [5]T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J. Y. Piquemal, G. Viau, Magnetic nanowires as permanent magnetic materials, Applied Physics Letters,91 (2007) 172501.
    [6]F. Tabatabaie, M. H. Fathi, A. Saatchi, A. Ghasemi, Microwave absorption properties of Mn-and Ti-doped strontium hexaferrite, Journal of Alloys and Compounds,470 (2009) 332-335.
    [7]L. A. Garcia-Cerda, O. S. L.A. Rodriguez-Fernandez, P. J. Resendiz-Hernandez, Study of SrFe12O19 synthesized by the sol-gel method, Journal of Alloys and Compounds,369 (2004) 182-184.
    [8]S. F. Fennessey, R. J. Farris, Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns, Polymer,45 (2004)4217-4225.
    [9]J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules,3 (2002) 232-238.
    [10]H. Lee, H. Yoon, G. H. Kim, Highly oriented electrospun polycaprolactone micro/nanofibers prepared by a field-controllable electrode and rotating collector, Applied Physics A:Materials Sciencs & Processing,97 (2009) 559-565.
    [11]C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering, Biomaterials,25 (2004) 877-886.
    [12]A.Theron, E. Zussman, A. L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology,12(2001) 384-390.
    [13]E. Zussman, A. Theron, and A. L. Yarin, Formation of nanofiber crossbars in electrospinning, Applied Physics Letters,82 (2003) 973-975.
    [14]S. P. Zhong, W. E. Teo, X. Zhu, R. W. Beuerman, S. Ramakrishna, L. Y. L. Yung, An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture, Journal of Biomedical Materials Research Part A,45 (2006) 456-463.
    [15]B. Sundaray, V. Subramanian, T. S. Natarajan, R. Z. Xiang, C. C. Chang, W. S. Fann Electrospinning of continuous aligned polymer fibers, Applied Physics Letters,84 (2004) 1222-1224.
    [16]H. Pan, L. Li, L. Hu, X. J. Cui, Continuous aligned polymer fibers produced by a modified electrospinning method, Polymer,47 (2006) 4901-4904.
    [17]J. Rafique, J. Yu, J. L. Yu, G. Fang, Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector, Applied Physics Letters,91 (2007) 063126.
    [18]D. Li, Y. L. Wang, Y. N. Xia, Electrospinning nanofibers as uniaxially alligned arrays and layer-by-layer stacked films, Advanced Materials,16 (2004) 361-366.
    [19]D. Li, G. Ouyang, J. T. McCann, Y. N. Xia, Collecting electrospun nanofibers with patterned electrodes, Nano Letters,5 (2005) 913-916.
    [20]D. Li, Y. L. Wang, Y. N. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Letters,3 (2003) 1167-1171.
    [21]P. Katta, M. Alessandro, R. D. Ramsier, G. G. Chase, Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector, Nano Letters,4 (2004) 2215-2218.
    [22]杜春岭,电化学沉积法制备FePtx磁性纳米颗粒与薄膜组织和磁性能的研究,兰州理工大学硕士学位论文,2010.
    [23]S. H. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal super;attices, Science,287 (2000) 1989-1992.
    [24]K. E.Elkins, T. S. Vedantam, J. P. Liu, Ultrafine FePt nanoparticles prepared by the chemical reduction method, Nano Letters,3 (2003) 1647-1649.
    [25]L. Cagnon, Y. Dahmane, J. Voiron, S. Pairis, M. Bacia, L. Ortega, N. Benbrahim, A. Kadri, Electrodeposited CoPt and FePt alloys nanowires, Journal of Magnetism and Magnetic Materials,310 (2007) 2428-2430.
    [26]Y. C. Sui, R. Skomski, K. D. Sorge, D. Sellmeyer, Nonotube magnetism, Applied Physics Letters,84 (2004) 1525-1527.
    [27]J. Yang, T. C. Deivaraj, D. Too, Phase transfer method of preparing alkylamine stabilized platinum nanoparticles, The Journal of Physical Chemistry B,108 (2004) 2181-2185.
    [28]B. Jeyadevan, K. Shinoda, Polyol process for Fe-based hard (fct-FePt) and soft (FeCo) magnetic nanopartices, IEEE Magnetics Society,25 (2006) 3030-3035.
    [29]E. E. Carpenter, J. A. Sims, J. A. Wienmann, Magnetic properties of iron and iron platinum alloys synthesized via micromulsion techniques, Applied Physics Letters,87 (2000) 5615-5617.
    [30]S. H. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, B. D. Terris, Controlled synthesis and assembly of FePt nanoparticles, The Journal of Physical Chemistry B,107 (2003) 5419-5425.
    [31]C. Liu, X. W. Wu, T. Klemmer, N. Shukla, X. M. Yang, D. Weller, Polyol process synthesis of monodispersed FePt nanoparticles, The Journal of Physical Chemistry B,108 (2004) 6121-6123.
    [32]A. Tomou, I. Panagiotopoulos, D. Gournis, B. Kooi, Ll0 ordering and magnetic interactions in FePt nanoparticles embedded in MgO and SiO2 shell matrices, Journal of Applied Physics, 102(2007)023910.
    [33]H. X. Wang, E. Jia, L. D. Zhang, L. X. Li, M. Li, On low-temperature ordering of FePt nanowires, Physics Letters A,372 (2008) 5712-5715.
    [34]C. Wang, Y. L. Hou, J. Kim, S. H. Sun, A general strategy for synthesizing FePt nanowires and nanorods, Angewandte Chemie International Edition,46 (2007) 6333-6335.
    [35]Y. L. Hou, H. Kondoh, R. Che, M. Takeguchi, T. Ohta, Ferromagnetic FePt nanowires: Solvothermal reduction synthesis and characterization, Small, (2006) 235-238.
    [36]M. Chen, T. Pica, Y. B. Jiang, P. Li, K. Yano, J. P. Liu, A. K. Datye, H. Y. Fan, Synthesis and self-assembly of fcc phase FePt nanorods, Journal of American Chemical Society,129 (2007) 6348-6349.
    [37]T. Song, Y. Z. Zhang, T. Zhou, C. T. Lm, S. Ramakrishna, B. Liu, Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning, Chemical Physics Letters,415 (2005) 317-322.
    [38]T. Song, Y. Z. Zhang, T. J. Zhou, Fabricatio n of magnetic composit e nanofibers of poly(ε-caprolactone) with FePt nanoparticles by coaxial electrospinning, Journal of Magnetism and Magnetic Materials,303 (2006) e286-e289.
    [39]E. P. Wohlfarth, Ferromagnetic Materials, vol.1 (North-Holland, Amsterdam,1980), p20.
    [40]D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London/New York,1991), Chap.1, p91.
    [41]J. H. Hwang, V. P. Dravid, M. H. Teng, J. J. Host, B. R. Elliott, D. L. Johnson, T. O. Mason, Magnetic properties of graphitically encapsulated nickel nanocrystals, Journal of Materials Research,12(1997)1076-1082.
    [42]B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, J. P. Sun, Microwave absorption properties of the core/shell-type iron and nickel nanoparticles, Journal of Magnetism and Magnetic Materials,320 (2008)1106-1111.
    [43]X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J.P. Lei, C. G. Lee, Microwave absorption properties of the carbon-coated nickel nanocapsules, Applied Physics Letters,89 (2006) 053115.
    [44]A. Aharoni, Introduction to the Theory of Ferromagnetism,vol.8 (Clarendon, Oxford,1996), Chap.8, p181.
    [45]L. Qiao, X. H. Han, B. Gao, J. B. Wang, F. S. Wen, F. S. Li, Microwave absorption properties of the hierarchically branched Ni nanowire composites, Journal of Applied Physics,105 (2009) 053911.
    [46]Z. W. Li, W. W. Pan, J. L. Zhang, H. B. Yi, Microstructure and magnetic anisotropy of electrospun Cu1-xZnxFe2O4 nanofibers:a local probe study, Journal of Physics D:Applied Physics,44 (2011) 445304.
    [47]J. A. Osborn, Demagnetizing factors of the general ellipsoid, Physical Review,67 (1945) 351-357.
    [48]D. X. Chen, J. A. Brug, R. B. Goldfarb, Demagnetizing factors for cylinders, IEEE Transactions on Magnetics,27 (1991) 3601-3619.
    [49]E. Michielssen, J. Sajer, S. Ranjithan, R. Mittra, Design of lightweight, broad-band microwave aborbers using genetic algorithms, IEEE Transactions on Microwave Theory and Techniques,41 (1993) 1024-1031.
    [50]T. Inui, K. Konishi, K. Oda, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites, IEEE Transactions on Magnetics,35 (1999) 3148-3150.
    [51]J. Wei, J. H. Liu, S. M. Li, Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres, Journal of Magnetism and Magnetic Materials, 312(2007)414-417.
    [52]A. Ghasemi, A. Hossienpour, A. Morisako, X. X. Liu, A. Ashrafizadeh, Investigation of the microwave absorptive behavior of doped barium ferrites, Material and Design,29 (2008) 112-117.
    [53]P. Singh, V. K. Babbar, A. Razdan, R. K. Puri, T. C. Goel, Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites, Journal of Applied Physics, 87 (2000) 4362-4366.
    [54]H. Wu, R. Zhang, X. X. Liu, D. D. Lin, W. Pan, Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties, Chemistry of Materials,19 (2007) 3506-3511.
    [55]M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner, J. Wendorff, Magnetically Anisotropic Cobalt and Iron Nanofibers via Electrospinning, Advanced Materials,19 (2007) 4244-4247.